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FOURTH-ORDER DIFFERENTIAL SUBORDINATION RESULTS FOR

ANALYTIC FUNCTIONS INVOLVING THE GENERALIZED BESSEL

FUNCTIONS

S. MANDAL1, M. M. SOREN1∗, §

Abstract. In this current paper, we obtain fourth-order differential subordination re-
sults for analytic functions in the open unit disk ∆ = {z : z ∈ C and |z| < 1} associated

with a new operator Sγ,k
α,βf(z) which involves the generalized Bessel function of the 1st

kind of order p and the Carlson-Shaffer operator. We also derive some interesting new
results for this operator. The results are obtained by considering suitable classes of ad-
missible functions.
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1. Introduction and Preliminaries

Let H(∆) be the class of functions which are analytic in open unit disk ∆ = {z : z ∈
C and |z| < 1}, H[a, n] denote the subclass of functions f ∈ H(∆) of the form:

f(z) = a+ anz
n + an+1z

n+1 + · · · (z ∈ ∆; a ∈ C; n ∈ N = {1, 2, 3, · · · })

and H[1, n] = Hn. We denote by A the class of all normalized analytic functions in ∆ of
the form:

f(z) = z +
∞∑
n=1

an+1z
n+1 (z ∈ ∆). (1)

Also, let the Hadamard product (or convolution) of two functions

gl(z) = z +

∞∑
n=1

bn+1,lz
n+1 (l = 1, 2)
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be defined by

(g1 ⋆ g2)(z) := z +
∞∑
n=1

bn+1,1bn+1,2z
n+1 =: (g2 ⋆ g1)(z).

For two functions f, G ∈ A, the function f(z) is said to be subordinate to G(z), denoted
by f(z) ≺ G(z), if there exists a Schwarz function ϑ(z) analytic in ∆ with

ϑ(0) = 0 and |ϑ(z)| < 1 (z ∈ ∆)

such that

f(z) = G(ϑ(z)) (z ∈ ∆).

Moreover, if the function G is univalent in ∆, then f(z) ≺ G(z) if and only if f(0) = G(0)
and f(∆) ⊂ G(∆) (see, for details, [22, 24]).

We recall the function ωγ,b,p(z), the generalized Bessel function of the first kind of order
p is defined as a particular solution of the second order linear homogenous differential
equation (see, for details, [11]):

z2ω′′(z) + bzω′(z) + [γz2 − p2 + (1− b)p]ω(z) = 0 (γ; b; p ∈ C).

Moreover, the function ωγ,b,p(z) has the familiar presentation of the form

ωγ,b,p(z) =

∞∑
n=0

(−γ)n

n!Γ(p+ n+ (b+ 1)/2)

(z
2

)2n+p
(z ∈ C), (2)

where Γ is the Euler Gamma function. This series permits one to study in a unified manner
of Bessel function, modified Bessel function and spherical Bessel function which we noted
below as particular values of b and γ.

(1) For b = 1 and γ = 1 in (2), the familiar Bessel function defined by (see [11], [34])

Jp(z) =

∞∑
n=0

(−1)n

n!Γ(p+ n+ 1)

(z
2

)2n+p
(z ∈ C).

(2) For b = 1 and γ = −1 in (2), the modified Bessel function defined by (see [11],
[34])

Ip(z) =

∞∑
n=0

1

n!Γ(p+ n+ 1)

(z
2

)2n+p
(z ∈ C).

(3) For b = 2 and γ = 1 in (2), the function reduces to
√
2jp(z)/

√
π, where jp is the

spherical Bessel function defined by (see [11])

jp(z) =

√
π

2

∞∑
n=0

(−1)n

n!Γ(p+ n+ 3/2)

(z
2

)2n+p
(z ∈ C).

Deniz [14] and Deniz et al. [15] (see [2, 9, 10, 11, 12, 30, 31]) introduced the function
φγ,b,p(z) in terms of the generalized Bessel function ωγ,b,p(z) by

φγ,b,p(z) = 2pΓ

(
p+

b+ 1

2

)
z1−p/2ωγ,b,p(

√
z), (3)

where the function ωγ,b,p(z) is given in (2). The equation (3) can be written as

φγ,b,p(z) := φγ,k(z) = z +

∞∑
n=1

(−γ)n

4n(k)n

zn+1

n!

(
k = p+

b+ 1

2
∈ C \ Z−

0

)
,
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where Z−
0 = {0,−1,−2, · · · } and (δ)m is the Pochhammer symbol:

(δ)m =
Γ(δ +m)

Γ(δ)
=

{
1, if m = 0,

δ(δ + 1) · · · (δ +m− 1), if m ∈ N.

The Carlson-Shaffer Operator L(α, β)f(z) [13] is defined by

L(α, β)f(z) = θ(α, β; z) ∗ f(z) = z +

∞∑
n=1

(α)n
(β)n

an+1z
n+1,

where θ(α, β; z) is the incomplete beta function

θ(α, β; z) =
∞∑
n=0

(α)n
(β)n

zn+1 (β ̸= 0,−1,−2, . . . ; z ∈ ∆).

We now define the operator Sγ,k
α,β : A −→ A for a function f of the form (1) by (using

Hadamard product of the Carlson-Shaffer Operator and the generalized Bessel function)

Sγ,k
α,βf(z) = φγ,k(z) ∗ L(α, β)f(z) = z +

∞∑
n=1

(−γ)n(α)nan+1

4n(k)n(β)n

zn+1

n!
. (4)

From (4) we have the identity relation

z
(
Sγ,k
α,βf(z)

)′
= αSγ,k

α+1,βf(z)− (α− 1)Sγ,k
α,βf(z). (5)

Indeed, the function Sγ,k
α,βf(z) is an elementary transform of the generalized hypergeometric

function defined by (see [23, 25, 27, 28, 29]; also [16, 17])

qFs(α1, · · · , αq;β1, · · · , βs; z) =
∞∑
n=1

(α1)n · · · (αq)n
(β1)n · · · (βs)n

zn

n!

(αi ∈ C; βj ∈ C \ Z−
0 ; q ≤ s+ 1; q, s ∈ N ∪ {0}; i = 1, 2, · · · , q; j = 1, 2, · · · , s).

For instance

Sγ,k
α,βf(z) = z 0F1

(
k;−γ

4
z
)
∗ L(α, β)f(z).

We notice that, for suitable choices of the parameters b and γ, we derive some new oper-
ators:

(i) Taking b = γ = 1 in (4), we have the operator Jp : A −→ A related with Bessel
function, defined by

Jpf(z) = φ1,1,p ∗ L(α, β)f(z) = [2pΓ(p+ 1)z1−p/2Jp(
√
z)] ∗ L(α, β)f(z)

= z +

∞∑
n=1

(−1)n(α)nan+1

4n(p+ 1)n(β)n

zn+1

n!
(6)

(ii) Taking b = 1 and γ = −1 in (4), we have the operator Ip : A −→ A related with
modified Bessel function, defined by

Ipf(z) = φ1,−1,p ∗ L(α, β)f(z) = [2pΓ(p+ 1)z1−p/2Ip(
√
z)] ∗ L(α, β)f(z)

= z +
∞∑
n=1

(α)nan+1

4n(p+ 1)n(β)n

zn+1

n!
(7)
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(iii) Taking b = 2 and γ = 1 in (4), we have the operator Sp : A −→ A related with
modified Bessel function, defined by

Spf(z) = [π−1/22p+1/2Γ(p+ 3/2)z1−p/2jp(
√
z)] ∗ L(α, β)f(z)

= z +
∞∑
n=1

(−1)n(α)nan+1

4n(p+ 3/2)n(β)n

zn+1

n!
. (8)

There are many research articles in the literature dealing with the first-order and second-
order differential subordination problems for analytic functions in the open unit disk.
In 1992, Ponnusamy and Juneja [26] introduced the concepts of third-order differential
inequalities in the complex plane and then the third-order differential subordination theory
was introduced by Antonino and Miller [3] in 2011. In recent years, by using the concepts
of third-order differential subordination, several researchers obtained many interesting
results involving various linear and nonlinear operators and study is continuing on it (see,
for example, [6, 8, 18, 19, 20, 32, 33]) and the references cited therein. Recently, Atshan
et al. [7] introduced and studied the concepts of fourth-order differential subordination in
2020 (which is a generalization of third-order differential subordination results obtained by
Antonino and Miller [3]), and in this context, there are only a few articles dealing with the
fourth-order differential subordination problems (see, for examples, [1, 4, 7, 5, 21]). This
idea proved to be a significant application in the field of Geometric Function Theory of
Complex Analysis. Their work has motivated and encouraged many further developments
in this direction.

Now, we provide the context of well-known notations and definitions used for obtaining
the main results.

Definition 1.1 (see [3]). Let Q be the set of all functions ϱ that are analytic and univalent
on ∆ \ E(ϱ) where

E(ϱ) =

{
ζ ∈ ∂∆ : lim

ω−→ζ
ϱ(ω) = ∞

}
,

and are such that min | ϱ′(ζ) |= ρ > 0 for ζ ∈ ∂∆ \ E(ϱ). Further, let Q(a) denote the
subclass of Q consisting of functions ϱ for which ϱ(0) = a and Q(1) = Q1 = {ϱ(z) ∈ Q :
ϱ(0) = 1}.
Definition 1.2 (see [7]). Assume that h is univalent in ∆ and ψ : C5 ×∆ −→ C. If the
analytic function p fulfills the fourth-order differential subordination

ψ
(
g(z), zg′(z), z2g′′(z), z3g′′′(z), z4g′′′′(z); z

)
≺ h(z) (z ∈ ∆), (9)

then the function g is called a solution of the differential subordination (9). A univalent
function ϱ is called a dominant of the solutions of the differential subordination if g ≺ ϱ
for all g satisfying (9). A dominant ϱ̃(z) that fulfils ϱ̃ ≺ ϱ for all dominants ϱ̃ of (9) is
called the best dominant.

Definition 1.3 (see [7]). If Ω ⊆ C, ϱ ∈ Q and n ∈ N \ {2}. Let Ψj [Ω, ϱ] be the family of
admissible functions consisting of functions ψ : C5×∆ −→ C, which fulfill the admissibility
condition:

ψ(r, s, t, u, v; z) /∈ Ω

whenever

r = ϱ(ζ), s = mζϱ′(ζ), ℜ
{
t

s
+ 1

}
≥ mℜ

{
1 +

ζϱ′′(ζ)

ϱ′(ζ)

}
,

ℜ
{u
s

}
≥ m2ℜ

{
ζ2ϱ′′′(ζ)

ϱ′(ζ)

}
and ℜ

{v
s

}
≥ m3ℜ

{
ζ3ϱ′′′′(ζ)

ϱ′(ζ)

}
,
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where z ∈ ∆, ζ ∈ ∂∆ \ E(ϱ) and m ≥ n.

Lemma 1.1 (see [7]). Let g ∈ H[a, n] with n ≥ 3. Furthermore, let ϱ ∈ Q and fulfill the
following conditions:

ℜ
{
ζ2ϱ′′′(ζ)

ϱ′(ζ)

}
≥ 0 and

∣∣∣∣z2g′′(z)ϱ′(ζ)

∣∣∣∣ ≤ m2,

where z ∈ ∆, ζ ∈ ∂∆ \ E(ϱ) and m ≥ n. If Ω is a set in C, ψ ∈ Ψj [Ω, ϱ] and

ψ
(
g(z), zg′(z), z2g′′(z), z3g′′′(z), z4g′′′′(z); z

)
∈ Ω,

then

g(z) ≺ ϱ(z) (z ∈ ∆).

The main purpose of this paper is to consider certain appropriate classes of admissible
functions and investigate some fourth-order differential subordination results of analytic
functions associated with new operator defined by (4).

This work is organized into three sections. Section 1 overviews some deep results in the
theory of differential subordination and uses them to prove the existence of a general algo-
rithm for solving all fourth-order differential subordination results. In Section 2, we prove
our main results of differential subordination by using new operator and some corollaries
are also deduced. Section 3 concludes the work.

2. Fourth-order subordination results associated with the operator Sγ,k
α,β

We give the class of admissible functions, which is required in proving differential sub-

ordination theorems using the operator Sγ,k
α,βf(z) given by (4).

Definition 2.1. If Ω ⊆ C and ϱ ∈ Q1 ∩ Hn. Let Φ1[Ω, ϱ] be the family of admissible
functions which consists of functions ϕ : C5 × ∆ −→ C that satisfy the condition of
admissibility:

ϕ(a, b, x, y, w; z) /∈ Ω,

whenever

a = ϱ(ζ), b =
mζϱ′(ζ) + (α− 1)ϱ(z)

α
,

ℜ
{
αb+ α(α+ 1)x− (α2 − 1)a

αb− (α− 1)a
− 2α

}
≥ mℜ

{
1 +

ζϱ′′(ζ)

ϱ′(ζ)

}
,

ℜ
{
α(α+ 1)[(α+ 2)y− 3(α+ 1)x+ 2(α− 1)a]

αb− (α− 1)a
+ 3α(α+ 1)

}
≥ m2ℜ

{
ζ2ϱ′′′(ζ)

ϱ′(ζ)

}
and

ℜ
{
α(α+ 1)(α+ 2)(α+ 3)w− 4α(α+ 1)(α+ 2)2y+ 6α(α+ 1)2(α+ 2)x

αb− (α− 1)a

−α(α
2 − 1)(2α+ 5)a

αb− (α− 1)a
− 4α(α+ 1)

}
≥ m3ℜ

{
ζ3ϱ′′′′(ζ)

ϱ′(ζ)

}
,

where z ∈ ∆, ζ ∈ ∂∆ \ E(ϱ) and m ≥ 3.

Theorem 2.1. Assume that Ω ⊆ C and ϕ ∈ Φ1[Ω, ϱ]. If f ∈ A and ϱ ∈ Q1 satisfy the
following conditions:

ℜ
(
ζ2ϱ′′′(ζ)

ϱ′(ζ)

)
≥ 0,

∣∣∣∣∣
(
Sγ,k
α+2,βf(z)

ϱ′(ζ)

)∣∣∣∣∣ ≤ m2 (10)
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and

ϕ
(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
⊂ Ω, (11)

then

Sγ,k
α,βf(z) ≺ ϱ(z) (z ∈ ∆).

Proof. Define the function g(z) in ∆ by

Sγ,k
α,βf(z) = g(z) (z ∈ ∆). (12)

Differentiating (12) with respect to z and by using the recurrence relation (5), we have

Sγ,k
α+1,βf(z) =

zg′(z) + (α− 1)g(z)

α
. (13)

Again, differentiating (13) with respect to z and by making use of (5), we obtain

Sγ,k
α+2,βf(z) =

z2g′′(z) + 2αzg′(z) + α(α− 1)g(z)

α(α+ 1)
. (14)

Further computations show that

Sγ,k
α+3,βf(z) =

z3g′′′(z) + 3(α+ 1)z2g′′(z) + 3α(α+ 1)zg′(z) + α(α2 − 1)g(z)

α(α+ 1)(α+ 2)
. (15)

and

Sγ,k
α+4,βf(z) =

z4g′′′′(z) + (α+ 2)[4z3g′′′(z) + 6(α+ 1)z2g′′(z)]

α(α+ 1)(α+ 2)(α+ 3)

+
4α(α+ 1)(α+ 2)zg′(z) + α(α2 − 1)(α+ 2)g(z)

α(α+ 1)(α+ 2)(α+ 3)
. (16)

Let

a = r, b =
s+ (α− 1)r

α
, x =

t+ 2αs+ α(α− 1)r

α(α+ 1)
,

y =
u+ 3(α+ 1)t+ 3α(α+ 1)s+ α(α2 − 1)r

α(α+ 1)(α+ 2)

and w =
v+ (α+ 2)[4u+ 6(α+ 1)t] + 4α(α+ 1)(α+ 2)s+ α(α2 − 1)(α+ 2)r

α(α+ 1)(α+ 2)(α+ 3)
.

We now define the transformation ψ(r, s, t, u, v; z) : C5 ×∆ −→ C by

ψ(r, s, t, u, v; z) = ϕ(a, b, x, y, w; z) = ϕ

(
r,

s+ (α− 1)r

α
,
t+ 2αs+ α(α− 1)r

α(α+ 1)
, (17)

u+ (α+ 1)[3t+ 3αs+ α(α− 1)r]

α(α+ 1)(α+ 2)
,
v+ (α+ 2)[4u+ (α+ 1){6t+ 4αs+ α(α− 1)r}]

α(α+ 1)(α+ 2)(α+ 3)
; z

)
.

Making use of the equations (12) to (16), we find from (17) that

ψ
(
g(z), zg′(z), z2g′′(z), z3g′′′(z), z4g′′′′(z); z

)
= ϕ

(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
.

Therefore, (11) transforms into

ψ
(
g(z), zg′(z), z2g′′(z), z3g′′′(z), z4g′′′′(z); z

)
∈ Ω.
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We observe that

t

s
+ 1 =

α(α+ 1)x+ αb− (α2 − 1)a

αb− (α− 1)a
− 2α,

u

s
=
α(α+ 1)[(α+ 2)y− 3(α+ 1)x+ 2(α− 1)a]

αb− (α− 1)a
+ 3α(α+ 1)

and

v

s
=
α(α+ 1)(α+ 2)(α+ 3)w− 4α(α+ 1)(α+ 2)2y

αb− (α− 1)a

+
6α(α+ 1)2(α+ 2)x− α(α2 − 1)(2α+ 5)a

αb− (α− 1)a
− 4α(α+ 1).

Hence, the admissibility condition for ϕ ∈ Φ1[Ω, ϱ] of Definition 2.1 is equivalent to the
admissibility condition for the function ψ ∈ Ψj [Ω, ϱ]. Thus, by Lemma 1.1, we have
g(z) ≺ ϱ(z) or

Sγ,k
α,βf(z) ≺ ϱ(z) (z ∈ ∆).

□

The following result will be an extension of Theorem 2.1 when the behavior of the
function ϱ(ω) on ∂∆ is unknown.

Corollary 2.1. If Ω ⊆ C and ϱ is univalent in ∆ with ϱ ∈ Q1. Let ϕ ∈ Φ1[Ω, ϱρ] for some
ρ ∈ (0, 1),where ϱρ(z) = ϱ(ρz). If f ∈ A and ϱρ(z) satisfy the following conditions:

ℜ

{
ζ2ϱ′′′ρ (ζ)

ϱ′ρ(ζ)

}
≥ 0 and

∣∣∣∣∣
(
Sγ,k
α+2,βf(z)

ϱ′ρ(ζ)

)∣∣∣∣∣ ≤ m2 (z ∈ ∆) (18)

and

ϕ
(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
⊂ Ω,

then

Sγ,k
α,βf(z) ≺ ϱ(z) (z ∈ ∆).

Proof. We observe from Theorem 2.1 that Sγ,k
α, betaf(z) ≺ ϱρ(z) (z ∈ ∆). The result

claimed by Corollary 2.1 is now deduced from the following subordination relationship:

ϱρ(z) ≺ ϱ(z) (z ∈ ∆).

□

If Ω ̸= C is a simply connected domain, then Ω = h(∆) for some conformal mapping
h from ∆ into the domain Ω. We denote the class Φ[h(∆), ϱ] by Φ[h, ϱ]. Next two results
are an immediate consequences of Theorem 2.1 and Corollary 2.1.

Theorem 2.2. Let ϕ ∈ Φ[h, ϱ]. If f ∈ A and ϱ ∈ Q1 satisfies (10) and

ϕ
(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
≺ h(z), (19)

then

Sγ,k
α,βf(z) ≺ ϱ(z) (z ∈ ∆).
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Corollary 2.2. If ϱ is univalent function in ∆ with ϱ ∈ Q1 and ϕ ∈ Φ[h, ϱρ] for some
ϱ ∈ (0, 1), where ϱρ(ω) = ϱ(ρω). If f ∈ A and ϱρ satisfies (18) and

ϕ
(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
≺ h(z),

then
Sγ,k
α,βf(z) ≺ ϱ(z) (z ∈ ∆).

Now, the next theorem gives the best dominant of the differential subordination (19).

Theorem 2.3. Suppose that the function h is univalent in ∆. Also suppose that ϕ :
C5 ×∆ −→ C and the differential equation

ϕ

(
ϱ(z),

zϱ′(z) + (α− 1)ϱ(z)

α
,
z2ϱ′′(z) + 2αzϱ′(z) + α(α− 1)ϱ(z)

α(α+ 1)
,
z3ϱ′′′(z) + 3(α+ 1)z2ϱ′′(z)

α(α+ 1)(α+ 2)

+
3α(α+ 1)zϱ′(z) + α(α2 − 1)ϱ(z)

α(α+ 1)(α+ 2)
,
z4ϱ′′′′(z) + 4(α+ 2)z3ϱ′′′(z) + 6(α+ 1)(α+ 2)z2ϱ′′(z)

α(α+ 1)(α+ 2)(α+ 3)

+
4α(α+ 1)(α+ 2)zϱ′(z) + α(α2 − 1)(α+ 2)ϱ(z)

α(α+ 1)(α+ 2)(α+ 3)
; z

)
= h(z) (20)

has a solution ϱ(z) with ϱ(0) = 1 and ϱ(z) verifies the condition (10). If f ∈ A, ϕ ∈
Φ[h, ϱρ] and

ϕ
(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
is analytic in ∆, then (19) implies that

Sγ,k
α,βf(z) ≺ ϱ(z) (z ∈ ∆)

and ϱ(z) is the best dominant.

Proof. Applying Theorem 2.2, it can be shown that ϱ(z) is a dominant of equation (19),
because ϱ(z) satisfies (20), so that ϱ(z) is a solution of (19) and hence ϱ(z) will be domi-
nated by all dominants. Therefore ϱ(z) is the best dominant. □

Now, we put ϱ(z) = Mz, M > 0, and apropos of definition (2.1), the class of admissible
function ϕ[Ω, ϱ], denoted by ϕ[Ω, M], is depicted below.

Definition 2.2. Let Ω ⊆ C and M > 0. The family of admissible functions Φ[Ω, M] consists
of the functions ϕ : C5 ×∆ −→ C, which satisfy the following admissibility condition

ϕ

(
Meiθ,

n+ (α− 1)

α
Meiθ,

L+ [2αn+ α(α− 1)]Meiθ

α(α+ 1)
,
N+ 3(α+ 1)L+ [3α(α+ 1)n+ α(α2 − 1)]Meiθ

α(α+ 1)(α+ 2)
,

X+ 4(α+ 2)N+ 6(α+ 1)(α+ 2)L+ [4α(α+ 1)(α+ 2)n+ α(α2 − 1)(α+ 2)]Meiθ

α(α+ 1)(α+ 2)(α+ 3)
; z

)
/∈ Ω

whenever ω ∈ ∆,ℜ
{
Le−iθ

}
≥ (n−1)nM,ℜ

{
Ne−iθ

}
≥ 0 and ℜ

{
Xe−iθ

}
≥ 0 for every θ ∈ R

and n ≥ 3.

Using the definition of the family of admissible functions, from the result in Theorem
2.1 we have the following result.

Theorem 2.4. Assume that ϕ ∈ Φ[Ω, M]. If f ∈ A fulfill the conditions:∣∣∣Sγ,k
α+2,βf(z)

∣∣∣ ≤ n2M (n ≥ 3, M > 0)

and

ϕ
(
Sγ,k
α,βf(z),S

γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)
∈ Ω,
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then ∣∣∣Sγ,k
α,βf(z)

∣∣∣ < M (z ∈ ∆).

Now, taking Ω = ϱ(∆) = {w : |w| < M}, the class Φ[Ω, M] is simply denoted by Φ[M].

Corollary 2.3. Let ϕ ∈ Φ[M]. If f ∈ A satisfies
∣∣∣Sγ,k

α+2,βf(z)
∣∣∣ ≤ n2M (n ≥ 3; M > 0) and∣∣∣ϕ(Sγ,k

α,βf(z),S
γ,k
α+1,βf(z),S

γ,k
α+2,βf(z),S

γ,k
α+3,βf(z),S

γ,k
α+4,βf(z); z

)∣∣∣ < M,

then ∣∣∣Sγ,k
α,βf(z)

∣∣∣ < M (z ∈ ∆).

Corollary 2.4. Let ℜ(α) ≥ 1−n
2 , n ≥ 3 and M > 0. If f ∈ A satisfies

∣∣∣Sγ,k
α+1,βf(z)

∣∣∣ < M,

then ∣∣∣Sγ,k
α,βf(z)

∣∣∣ < M (z ∈ ∆).

Proof. This follows from Corollary 2.3 by taking ϕ(a, b, x, y, w; z) = b = n+(α−1)
α Meiθ. □

Theorem 2.5. Assume that n ≥ 3, M > 0. If f ∈ A satisfies the conditions
∣∣∣Sγ,k

α+2,βf(z)
∣∣∣ ≤

n2M and∣∣∣α(α+ 1)(α+ 2)(α+ 3)Sγ,k
α+4,βf(z)− α(α+ 1)(α+ 2)Sγ,k

α+3,βf(z)
∣∣∣ < h(z),

then ∣∣∣Sγ,k
α,βf(z)

∣∣∣ < M (z ∈ ∆).

Proof. Assume that ϕ(a, b, x, y, w; z) = α(α + 1)(α + 2)(α + 3)w − α(α + 1)(α + 2)2y,
Ω = h(∆) such that

h(z) =
(
|2α+ 3α2 + α3|+ 3|(2 + 3α+ α2)|

)
3Mz.

Now, by applying Theorem (2.4), we show that ϕ ∈ Φ[Ω, M]. Because∣∣∣∣ϕ(Meiθ, n+ (α− 1)

α
Meiθ,

L+ [2αn+ α(α− 1)]Meiθ

α(α+ 1)
,
N+ (α+ 1)[3L+ 3αn+ α(α− 1)]Meiθ

α(α+ 1)(α+ 2)
,

X+ 4(α+ 2)N+ 6(α+ 1)(α+ 2)L

α(α+ 1)(α+ 2)(α+ 3)
+

[4α(α+ 1)(α+ 2)n+ α(α2 − 1)(α+ 2)]Meiθ

α(α+ 1)(α+ 2)(α+ 3)
; z

)∣∣∣∣
= |ϕ(a, b, x, y, w; z)|.

Since,

|ϕ(a, b, x, y, w; z)| = α(α+ 1)(α+ 2)(α+ 3)w− α(α+ 1)(α+ 2)2y

= |A+ (6 + 3α)N+ (3α2 + 9α+ 6)L+ (α3 + 3α2 + 2α)nMeiθ|

=
∣∣∣Ae−iθ + (6 + 3α)Ne−iθ + (3α2 + 9α+ 6)Le−iθ + (α3 + 3α2 + 2α)nM

∣∣∣
≥ ℜ(Ae−iθ) + |(6 + 3α)|ℜ(Ne−iθ) + |(3α2 + 9α+ 6)|ℜ(Le−iθ) + |(α3 + 3α2 + 2α)|nM
≥ |(α3 + 3α2 + 2α)|nM+ |(3α2 + 9α+ 6)|n(n− 1)M

≥
(
|2α+ 3α2 + α3|+ 3|(2 + 3α+ α2)|

)
3M,

such that ℜ(Ae−iθ) ≥ 0,ℜ(Ne−iθ) ≥ 0 and ℜ(Le−iθ) ≥ (n − 1)nM for all θ ∈ R, z ∈
∆ and n ≥ 3. The proof is complete. □
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Definition 2.3. If Ω ⊆ C and ϱ ∈ Q1 ∩ H1. Let Φ1[Ω, ϱ] be the family of admissible
functions which consists of functions ϕ : C5 × ∆ −→ C that satisfy the condition of
admissibility:

ϕ(a, b, x, y, w; z) /∈ Ω,

whenever

a = ϱ(ζ), b =
mζϱ′(ζ) + αϱ(z)

α
, ℜ

{
(α+ 1)x+ b− (α+ 2)a

b− a
− 2(α+ 1)

}
≥ mℜ

{
1 +

ζϱ′′(ζ)

ϱ′(ζ)

}
,

ℜ
{
(α+ 1)(α+ 2)[y− 3x+ 2a]

b− a
+ 3(α+ 1)(α+ 2)

}
≥ m2ℜ

{
ζ2ϱ′′′(ζ)

ϱ′(ζ)

}
and

ℜ
{
(α+ 1)(α+ 2)(α+ 3)[w− 4y+ 6x− 2a]

b− a
− 4(α+ 1)(α+ 2)(α+ 3)

}
≥ m3ℜ

{
ζ3ϱ′′′′(ζ)

ϱ′(ζ)

}
,

where z ∈ ∆, ζ ∈ ∂∆ \ E(ϱ) and m ≥ 3.

Theorem 2.6. Assume that Ω ⊆ C and ϕ ∈ Φ1[Ω, ϱ]. If f ∈ A and ϱ ∈ Q1 satisfy the
following conditions:

ℜ
(
ζ2ϱ′′′(ζ)

ϱ′(ζ)

)
≥ 0,

∣∣∣∣∣
(
Sγ,k
α+2,βf(z)

zϱ′(z)

)∣∣∣∣∣ ≤ m2 (21)

and

ϕ

(
Sγ,k
α,βf(z)

z
,
Sγ,k
α+1,βf(z)

z
,
Sγ,k
α+2,βf(z)

z
,
Sγ,k
α+3,βf(z)

z
,
Sγ,k
α+4,βf(z)

z
; z

)
⊂ Ω, (22)

then

Sγ,k
α,βf(z)

z
≺ ϱ(z) (z ∈ ∆).

Proof. Define the function g(ω) by

Sγ,k
α,βf(z)

z
= g(z) (ω ∈ ∆). (23)

Differentiating (23) with respect to z and by using the recurrence relation (5), we have

Sγ,k
α+1,βf(z)

z
=
zg′(z) + αg(z)

α
. (24)

Again, differentiating (24) with respect to z and by making use of (5), we obtain

Sγ,k
α+2,βf(z)

z
=
z2g′′(z) + 2(α+ 1)zg′(z) + α(α+ 1)g(z)

α(α+ 1)
. (25)

Further computations show that

Sγ,k
α+3,βf(z)

z
=
z3g′′′(z) + 3(α+ 2)z2g′′(z)

α(α+ 1)(α+ 2)

+
3(α+ 1)(α+ 2)zg′(z) + α(α+ 1)(α+ 2)g(z)

α(α+ 1)(α+ 2)
, (26)



S. MANDAL, M. M. SOREN: FOURTH-ORDER DIFFERENTIAL SUBORDINATION RESULTS... 1255

and

Sγ,k
α+4,βf(z)

z
=
z4g′′′′(z) + (α+ 3)[4z3g′′′(z) + 6(α+ 2)z2g′′(z)]

α(α+ 1)(α+ 2)(α+ 3)

+
4(α+ 1)(α+ 2)(α+ 3)zg′(z) + α(α+ 1)(α+ 2)(α+ 3)g(z)

α(α+ 1)(α+ 2)(α+ 3)
. (27)

Let

a = r, b =
s+ αr

α
, x =

t+ 2(α+ 1)s+ α(α+ 1)r

α(α+ 1)
,

y =
u+ 3(α+ 2)t+ 3(α+ 1)(α+ 2)s+ α(α+ 1)(α+ 2)r

α(α+ 1)(α+ 2)
and

w =
v+ 4(α+ 3)u+ 6(α+ 2)(α+ 3)t+ 4(α+ 1)(α+ 2)(α+ 3)s

α(α+ 1)(α+ 2)(α+ 3)
+ r.

We now define the transformation ψ(r, s, t, u, v; z) : C5 ×∆ −→ C by

ψ(r, s, t, u, v; z) = ϕ(a, b, x, y, w; z) = ϕ

(
r,

s+ αr

α
,
t+ 2(α+ 1)s

α(α+ 1)
+ r, (28)

u+ (α+ 2)[3t+ 3(α+ 1)s]

α(α+ 1)(α+ 2)
+ r,

v+ (α+ 3)[4u+ (α+ 2){6t+ 4(α+ 1)s}]
α(α+ 1)(α+ 2)(α+ 3)

+ r; z

)
.

Making use of the equations (23) to (27), we find from (28) that

ψ
(
g(z), zg′(z), z2g′′(z), z3g′′′(z), z4g′′′′(z); z

)
= ϕ

(
Sγ,k
α,βf(z)

z
,
Sγ,k
α+1,βf(z)

z
,
Sγ,k
α+2,βf(z)

z
,
Sγ,k
α+3,βf(z)

z
,
Sγ,k
α+4,βf(z)

z
; z

)
.

Therefore, (22) transforms into

ψ
(
g(z), zg′(z), z2g′′(z), z3g′′′(z), z4g′′′′(z); z

)
∈ Ω.

We observe that

t

s
+ 1 =

b+ (α+ 1)x− (α+ 2)a

b− a
− 2(α+ 1),

u

s
=

(α+ 1)(α+ 2)[y− 3x+ 2a]

b− a
+ 3(α+ 1)(α+ 2)

and

v

s
=

(α+ 1)(α+ 2)(α+ 3)[w− 4y+ 6x− 2a]

b− a
− 4(α + 1)(α + 2)(α + 3).

Hence, the admissibility condition for ϕ ∈ Φ1[Ω, ϱ] of Definition 2.3 is equivalent to the
admissibility condition for the function ψ ∈ Ψj [Ω, ϱ]. Thus, by Lemma 1.1, we have

g(z) =
Sγ,k
α,βf(z)

z
≺ ϱ(z) (z ∈ ∆)

which evidently completes the proof of Theorem 2.6. □

If Ω ̸= C is a simply connected domain, then Ω = h(∆) for some conformal mapping
h from ∆ into the domain Ω. We denote the class Φ[h(∆), ϱ] by Φ[h, ϱ]. Next result is an
immediate consequences of Theorem 2.6.
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Theorem 2.7. Let ϕ ∈ Φ[h, ϱ]. If f ∈ A and ϱ ∈ Q1 satisfies (21) and

ϕ

(
Sγ,k
α,βf(z)

z
,
Sγ,k
α+1,βf(z)

z
,
Sγ,k
α+2,βf(z)

z
,
Sγ,k
α+3,βf(z)

z
,
Sγ,k
α+4,βf(z)

z
; z

)
≺ h(z),

then
Sγ,k
α,βf(z)

z
≺ ϱ(z) (z ∈ ∆).

In the particular case ϱ(z) = 1 +Mz,M > 0, the class of admissible functions Φ[Ω, ϱ]
becomes Φ[Ω,M ].

Definition 2.4. Let Ω ⊆ C and M > 0. The family of admissible functions Φ[Ω, M] consists
of the functions ϕ : C5 ×∆ −→ C, which satisfy the following admissibility condition

ϕ

(
1 + Meiθ,

α+ (n+ α)

α
Meiθ,

L+ α(α+ 1) + (α+ 1)[2n+ α]Meiθ

α(α+ 1)
,

N+ 3(α+ 2)L+ α(α+ 1)(α+ 2) + (α+ 1)(α+ 2)[3n+ α]Meiθ

α(α+ 1)(α+ 2)
,

X+ (α+ 3)[4N+ 6(α+ 2)L+ α(α+ 1)(α+ 2)]

α(α+ 1)(α+ 2)(α+ 3)
+

[4n+ α]Meiθ

α
; z

)
/∈ Ω

whenever ω ∈ ∆,ℜ
{
Le−iθ

}
≥ (n−1)nM,ℜ

{
Ne−iθ

}
≥ 0 and ℜ

{
Xe−iθ

}
≥ 0 for every θ ∈ R

and n ≥ 3.

Corollary 2.5. Let ϕ ∈ Φ[M]. If f ∈ A satisfies∣∣∣∣∣S
γ,k
α+2,βf(z)

z

∣∣∣∣∣ ≤ n2M (n ≥ 3; M > 0)

and

ϕ

(
Sγ,k
α,βf(z)

z
,
Sγ,k
α+1,βf(z)

z
,
Sγ,k
α+2,βf(z)

z
,
Sγ,k
α+3,βf(z)

z
,
Sγ,k
α+4,βf(z)

z
; z

)
∈ Ω,

then ∣∣∣∣∣S
γ,k
α,βf(z)

z
− 1

∣∣∣∣∣ < M (z ∈ ∆).

Remark 2.1. For different choices of parameters, we can obtain the corresponding re-
sults for the operators Jpf(z), Ipf(z) and Spf(z), which are defined by (6), (7) and (8),
respectively.

3. Conclusions

In the present paper, we have derived several fourth-order differential subordination

results for analytic functions in the open unit disk ∆ by using the operator Sk,d
α,c which

is defined by (4) means of the convolution, involving the normalized form of the three-
parameter family ωb,d,p(z) of the generalized Bessel functions of the first kind, which is
defined by (2). Our results have been obtained by considering suitable classes of admissible
functions. The results obtained in this paper could inspire future work to get fourth-order
differential subordinations involving different types of linear and nonlinear operators.

Acknowledgement. The authors also thank the referees for useful comments.
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