
TWMS J. App. and Eng. Math. V.15, N.5, 2025, pp.1259-1274

NEIGHBORHOOD CONNECTIVITY INDEX OF A VAGUE GRAPH

MASOMEH MOJAHEDFAR1, ALI ASGHAR TALEBI1,∗, §

Abstract. Neighborhood connectivity index (NCI) in graphs is a fundamental issue in
fuzzy graph (FG) theory that has wide applications in the real world. Hence, in this
paper, we investigate NCI in vague graphs(VG) with several examples. Also, one of the
motives of this research is to introduce several bounds and index values of structures like
trees, cycles and complete VGs are obtained. This article discusses about a parameter
in VGs theory termed as NCI. Finally, an application is presented.
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1. Introduction

Graph theory has always played an important role in mathematics. While discussing the
relationship between objects, it focuses on things that have an undeniable membership.
Zadeh [1] introduced the subject of a fuzzy set (FS) in 1995. Rosenfeld [2] proposed
the subject of FGs. The definitions of FGs from the Zadeh fuzzy relations in 1973 was
presented by Kaufmann [3]. Some of these product operations on FGs were presented by
Mordeson and Peng [4]. Gau and Buehrer [5] proposed the concept of vague set (VS)
by replacing the value of an element in a set with a subinterval of [0, 1]. Moreover, a
VG can concentrate on determining the uncertainties coupled with the inconsistent and
indeterminate information of any real-world problems where FGs may not lead to adequate
results. Ramakrishna in [6] proposed a new concept of VGs, belonging to the FGs family,
have good capabilities when faced with problems that cannot be expressed by FGs. The
notion of a VG is a new mathematical attitude to model the ambiguity and uncertainty
in decision-making issues. Kosari et al. [7] introduced a VG structure and Rao et al. [8]
studied the certain properties of VGs. Ghorai et al. expressed [9] the regular product VGs
and product vague line graph. Kosari et al. [10, 11] studied on VG and certain properties of
domination in product VGs. Akram et al. [12−14] introduced the vague hypergraphs and
regularity in vague intersection graphs. New result of domination on VGs was presented
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by Borzooei [15− 17]. Connectivity index (CI) problem can also be used to model many
real-world situations in the fields of circuit design, telecommunications, network flow, and
so on. Binu et al. [18 − 20] studied CI, cyclic CI, and Wiener index, and some of those
are extended to bipolar graphs too. Sebastian et al. [21] expressed the generalized FG
connectivity parameters. Mathew and Sunitha [22] defined several types of edge in FGs.
Connectivity is an important concept in FGs. The stability of a FG is determined by the
strength of connectedness of each pair of its vertices. Mordeson et al. [23] introduced a
new notion of neighborhood connectivity (NC) in FGs. Jiang et al. [24] studied on CI in
VGs. Naeem et al. [25] investigated CI of intuitionistic FGs. Bhutani et al. [26] brought
up the concept of strong edges and strong paths in FGs. New results on FGs are proposed
in [27− 36]. NCI is a new parameter is related to connection studied in this work. NCI is
one of the most important topics that has many applications in detection of competition
condition in parallel programming.

1.1. Methodology and Importance of Neighborhood connectivity index. NCI is
very much useful in molecular chemistry and used in spectral graph theory, network theory,
and several field of mathematics. NCI has a vital role in real-world problems especially
in Internet routing and transport network flow. VGs allow to describe two aspects of
information using membership and nonmembership degrees under uncertainties. Keeping
in view the importance of NCIs in real life problems and comprehension of FGs, we aim
to develop CIs in the environment of VGs. CI is always considered as a cornerstone in
VG. A new parameter related to CI is studied in this work. Since selection best location is
relevant in most of the modern networks, the concepts of this paper can be used in a wide
variety of problems. This can also be used in analyzing the effectiveness of scheduling and
routing in different areas. We introduce new type of CIs, namely, NCI in the frame of
VGs.

1.2. Research gaps and motivation of study. Different types of topological index of a
graph has many applications and many results are available for FGs. But in many practical
applications it is seen that many situations cannot be modeled using FGs. In these cases,
to handle such a situation, those topological indices are needed to define in a VG. The
VGs can amplify flexibility to model complex real-time problems better than an FG. the
concept of NCI is one of the most important features of VGs that have many applications
in real problems. The NCI plays a significant role in modeling various problems such as
networking, transportation, and precise location detection.

1.3. Contribution of this study. In this work, we have explored a new index, namely
the NCI of FGs towards VGs. These indices play the crucial role in modeling real-world
problems . In the beginning, we have studied the CI and NCI of VGs and we discussed
the essential preliminaries related to the work.Finally, an application was presented.

2. Preliminaries

In this section, we present some preliminary results which will be used throughout the
paper.

Definition 2.1. [34] A graph G∗ is a pair (X,E) where X is called the vertex set and
E ⊆ X ×X is called the edge set.

Definition 2.2. [34] An FG G = (ϕ, ψ) is a pair of function ϕ : X → [0, 1] and ψ :
X ×X → [0, 1] such that, for all m,n ∈ X,

ψ(mn) ≤ min{ϕ(m), ϕ(n)},
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Definition 2.3. [35] A path P of length l in an FG G = (ϕ, ψ) is a sequence of distinct
vertices x0, x1, x2, ..., xl such that ψ(xk−1xk) > 0, k = 1, 2, 3, ..., l. The degree of member-
ship of a weakest edge is defined as its strength. The strength of connectedness between
two vertices m and n, is defined as the maximum of the strength of all paths between m
and n is denoted by ψ∞(m,n) or CONNG(m,n).

An edge mn is called to be a strong edge (SE) if ψ∞(m,n) = ψ(mn). If ψ(mn) = 0
for each n ∈ X, then m is named an isolated vertex. If mn is an SE, then its weight is
at least as great as the strength of the connectedness of its end vertices when it is deleted.
Note that, CONNG−mn(m,n) is the strength of the connectedness between m and n in an
FG obtained from G by deleting the edge mn.

Definition 2.4. [36] Assume mn is an edge in an FG G, then
The edge mn is α− strong if CONNG−mn(m,n) < ψ(mn).
The edge mn is β− strong if CONNG−mn(m,n) = ψ(mn).
The edge mn is δ− strong if CONNG−mn(m,n) > ψ(mn).
Therefore, an edge mn is an SE if it is either α−strong or β−strong.

Two vertices m and n in an FG G are called adjacent if ψ(mn) > 0, and m and n are
named neighbors. The collection of all neighbors of m is denoted by N(m). An edge mn
of an FG is named effective if ψ(mn) = ϕ(m)∧ ϕ(n). Thus, m and n are named effective
neighbors (EN). The set of all EN of m is named EN of m and is shown by EN(m). Also,
n is named strong neighbor(SN) of m if edge mn is strong. The set of all SN of m is
named the open SN of m and is denoted by Ns(m). The closed SN Ns[m] is defined as
Ns[m] = Ns(m) ∪ {m}.

Definition 2.5. [5] A vague set (VS) D is a pair (Dt,Df ) on a set X, where Dt and Df

are real- valued functions which can be defined from X to [0, 1] , so that, Dt(s) +Df (s) ≤
1, ∀s ∈ X.

Definition 2.6. [6] A pair G = (D,Z) is called a VG on graph G∗ = (X,E), where
D = (Dt,Df ) is a VS on X and Z = (Zt,Zf ) is a VS on E such that,

Zt(sy) ≤ min{Dt(s),Dt(y)},

Zf (sy) ≥ max{Df (s),Df (y)},

for all s, y ∈ X . Note that Z is called vague relation on D. A VG G is named strong if

Zt(sy) = min{Dt(s),Dt(y)},

Zf (sy) = max{Df (s),Df (y)},
for all sy ∈ E.

Definition 2.7. [34] Assume G = (D,Z) is a VG on G∗ = (X,E). The degree of a vertex
s is denoted as d(s) = (dt(s), df (s)), where

dt(s) =
∑

s ̸=y,y∈X
Zt(sy) , df (s) =

∑
s ̸=y,y∈X

Zf (sy).

The order of G is defined as
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O(G) =

(∑
s∈X

Dt(s),
∑
s∈X

Df (s)

)
.

Definition 2.8. [24] Suppose G = (D,Z) is a VG on a graph G∗ = (X,E). Then

(i) A VG G
′
= (D

′
,Z

′
) on G

′∗
= (X,E

′
) is called a partial vague subgraph (PVSG) of G

if

D
′ t
(s) ≤ Dt(s) and D

′f
(s) ≥ Df (s) for all s ∈ X,

Z
′ t
(sy) ≤ Zt(sy) and Z

′f
(sy) ≥ Zf (sy) for all sy ∈ E.

(ii) A VG G
′
= (D

′
,Z

′
) is called a vague subgraph (VSG) of G if

D
′ t
(s) = Dt(s) and D

′f
(s) = Df (s) for all s ∈ X,

Z
′ t
(sy) = Zt(sy) and Z

′f
(sy) = Zf (sy) for all sy ∈ E

′
.

Definition 2.9. [36] Suppose G = (D,Z) is a VG. Then
(i)A path P : s = s0, s1, s2, ..., sl−1, sl = y in G is a sequence of distinct vertices where
Zt(sk−1sk) > 0 , Zf (sk−1sk) < 1 , k = 1, 2, 3, ..., l. The length of P is l.
(ii) If P : s = s0, s1, s2, ..., sl−1, sl = y is a path between s and y of length l, then (Zt(sy))l =
sup{Zt(ss1) ∧ Zt(s1s2) ∧ ... ∧ Zt(sl−1y)} and (Zf (sy))l = inf{Zf (ss1) ∨ Zf (s1s2) ∨ ... ∨
Zf (sl−1y)}.
CONNG(s, y) = (CONN t

G(s, y), CONN
f
G(s, y)) = (Zt∞(sy),Zf∞

(sy)) is named the
strength of connectedness between any two vertices s and y in G where CONN t

G(s, y) =

sup{(Zt(sy))l} and CONNf
G(s, y) = inf{(fZ(sy))l}, l = 1, 2, ....n. A VG G = (D,Z) is

named a connected VG , if Zt(sy) > 0 and Zf (sy) > 0 , for every sy ∈ E. A VG G is a
complete VG, if Zt(sy) = min{Dt(s),Dt(y)} and Zf (sy) = max{Df (s),Df (y)} for every
s, y ∈ X.

Definition 2.10. [24] Assume mn is an edge in VG G, then
The edge mn is α− strong if

CONN t
G−mn(m,n) < Zt(mn) and CONNf

G−mn(m,n) > Zf (mn)
The edge mn is β− strong if

CONN t
G−mn(m,n) = Zt(mn) and CONNf

G−mn(m,n) = Zf (mn)
The edge mn is δ− strong if

CONN t
G−mn(m,n) > Zt(mn) and CONNf

G−mn(m,n) < Zf (mn).
Therefore, an edge mn is an SE if it is either α−strong or β−strong.

Definition 2.11. [24] The Connectivity Index (CI) of a VG G denoted by CI VG (G) is
defined as,

CI(G) = (CIt(G),CIf (G)) = ∑
s,y∈X

Dt(s)Dt(y).CONN t
G(s, y),

∑
s,y∈X

Df (s)Df (y).CONNf
G(s, y)


where CIt(G) and CIf (G) are the true-CI and false-CI of G.

Definition 2.12. [24] Suppose G = (D,Z) is a VG on G∗ = (D∗,Z∗) where Z∗ =
{sy|Zt(sy) > 0 ∨ Zf (sy) < 1}. Then the VG G is a cycle if and only if G∗ is a cycle.

Definition 2.13. [24]The complement of a VG G = (D,Z) is a VG Ḡ = (D̄, Z̄) where
D = D̄ and Z̄ is described as follows.

Z̄t(sy) = Dt(s) ∧Dt(y)− Zt(sy)
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Z̄f (sy) = Df (s) ∨Df (y) + (1− Zf (sy)).

In Table 1, we show the essential notations.

Table 1. Some essential notations.

Notation Meaning

FS Fuzzy Set

FG Fuzzy Graph

VS Vague Set

VG Vague Graph

VSG vague subgraph

PVSG Partial vague subgraph

CI Connectivity Index

NCI Neighborhood Connectivity Index

3. Neighborhood connectivity index in vague graphs

Definition 3.1. The Neighborhood Connectivity Index (NCI) of a VG G = (D,Z) is
defined as,

NCI(G) =

 ∑
s∈X(G)

d(s)et(s),
∑

s∈X(G)

d(s)ef (s)


where d(s) is the cardinality of N(s) and et(s) = ∨{Zt(sy) : y ∈ N(s)} and ef (s) =
∧{Zf (sy) : y ∈ N(s)} with N(s) = {y : ψ(sy) > 0, s, y ∈ X}. et(s) and ef (s) is termed as
the potential of the vertex s.

Example 3.1. Consider the VG G = (D,Z) shown in Figure 1, where X = {a1, a2, a3, a4,
a5, a6} and E = {a1a2, a2a3, a1a4, a3a4, a4a6, a4a5, a5a6, a2a4}.

Figure 1. A VG G

We can find d(a1) = 2, et(a1) = 0.2, ef (a1) = 0.5. Similarly, we can find for the rest
of the vertices, as is shown in Table 2.

Therefore, NCI = (4.4, 9.3).
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Table 2

Vertex d(x) et(x) ef (x) d(x)ef (x) d(x)ef (x)

a1 2 0.2 0.5 0.4 1

a2 3 0.3 0.6 0.9 1.8

a3 2 0.3 0.8 0.6 1.6

a4 5 0.3 0.5 1.5 2.5

a5 2 0.2 0.7 0.4 1.4

a6 2 0.3 0.5 0.6 1

NCI 4.4 9.3

Remark 3.1. NCI of VG is zero if and only if the Cardinality of its edge set is zero.

Proposition 3.1. If H = (D
′
,Z

′
) is a PVSG of G = (D,Z), then

NCIt(H) ≤ NCIt(G)

NCIf (H) ≥ NCIf (G)

Proof. Suppose H = (D
′
,Z

′
) is a PVSG of G = (D,Z) with vertex set X = {s1, s2, s3, ...,

sn}. Let s be an arbitary vertex in X
′
vertex set of H. Then Z

′ t
(ssi) ≤ Zt(ssi) and

Z
′f
(ssi) ≥ Zf (ssi) for all other vertices si ∈ X

′
. Therefore, ∨i{Z

′ t
(ssi)} ≤ ∨i{Zt(ssi)}

and ∧i{Z
′f
(ssi)} ≥ ∧i{Zf (ssi)}. Also, dH(s) ≤ dG(s). Therefore,

NCIt(H) =
∑
si

dH(si)(∨i{Z
′ t
(ssi)}) ≤

∑
si

dG(si)(∨i{Zt(ssi)}) = NCIt(G)

Also,

NCIf (H) =
∑
si

dH(si)(∧i{Z
′f
(ssi)}) ≥

∑
si

dG(si)(∧i{Zf (ssi)}) = NCIf (G)

□

Remark 3.2. For a VSG H = (D
′
,Z

′
) of a VG G = (D,Z),

NCIt(H) ≤ NCIt(G) , NCIf (H) ≤ NCIf (G).

Example 3.2. Consider the VG H = (D
′
,Z

′
) shown in Figure 2, where X

′
= {a1, a2, a3, a4,

a5, a6} and E
′
= {a1a2, a2a3, a1a4, a3a4, a4a6, a4a5, a5a6, a2a4}. We can see H is a PVSG

of G = (D,Z), mentioned in Example 3.2.
The cardinality of neighborhood for vertices is shown in Table 3, and also, we can

calculate NCI(H) = (3.3, 7).

Table 3

Vertex d(x) et(x) ef (x) d(x)ef (x) d(x)ef (x)

a1 2 0.1 0.2 0.4 1

a2 3 0.3 0.6 0.9 1.8

a3 2 0.3 0.8 0.6 1.6

a4 5 0.3 0.5 1.5 2.5

a5 2 0.2 0.7 0.4 1.4

a6 2 0.2 0.6 0.4 1.2

NCI 4 9.5

Therefore, NCIt(H) = 4 ≤ NCIt(G) = 4.4 and NCIf (H) = 9.5 ≥ NCIf (G) = 9.3.
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Figure 2. A VSG H of G

Proposition 3.2. For a VG G = (D,Z) on X with |X| = n > 0. We have

0 ≤ NCIt(G) ≤ n(n− 1) , 0 ≤ NCIf (G) ≤ n(n− 1)

Proof. For every s ∈ X, 0 ≤ d(s) ≤ n − 1, 0 ≤ et(s) ≤ 1 , 0 ≤ ef (s) ≤ 1. Thus,
0 ≤ d(s)et(s) ≤ n− 1, 0 ≤ d(s)ef (s) ≤ n− 1. It follows 0 ≤ NCIt(G) =

∑
s∈X d(s)et(s) ≤

n(n− 1), and also 0 ≤ NCIf (G) =
∑

s∈X d(s)ef (s) ≤ n(n− 1). □

Proposition 3.3. Suppose G = (D,Z) is a connected VG with n edges. Then,

2nk ≤ NCIt(G) ≤ 2nl

2nk
′ ≤ NCIf (G) ≤ 2nl

′

where, k = ∧{et(s), s ∈ X}, l = ∨{et(s), s ∈ X} and k
′
= ∧{ef (s), s ∈ X}, l′ =

∨{ef (s), s ∈ X}.

Proof. Let G = (D,Z) be a VG with n edges. Then,

NCIt(G) =
∑
s∈X

et(s)d(s) ≤
∑
s∈X

ld(s) = l
∑
s∈X

d(s) = l × 2n = 2nl

NCIt(G) =
∑
s∈X

et(s)d(s) ≥
∑
s∈X

kd(s) = k
∑
s∈X

d(s) = k × 2n = 2nk

Therefore,

2nk ≤ NCIt(G) ≤ 2nl

Also,

NCIf (G) =
∑
s∈X

ef (s)d(s) ≤
∑
s∈X

l
′
d(s) = l

′ ∑
s∈X

d(s) = l
′ × 2n = 2nl

′

NCIf (G) =
∑
s∈X

ef (s)d(s) ≥
∑
s∈X

k
′
d(s) = k

′ ∑
s∈X

d(s) = k
′ × 2n = 2nk

′

Therefore,

2nk
′ ≤ NCIf (G) ≤ 2nl

′

□
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Proposition 3.4. Suppose G = (D,Z) is a complete VG (CVG) with X = {s1, s2, s3, ..., sn}
such that kt1 ≤ kt2 ≤ ... ≤ ktn and kf1 ≥ kf2 ≥ ... ≥ kfn, where kti = Dt(si) and

kfi = Df (si), 1 ≤ i ≤ n. Then,

NCIt(G) = (n− 1)(kt1 + kt2 + ...+ ktn−2 + ktn−1 + ktn−1)

NCIf (G) = (n− 1)(kf1 + kf2 + ...+ kfn−2 + kfn−1 + kfn−1)

Proof. Suppose G = (D,Z) is a VG. We know that, for a CVG Zt(sisj) > 0 and Zf (sisj) >
0, for all sisj ∈ X. Therefore, d(si) = n − 1 for all si , 1 ≤ i ≤ n. Now, we can check
the potential of vertices. While considering s1 we see that it is the vertex with minimum
membership value, and maximal non-membership value. Therefore, et(s1) = kt1, e

f (s1) =

kf1 . Consider the vertices si, 1 < i < n. Here,

Zt(smsi) ≤ kti ,Zf (smsi) ≤ kfm

for all m < i, and

Zt(smsi) = kti ,Zf (smsi) = kfi

for all m > i. Therefore, et(si) = kti , e
f (si) = kfi , 2 ≤ i ≤ n − 1. At last, we consider the

vertex sn. We can see that

Zt(sisn) ≤ ktn−1, 1 ≤ i ≤ n− 1

ZF (sisn) ≥ ktn−1, 1 ≤ i ≤ n− 1

Since, Zt(sn−1sn) ≤ ktn−1 and Zf (sn−1sn) ≤ kfn−1, e
t(sn) = ktn−1, e

f (sn) = kfn−1. With
summing up all those values, we have

NCIt(G) = (n− 1)(kt1 + kt2 + ...+ ktn−2 + ktn−1 + ktn−1)

NCIf (G) = (n− 1)(kf1 + kf2 + ...+ kfn−2 + kfn−1 + kfn−1)

□

Proposition 3.5. NCI of two isomorphic VGs are equal.

Proof. Suppose h is a bijection between the isomorphic VGs G1 = (D1,Z1) onX1 and G2 =
(D2,Z2) on X2. Since weights of the edges and vertices are preserved by an isomorphism,
NG1(s) = NG2(h(s)) which implies dG1(s) = dG2(h(s)) for s ∈ X. Similarly,

Zt
1(sy) = Zt

2(h(s)h(y))

Zf
1(sy) = Zf

2(h(s)h(y))

for all s, y ∈ X. So, etG1
(s) = etG2

(h(s)) and efG1
(s) = efG2

(h(s)). It follows

NCIt(G1) =
∑
s∈X1

dG1(s)e
t
G1
(s) =

∑
h(s)∈X2

dG2(h(s))e
t
G1
(h(s)) = NCIt(G2)

NCIf (G1) =
∑
s∈X1

dG1(s)e
f
G1
(s) =

∑
h(s)∈X2

dG2(h(s))e
f
G1
(h(s)) = NCIf (G2).

□

Theorem 3.1. Suppose G = (D,Z) is a VG cycle with |X| = n for which every α- strong
edge is of strength k1, k2 and every β- strong edge is of constant strength, then

NCIt(G) = 2nk1 , NCIt(G) = 2nk2
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Proof. Suppose G = (D,Z) is a VG cycle with |X| = n . Since G∗ = (X,E) is a VG cycle,
d(s) = 2, for every s ∈ X. Also, from the assumption it follows that k1 is greater than the
constant strength of β- strong edges, that implies et(s) = k1, and k2 is a lesser that the
constant strength of β- strong edges, that implies ef (s) = k2 for every s ∈ X. Therefor,

NCIt(G) =

n∑
i=1

2k1 = 2nk1 ,NCIf (G) =

n∑
i=1

2k2 = 2nk2.

□

Theorem 3.2. For a given n ∈ N and k1, k2 ∈ R+ , with k1 ≤ 2n and k2 ≤ 2n, there
exists a VG G = (D,Z) of NCItk1 and NCIfk2 with |E| = n.

Proof. Suppose |E| = n. Construct a VG G = (D,Z) such that Dt(si) ≥ k1
2n ,D

f (si) ≥ k2
2n

for every si ∈ X,Dt(sisj) = k1
2n ,D

f (sisj) = k2
2n for every sisj ∈ E. Now , we can check

NCI of the constructed graph. Here, et(si) =
k1
2n , e

f (si) =
k2
2n for all si ∈ X. Thus,

NCIt(G) =
∑
si∈X

d(si)
k1
2n

=
k1
2n

∑
si∈X

d(si) =
k1
2n

× 2n = k1

NCIf (G) =
∑
si∈X

d(si)
k2
2n

=
k2
2n

∑
si∈X

d(si) =
k2
2n

× 2n = k2

Hence, our constructed graph is a VG of NCI s with |E| = n.
□

Example 3.3. Suppose |E| = 5, k1 = 6, k2 = 8. Clearly, 6 ≤ 10, 8 ≤ 10. We can find a
VG G shown in Figure 3, where X = {a, b, c,m, n} and E = {ab, ac, bc, cm, cn}.

Figure 3. A VG G

The cardinality of the neighborhood for vertices is shown in Table 4, and we can calcu-
lated NCI = (6, 8).

Also, by using Theorem 3.15 we can calculate,

NCIt(G) =
6

10
× 10 = 6 , NCIf (G) =

8

10
× 10 = 8
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Table 4

Vertex d(x) et(x) ef (x) d(x)et(x) d(x)ef (x)

a 2 0.6 0.8 1.2 1.6

b 2 0.6 0.8 1.2 1.6

c 4 0.6 0.8 2.4 3.2

m 1 0.6 0.8 0.6 0.8

n 1 0.6 0.8 0.6 0.8

NCI 6 8

Theorem 3.3. Suppose a VG G = (D,Z) with |X| = n ≥ 4, Dt(si) = k1 and Df (si) = k2
, for every si ∈ X. Consider Gc = (Dc,Zc) is a complement of VG G.

NCIt(Gc)−NCIt(G) ≥ n2k1 − 5nk1

NCIf (Gc)−NCIf (G) ≤ n2k2 − 5nk2

Proof. Suppose G = (D,Z) is VG cycle. The neighborhood of every vertex in the vague
cycle has two vertices. Therefore, d(s) = 2. The potential of every vertex will always be
less than k1. Since every vertex has strength k1. Therefore, e

t(s) ≤ k1. Thus,

NCIt(G) =
∑
s∈X

d(s)et(s) = 2
∑
s∈X

et(s) ≤ 2nk1 , (1)

Now, suppose the complement Gc = (Dc,Zc) of the graph G = (D,Z). Each vertex can
have a neighborhood of cardinality greater than n − 3 . ie d(s) ≥ n − 3 for every s ∈ X.
Since all the edges other than those lying on the cycle has strength k1, and all others have
strength less than k1, we can write et(s) = k1. Therefore,

NCIt(Gc) =
∑
s∈X

d(s)et(s) = k1
∑
s∈X

d(s) ≥ nk1(n− 3) = n2k1 − 3nk1 , (2)

By using equation 1 and 2 we have,

NCIt(Gc)−NCIt(G) ≥ n2k1 − 3nk1 − 2nk1 = n2k1 − 5nk1

Similarity, suppose G = (D,Z) is VG cycle. Therefore, d(s) = 2. The potential of every
vertex will always be greater than k2. Since every vertex has strength k2. Therefore,
ef (s) ≥ k2. Thus,

NCIf (G) =
∑
s∈X

d(s)ef (s) = 2
∑
s∈X

ef (s) ≥ 2nk2 , (3)

Gc = (Dc,Zc) is a complement of G = (D,Z), we have d(s) ≥ n − 3 for every s ∈ X.
Since all the edges other than those lying on the cycle has strength k2, and all others have
strength greater than k2, we can write e2(s) = k2. Therefore,

NCIf (Gc) =
∑
s∈X

d(s)ef (s) = k2
∑
s∈X

d(s) ≥ nk2(n− 3) = n2k2 − 3nk2 , (4)

□

Definition 3.2. Two sets of vertices are called a twinning vertex sets of cardinality k if
each set has cardinality k and NCI of the graph obtained after removing each set is same.
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3.1. Algorithm. In this part, by using a following algorithm, we find the NCI with n
vertices. Suppose G = (D,Z) is a VG with n vertices X = {s1, s2, ..., sn}.
1. Construct the matrix A = [mij ] with mij = Zt(sisj) for membership and mij = Zf (sisj)
for non-membership.
2. If the largest membership value in every row of the matrix is eti and the least non-

membership value in every row of the matrix is efi . We find them.
3. If the number of non-zero entres in every row of the matrix is di. We find it.

4. Then, NCIt =
∑n

i=1 e
t
i × di and NCIf =

∑n
i=1 e

f
i × di.

Example 3.4. Suppose G = (D,Z) is a VG in Figure 4 with X = {a, b, c,m, n} and
E = {ab, bc, ac, am, an,mn} .

Figure 4. A VG G

We have the matrix of the VG,

At(G) =


0 0.2 0.2 0.1 0.2
0.2 0 0.2 0 0
0.2 0.2 0 0 0
0.1 0 0 0 0.1
0.2 0 0 0.1 0


We find the largest membership value in every row of the matrix. The NCIt is calculated

by summing the product of largest value of every row and number of non zero entries in
every row.
NCIt = 0.2× 4 + 0.2× 2 + 0.2× 2 + 0.1× 2 + 0.2× 2 = 2.2

Af (G) =


0 0.5 0.4 0.3 0.4
0.5 0 0.5 0 0
0.4 0.5 0 0 0
0.3 0 0 0 0.4
0.4 0 0 0.4 0


We find the least non- membership value in every row of the matrix. The NCIf is

calculated by summing the product of least value of every row and number of non zero
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entries in every row.
NCIf = 0.3× 4 + 0.5× 2 + 0.4× 2 + 0.3× 2 + 0.4× 2 = 4.4

4. Application

Agriculture is an important part of the economy having a significant role in exports
of any country. The findings present that Export Price Index, GDP and exchange rates
have a positive effect and exchange rate fluctuations and population have a negative effect
on agricultural exports. So, it is recommended that, for improving agricultural exports,
GDP and exchange rate should be increased. In addition, by decreasing the fluctuation in
exchange rate, the negative effects will be controlled.

We have six suitable regions for growing crops and using agricultural products in terms
of weather conditions and availability of required facilities. We are going to export the
products grown in these areas to other countries. These areas are connected due to
favorable conditions for agriculture. First, we construct the VG G from this data. The
vertices represent the regions and the edges represent the connection. The weight of
vertices and edges is shown in Figure 5.

Figure 5. A VG G

Now, we write adjacency matrix of G for analyzed data, Now by using the algorithm
which we mentioned previously, we calculate NCI of G.

At(G) =


0 0.2 0 0.2 0 0.2
0.2 0 0.3 0 0.2 0.3
0 0.3 0 0.2 0.2 0
0.2 0 0.2 0 0.2 0
0 0.2 0.2 0.2 0 0.2
0.2 0.3 0 0 0.2 0
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Af (G) =


0 0.6 0 0.6 0 0.5
0.6 0 0.6 0 0.6 0.6
0 0.6 0 0.6 0.6 0
0.6 0 0.6 0 0.6 0
0 0.6 0.6 0.6 0 0.6
0.5 0.6 0 0 0.6 0


By using the above algorithm, we have

NCIt(G) = 0.2 × 3 + 0.3 × 4 + 0.3 × 3 + 0.2 × 3 + 0.2 × 4 + 0.3 × 3 = 5 NCIf (G) =
0.5× 3 + 0.6× 4 + 0.6× 3 + 0.6× 3 + 0.6× 4 + 0.5× 3 = 11.4

The cardinality of neighborhood for all vertices is shown in Table 5.

Table 5

Vertex d(x) et(x) ef (x) d(x)et(x) d(x)ef (x)

R1 3 0.2 0.5 0.6 1.5

R2 4 0.3 0.6 1.2 2.4

R3 3 0.3 0.6 0.9 1.8

R4 3 0.2 0.6 0.6 1.8

R5 4 0.2 0.6 0.8 2.4

R6 3 0.3 0.5 0.9 1.5

Here, we construct the adjacency matrix of G− {R1, R3}.

At(G− {R1, R3}) =


0 0 0 0 0 0
0 0 0 0 0.2 0.3
0 0 0 0 0 0
0 0 0 0 0.2 0
0 0.2 0 0.2 0 0.2
0 0.3 0 0 0.2 0



Af (G− {R1, R3}) =


0 0 0 0 0 0
0 0 0 0 0.6 0.6
0 0 0 0 0 0
0 0 0 0 0.6 0
0 0.6 0 0.6 0 0.6
0 0.6 0 0 0.6 0


Here, we obtaine the NCIt(G− {R1, R3}) = 2 and NCIf (G− {R1, R3}) = 4.8
Also, we construct the adjacency matrix of G− {R5, R6}.

At(G− {R5, R6}) =


0 0.2 0 0.2 0 0
0.2 0 0.3 0 0 0
0 0.3 0 0.2 0 0
0.2 0 0.2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Af (G− {R5, R6}) =


0 0.6 0 0.6 0 0
0.6 0 0.6 0 0 0
0 0.6 0 0.6 0 0
0.6 0 0.6 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Here, we obtaine the NCIt(G− {R5, R6}) = 2 and NCIf (G− {R5, R6}) = 4.8.
Therefore, we can see that {R1, R3}, {R5, R6} are twinning vertex sets of cardinality

two with NCI = (2, 4.8)
In this application, the findings indicate that regions {R1, R3} and {R5, R6} play an im-

portant role in increasing the GDP and exchange rate to improve the export of agricultural
products. By removing these areas, the amount of exports will decrease.

5. Conclusions

A VG, an extension of the basic notion of an FG, can be employed to deal with deeper
aspects of uncertainty and imprecision for which the use of FGs would not fully succeed.
The VGs can amplify flexibility to model complex real-time problems better than an FG.
One of the most important features of VGs that have many applications in real problems
is the concept of NCI. The CI plays a significant role in modeling various problems such
as networking, transportation, and precise location detection. An NCI is a new parameter
related to connection studied in this work. NCI has many applications in different fields.
Therefore, in this paper, we examined NCI on VGs. Finally, an application of NCI has
been introduced. In the future, we intend to broaden the scope of our research to include
topological indices and the notion of NCI on vague influence graphs. There is a scope for
extensive theoretical and practical analysis of these topics. We also aim to introduce some
other topological indices in VGs and investigate their applications.
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