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ON THE TRAVERSABILITY OF NEW COMPOSITION OF TOTAL

GRAPHS

SHANU GOYAL1, TANYA1 §

Abstract. The F -composition F (G)[H] is a graph with the set of vertices V (F (G)[H]) =
(V (G) ∪ E(G)) × V (H) and two vertices u = (u1, u2) and v = (v1, v2) of F (G)[H] are
adjacent if and only if [u1 = v1 ∈ V (G) and (u2, v2) ∈ E(H)] or [(u1, v1) ∈ E(F (G))].
Here F (G) be one of the symbols ΓT (G), or ∆T (G). In this paper, we study the Eulerian
and Hamiltonian properties of the resulting graphs.

Keywords: Euler graph, Hamiltonian graph, composition of two graphs, Gallai total
graph, anti-Gallai total graph.
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1. Introduction

A graph G = (V,E) is an ordered pair of set of vertices and edges, where edges are
unordered pair of vertices. Also G is said to be a (n,m) graph if |V | = n and |E| = m.
A graph is simple if it has neither self loop nor multiple edges. A finite graph is a graph
with finite number of vertices and edges. Two vertices (edges) are said to be adjacent if
they have a common edge (vertex). If a vertex v lies on an edge e, then they are said to
be incident to each other. The degree dG(v) of a vertex v ∈ V is the number of edges
incident at v. A regular graph is the graph in which every vertex of the graph has same
degree. Let G = (V,E) be a graph with |V | = n, then the adjacency matrix A(G) of G is
defined as A(G) = [aij ]n×n, where

aij =

{
1 if vi is adjacent to vj , i ̸= j,

0 otherwise.

A graph G is called Euler graph if there exists a closed walk in G with no repeated
edge and all the edges are traversed exactly once. A closed path is called a cycle. A cycle
containing all the vertices of the graph is called a spanning cycle. A graph containing a
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spanning cycle is called a Hamiltonian graph. A graph G is called null graph if the edge
set of the graph G is empty.

Definition 1.1. The Gallai graph Γ(G) of a graph G is the graph in which V (Γ(G)) =
E(G) and two distinct edges of G are adjacent in Γ(G) if they are adjacent in G, but do
not span a triangle in G.

Definition 1.2. The anti-Gallai graph ∆(G) of a graph G is the graph in which V (∆(G)) =
E(G) and two distinct edges of G are adjacent in ∆(G) if they are adjacent in G and lie
on a same triangle in G.

These structures were employed by Gallai [4] in his research of comparability graphs.
This notion was suggested by Sun [15] and was further used by him to study two class
of perfect graphs. Lakshmanan et al. [9] and Palathingal et al. [14] investigated H-free
properties of Gallai and anti-Gallai graph of H. Several other characteristics of Gallai and
anti-Gallai graphs have been discussed (see [2, 3, 10, 11, 13]).

Definition 1.3. The Gallai total graph ΓT (G) of G is the graph, where V (ΓT (G)) = V ∪E
and uv ∈ E(ΓT (G)) if and only if

(i) u and v are adjacent vertices in G, or
(ii) u is incident to v or v is incident to u in G, or
(iii) u and v are adjacent edges in G which do not span a triangle in G.

Definition 1.4. The anti-Gallai total graph ∆T (G) of G is the graph, where V (∆T (G)) =
V ∪ E and uv ∈ E(∆T (G)) if and only if

(i) u and v are adjacent vertices in G, or
(ii) u is incident to v or v is incident to u in G, or
(iii) u and v are adjacent edges in G and lie on a same triangle in G.

Goyal et al. [5] introduced Gallai-total and anti-Gallai total graphs and discussed the
traversability of these graphs. Characteristics of Gallai and anti-Gallai total simplicial
complexes were researched by Liaquat [12] and Abbas et al. [1] respectively. Figure 1
shows the Gallai total graph ΓT (G) and anti-Gallai total graph ∆T (G) of a graph G.

Definition 1.5. The composition G[H] of two graphs G and H, as defined by F. Harary
[7, 8], with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph with vertex
set V1 × V2 and u = (u1, u2) is adjacent with v = (v1, v2) whenever,

(i) u1 = v1 and u2v2 ∈ E(H), or
(ii) u1v1 ∈ E(G).

Figure 2 shows the composition G[H] of two graphs G and H.

Definition 1.6. The F-composition F (G)[H] of two graphs G = (V (G), E(G)) and H =
(V (H), E(H)) is a graph with vertex set V (F (G)[H]) = (V (G) ∪ E(G))× V (H) and two
vertices u = (u1, u2) and v = (v1, v2) of F (G[H]) are adjacent if and only if

(i) u1 = v1 ∈ V (G) and u2v2 ∈ E(H), or
(ii) u1v1 ∈ E(F (G)).

It was introduced by Goyal et al. [6] and they also gave some results on the wiener indices
of different graph operations of F -composition. Further, we use two graph operators, say,
Gallai total graph ΓT (G) and anti-Gallai total graph ∆T (G) as F (G). Figure 3 illustrates
the definitions of Γ-composition H ′ = ΓT (G)[H] and ∆-composition H ′′ = ∆T (G)[H] of
graphs G and H.
Remark: Degree of v ∈ V (ΓT (G)[H]) is denoted by dΓ(v) and degree of v ∈ V (∆T (G)[H])
is denoted by d∆(v).
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Figure 1. A graph G, its Gallai total graph H = ΓT (G) and its anti-
Gallai total graph H ′ = ∆T (G)

uv

w

x

a

b

c

d

G

v v
H 21

(v,v )2 (u,v )2

(w,v )2

(x,v )2

G[H]

(v,v )1
(u,v )1

(w,v )1

(x,v )1

Figure 2. Composition G[H] of two graphs G and H

2. Eulerian Γ-Composition of Graphs

Proposition 2.1. Let G = (n,m) and H = (p, q) be two non-empty graphs and ΓT (G)[H]
be Γ-composition of the graphs G and H, then

dΓ(u, v) =

{
2pdG(u) + dH(v); if u ∈ V (G),

p[dG(v1) + dG(v2)− 2t]; if u = v1v2 ∈ E(G),

where t denotes the number of triangles containing u in G.

Proof. Let ΓT (G)[H] be the corresponding Γ-composition of G and H,

(i) Since the graph G is a subgraph of ΓT (G) and also each edge incident to u in
G is adjacent to corresponding vertex u in ΓT (G). Therefore, degree of u in
ΓT (G) = 2dG(u), for u ∈ V (G), and ΓT (G)[H] consists p copies of ΓT (G), so we
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Figure 3. Two graphs G and H, their Γ-composition H ′ = ΓT (G)[H] and
∆-composition H ′′ = ∆T (G)[H]

get dΓ(u, v) = 2pdG(u). By the first condition in the definition of ΓT (G)[H], the
vertices of ΓT (G)[H] are adjacent corresponding to the vertices of G if the vertices
of H are adjacent, contributing dH(v) to the degree of ΓT (G)[H]. Therefore,
dΓ(u, v) = 2pdG(u) + dH(v).

(ii) If u = v1v2 ∈ E(G), then the corresponding vertex u of ΓT (G) is adjacent to all
the edges which are adjacent to u, but do not lie on a same triangle with u in G.
It implies that they contribute the degree (dG(v1)− 1) + (dG(v2)− 1)− 2t (if u is
the edge of a triangle, then it is not adjacent to those two edges of G which span
a triangle with u in G) and u is also adjacent in ΓT (G) to the vertices by which it
is incident in G, so 2 more degrees are also contributed. Therefore degree of the
vertex corresponding to an edge of G in ΓT (G) is equal to dG(v1)+dG(v2)−2t. Also
ΓT (G)[H] consists p copies of ΓT (G). Therefore, dΓ(u, v) = p[dG(v1)+dG(v2)−2t].

□

Lemma 2.1. [5] The number of triangles in a graph G is equal to tr(A3)
6 , where A is the

adjacency matrix of G.

Proposition 2.2. Let G = (n,m) and H = (p, q) be two graphs, then

|E(ΓT (G)[H])| = nq + p2[2m− tr(A3)
2 + 1

2

n∑
i=1

(dG(ui))
2],

where A is the adjacency matrix of G.

Proof. Let G = (n,m) and H = (p, q) be two graphs. Then, by Handshake Lemma on
ΓT (G)[H] we have,
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Total degree of ΓT (G)[H]

=
∑

u∈V (G)

∑
v∈V (H)

dΓ(u, v) +
∑

u=vivj∈E(G)

∑
v∈V (H)

dΓ(u, v)

=
∑

u∈V (G)

∑
v∈V (H)

[2pdG(u) + dH(v)] +
∑

vivj∈E(G)

∑
v∈V (H)

p[dG(v1) + dG(v2)− 2tij ]

( where tij is no. of triangles in G containing the vivj edge)

= 2p
∑

u∈V (G)

∑
v∈V (H)

dG(u) +
∑

u∈V (G)

∑
v∈V (H)

dH(v) + p
∑

vivj∈E(G)

∑
v∈V (H)

[dG(v1) + dG(v2)]

− 2p
∑

vivj∈E(G)

∑
v∈V (H)

tij

= 2p2
∑

u∈V (G)

dG(u) + n
∑

v∈V (H)

dH(v) + p2
n∑

i=1

(dG(ui))
2 − 2p2(3× total no. of triangles

in G)

= 2p2 × 2m+ n× 2q + p2
n∑

i=1

(dG(ui))
2 − 2p2

(
3
tr(A3)

6

)

= 2

[
nq + p2

(
2m− 3

tr(A3)

6
+

1

2

n∑
i=1

(dG(ui))
2

)]
Then by Handshake Lemma, the total number of edges in ΓT (G)[H],

|E(ΓT (G)[H])| = nq + p2[2m− tr(A3)
2 + 1

2

n∑
i=1

(dG(ui))
2].

□

A graph is trianglefree, if it does not contain a triangle.

Lemma 2.2. [5] The Gallai total graph ΓT (G) of a graph G is regular if and only if G is
regular and triangle free.

Proposition 2.3. The Γ-composition ΓT (G)[H] of the graphs G and H is regular if and
only if H is a null graph, G is regular and triangle free.

Proof. LetH be a null graph, G be a regular and triangle free graph. Now, we have to show
that ΓT (G)[H] is regular. Since G is regular i.e. degree of each vertex is same. Also, H is
a null graph. It implies that vertices of ΓT (G)[H] corresponding to the vertices of G are
of same degree (by the Proposition 2.1). Also it is given that G is triangle free. It follows
that every vertex of ΓT (G)[H] corresponding to the edges of G has degree p[dG(u)+dG(v)]
(by the Proposition 2.1), where u and v are the end vertices of the edge and this is equal
to 2pdG(u), being G is regular. Therefore, degree of each vertex of ΓT (G)[H] is same.
Hence, ΓT (G)[H] is regular.

Conversely, suppose that ΓT (G)[H] is regular. Now, we have to show that H is a null
graph, G is regular and triangle free. Let, on contrary, G is neither regular nor triangle
free and H is not null. If G is not regular, then degree of every vertex of ΓT (G)[H]
corresponding to the vertices of G is not same, which is a contradiction to our fact that
ΓT (G)[H] is regular. Hence G is regular. Now, if G is not triangle free and H is not null,
then degree of every vertex of ΓT (G)[H] corresponding to the edges of G and degree of
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every vertex of ΓT (G)[H] corresponding to the vertices of G is not same, which is again
a contradiction to our fact that ΓT (G)[H] is regular. Thus, G is triangle free and H is a
null graph. Hence, H is a null graph, G is regular and triangle free. □

Lemma 2.3. [5] The Gallai total graph ΓT (G) of G is connected if and only if G is
connected.

Proposition 2.4. The Γ-composition ΓT (G)[H] of the graphs G and H is connected if
and only if G is connected.

Proof. Let G be a connected graph. Then ΓT (G) is connected (by Lemma 2.3). Since,
ΓT (G)[H] consists p copies of ΓT (G), where p = |V (H)|. Therefore, all these p copies are
connected components of ΓT (G)[H]. Now, it remains to show that these components are
connected to each other. By the second condition in the definition of Γ-composition, there
exists atleast one vertex (u, v) in any component of ΓT (G)[H] adjacent to a vertex (a, b)
of another component whenever ua ∈ E(ΓT (G)), which proves the result.

Conversely, suppose ΓT (G)[H] is connected. Now, we have to show that G is connected.
Let us assume that G is not connected. Then, there exists at least one pair of vertices,
say (u, v) and (a, b) which has no path between them. This implies that there are no two
vertices of ΓT (G)[H] which have a path between them. This implies that ΓT (G)[H] is
disconnected, which is a contradiction to our assumption. Thus, G is connected. □

Corollary 2.1. The Γn
T (G)[H] of G and H is connected if and only if G is connected for

all n ≥ 1.

Parity of a vertex means parity of its degree, i.e. degree of the vertex is either even or
odd.

Theorem 2.1. Let G = (n,m) be a connected graph and H = (p, q) be any non-empty
graph, then Γ-composition ΓT (G)[H] of the graphs G and H is Eulerian if and only if H
is Eulerian and either all the vertices of G are of the same parity or number of vertices in
H is even.

Proof. Let ΓT (G)[H] be an Eulerian graph. Then, the degree of every vertex ΓT (G)[H] is
even. By Proposition 2.1, we can say that dH(v) is even which implies H is Eulerian and
either p is even or all the vertices of G are of same parity in G.

Conversely, suppose all the vertices of G are of the same parity and degree of each vertex
of H is even, then by the Proposition 2.1, the degree of vertices of ΓT (G)[H] corresponding
to the vertices of G is even. If number of vertices of H is even and degree of each vertex
in H is even, then by the Proposition 2.1, the degree of all the vertices of ΓT (G)[H]
corresponding to the edges of G is even. Therefore, ΓT (G)[H] is Eulerian. Hence the
theorem. □

Corollary 2.2. If G and H are Eulerian then ΓT (G)[H] is also Eulerian, but converse is
not true.

Counter example of converse: The Γ-composition graph H ′ = ΓT (G)[H] of the graphs
G and H is Eulerian, but G is not an Eulerian graph as shown in Figure 4.
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Figure 4. Eulerian Γ-composition graph H ′ = ΓT (G)[H]
of a non-Eulerian graph G.

3. Eulerian ∆-Composition of graphs

Proposition 3.1. Let G = (n,m) and H = (p, q) be two non-empty graphs and ∆T (G)[H]
be ∆-composition of the graphs G and H, then

d∆(u, v) =

{
2pdG(u) + dH(v); if u ∈ V (G),

2p(t+ 1); if u = v1v2 ∈ E(G),

where t denotes the number of triangles containing u in G.

Proof. Let ∆T (G)[H] be the corresponding ∆-composition of G and H,

(i) Since the graph G is a subgraph of ∆T (G) and also each edge incident to u in
G is adjacent to corresponding vertex u in ∆T (G). Therefore, degree of u in
∆T (G) = 2dG(u), for u ∈ V (G), and ∆T (G)[H] consists p copies of ∆T (G), so we
get d∆(u, v) = 2pdG(u). And by the first condition in the definition of ∆T (G)[H],
the vertices of ∆T (G)[H] are adjacent corresponding to the vertices of G if the ver-
tices of H are adjacent, contributing dH(v) to the degree of ∆T (G)[H]. Therefore,
d∆(u, v) = 2pdG(u) + dH(v).

(ii) If v = v1v2 ∈ E(G), then the corresponding vertex v of ∆T (G) is adjacent to all
the edges which are adjacent to v, and lie on a same triangle with v in G. It
implies that they contribute the degree 2t (if v is the edge of a triangle, then it is
adjacent to those two edges of G which span triangle with v in G) and v is also
adjacent in ∆T (G) to the vertices by which it is incident in G, so 2 more degrees
are also contributed, therefore, d∆(v) = 2t+ 2 and ∆T (G)[H] consists p copies of
∆T (G). Therefore, d∆(u, v) = 2p(t+ 1).

□
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Proposition 3.2. Let G = (n,m) and H = (p, q) be two graphs, then

|E(∆T (G)[H])| = nq + 3p2[m+ tr(A3)
6 ],

where A is the adjacency matrix of G.

Proof. Let G = (n,m) and H = (p, q) be two graphs. Then by Handshake Lemma on
∆T (G)[H] we have,
Total degree of ∆T (G)[H]

=
∑

u∈V (G)

∑
v∈V (H)

d∆(u, v) +
∑

u=vivj∈E(G)

∑
v∈V (H)

d∆(u, v)

=
∑

u∈V (G)

∑
v∈V (H)

[2pdG(u) + dH(v)] +
∑

vivj∈E(G)

∑
v∈V (H)

p[2tij + 2]

( where tij is no. of triangles in G containing the vivj edge)

= 2p
∑

u∈V (G)

∑
v∈V (H)

dG(u) +
∑

u∈V (G)

∑
v∈V (H)

dH(v) + 2p
∑

vivj∈E(G)

∑
v∈V (H)

tij

+ 2p
∑

vivj∈E(G)

∑
v∈V (H)

1

= 2p2
∑

u∈V (G)

dG(u) + n
∑

v∈V (H)

dH(v) + 2p2(3× total no. of triangles in G) + 2mp2

= 2p2 × 2m+ n× 2q + 2p2(3
tr(A3)

6
) + 2mp2

= 2[nq + 3p2(m+
tr(A3)

6
)]

Then by Handshake Lemma, the total number of edges in ∆T (G)[H],

|E(∆T (G)[H])| = nq + 3p2[m+ tr(A3)
6 ].

□

A graph is called l-triangular if each edge of G lies on l number of triangles in G.

Lemma 3.1. [5] The anti-Gallai total graph ∆T (G) is regular if and only if G is l-
triangular and (l + 1)-regular.

Proposition 3.3. The ∆-composition ∆T (G)[H] of the graphs G and H is regular if and
only if H is a null graph, G is (l+1)-regular and l-triangular.

Proof. Let H be a null graph, G be a (l + 1)-regular and l-triangular graph. Now, we
have to show that ∆T (G)[H] is regular. Since G is (l+1)-regular, degree of each vertex is
l + 1. Also, H is a null graph. It implies that vertices of ∆T (G)[H] corresponding to the
vertices of G are of same degree 2p(l+ 1)(by the Proposition 3.1). Also it is given that G
is l-triangular. It follows that every vertex of ∆T (G)[H] corresponding to the edges of G
has degree 2p(l + 1) (by the Proposition 3.1), being G is l-triangular. Therefore, degree
of each vertex of ∆T (G)[H] is same. Hence, ∆T (G)[H] is regular.

Conversely, suppose that ∆T (G)[H] is regular. Now, we have to show that H is a null
graph, G is (l + 1)-regular and l-triangular. Let, on contrary, G is neither (l + 1)-regular
nor l-triangular and H is not null. If G is not (l+1)-regular, then degree of every vertex of
∆T (G)[H] corresponding to the vertices of G is not same, which is a contradiction to our
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fact that ∆T (G)[H] is regular. Hence G is (l+1)-regular. Now, if G is not l-triangular and
H is not null, then degree of a vertex of ∆T (G)[H] corresponding to the edges of G and
degree of a vertex of ∆T (G)[H] corresponding to the vertices of G are not same, which is
again a contradiction to our fact that ∆T (G)[H] is regular. Thus, H is a null graph and
G is l-triangular. Hence, H is a null graph, G is (l + 1)-regular and l-triangular. □

Lemma 3.2. [5] The anti-Gallai total graph ∆T (G) of G is connected if and only if G is
connected.

Proposition 3.4. The ∆-composition ∆T (G)[H] of the graphs G and H is connected if
and only if G is connected.

Proof. Let G be a connected graph. Then ∆T (G) is connected (by Lemma 3.2). Since,
∆T (G)[H] consists p copies of ∆T (G), where p = |V (H)|. Therefore, all these p copies
are connected components of ∆T (G)[H]. Now, it remains to show that these components
are connected to each other. By the second condition in the definition of ∆-composition,
there exists atleast one vertex (u, v) in any component of ∆T (G)[H] adjacent to a vertex
(a, b) of another component whenever ua ∈ E(∆T (G)), which proves the result.

Conversely, suppose ∆T (G)[H] is connected. Now, we have to show that G is connected.
Let us assume that G is not connected. Then, there exists at least one pair of vertices, say
(u, v) and (a, b) which has no path between them. This implies there are no two vertices of
∆T (G)[H] which have a path between them. This implies that ∆T (G)[H] is disconnected,
which is a contradiction to our assumption. Thus, G is connected. □

Corollary 3.1. The ∆n
T (G)[H] of G and H is connected if and only if G is connected for

all n ≥ 1.

Theorem 3.1. Let G = (n,m) be a connected graph and H = (p, q) be any non-empty
graph, then ∆-composition ∆T (G)[H] of the graphs G and H is Eulerian if and only if H
is Eulerian.

Proof. Let ∆T (G)[H] be an Eulerian graph. Then, the degree of every vertex of ∆T (G)[H]
is even. By Proposition 3.1, we can say that dH(v) is even which implies H is Eulerian.

Conversely, suppose H is Eulerian, then degree of every vertex of H is even. By Propo-
sition 3.1, we can say that degree of all the vertices of ∆T (G)[H] is even. This implies
∆T (G)[H] is Eulerian. Hence, the theorem. □

Corollary 3.2. If G and H are Eulerian graphs then ∆TG[H] is Eulerian, but converse
is not true.

Counter example of converse: The ∆-composition graph H ′ = ∆T (G)[H] of the
graphs G and H is Eulerian, but G is not an Eulerian graph as shown in Figure 5.

4. Hamiltonian Γ-composition and ∆-composition of graphs

Lemma 4.1. [5] The Gallai total graph ΓT (G) of a non-trivial graph G is Hamiltonian
if and only if the set of all elements of G can be ordered in such a way that consecu-
tive elements are neighbour as are the first and last elements, but the two edges are not
consecutive elements, if both the edges are of same triangle.

Theorem 4.1. The Γ-composition ΓT (G)[H] of the graphs G and H is Hamiltonian if
and only if Gallai total graph ΓT (G) of G is Hamiltonian.
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Figure 5. Eulerian ∆-composition graph H ′ = ∆T (G)[H]
of a non-Eulerian graph G.

Proof. Let G and H be two graphs. Also ΓT (G) is Hamiltonian so by the Lemma 4.1, all
elements of G can be ordered in such a way that consecutive elements are neighbour as
are the first and last elements, but the two edges are not consecutive elements if both the
edges are of same triangle. Let a′is are the elements of G and vi ∈ V (H) Then for getting
a closed Hamiltonian path for ΓT (G)[H] the following steps are followed:
STEP 1: Firstly find an open Hamiltonian path for first component of ΓT (G)[H], say,
(a0, v1), (a1, v1), ..., (an, v1).
STEP 2: Same path will be constructed for all remaining components.
STEP 3: We get (an, v1) adjacent to (a0, v2); (an, v2) adjacent to (a0, v3); (an, v3) adjacent
to (a0, v4) and so on (an, vp−1) adjacent to (a0, vp) (by the definition of ΓT (G)[H]). Also,
(an, vp) adjacent to (a0, v1). In this way, we get a Hamiltonian cycle for ΓT (G)[H].
Hence, ΓT (G)[H] is Hamiltonian.

Conversely, let ΓT (G)[H] be a Hamiltonian graph. This follows that there exists a
Hamlitonian cycle,

C = (c0, c1, c2, . . . cx = c0)

such that c0 = (a0, v1), c1 = (a1, v1), . . . cn = (an, v1), cn+1 = (a1, v2), . . . c2n = (an, v2), . . .
cx−n − (a0, vp), . . . cx−1 = (an, vp),
where a′is are elements of G and vi ∈ V (H).
We get (an, v1) is adjacent to (a0, v2), (an, v2) is adjacent to (a0, v3), and so on (an, vp−1)
is adjacent to (a0, vp), also (an, vp) is adjacent to (a0, v1) (by definition of ΓT (G)[H]).
This gives us an ordering a0, a1, a2, . . . an+1 = a0 of elements of G in such a way that
consecutive elements are neighbour as are the first and last elements, but the two edges
are not consecutive elements, if both the edges are of same triangle. So by Lemma 4.1,
ΓT (G) is Hamiltonian. Hence, the theorem. □

Lemma 4.2. [5] The anti-Gallai total graph ∆T (G) of a non-trivial graph G is Hamilton-
ian if and only if the set of all elements of G can be ordered in such a way that consecutive
elements are neighbour as are the first and last elements, but the two edges are not con-
secutive elements, if both the edges are not of same triangle.
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Theorem 4.2. The ∆-composition ∆T (G)[H] of the graphs G and H is Hamiltonian if
and only anti-Gallai total graph ∆T (G) of G is Hamiltonian.

Proof. Let G and H be two graphs. Also ∆T (G) is Hamiltonian so by the Lemma 4.2, all
elements of G can be ordered in such a way that consecutive elements are neighbour as
are the first and last elements, but the two edges are not consecutive elements if both the
edges are not of same triangle. Let a′is are the elements of G and vi ∈ V (H). Then for
getting a closed Hamiltonian path for ∆T (G)[H] the following steps are followed:
STEP 1: Firstly find an open Hamiltonian path for first component of ∆T (G)[H], say,
(a0, v1), (a1, v1), ..., (an, v1).
STEP 2: Same path will be constructed for all remaining components.
STEP 3: We get (an, v1) adjacent to (a0, v2); (an, v2) adjacent to (a0, v3); (an, v3) adjacent
to (a0, v4) and so on (an, vp−1) adjacent to (a0, vp) (by the definition of ∆T (G)[H]). Also,
(an, vp) adjacent to (a0, v1). In this way, we get a Hamiltonian cycle for ∆T (G)[H].
Hence, ∆T (G)[H] is Hamiltonian.

Conversely, let ∆T (G)[H] be a Hamiltonian graph. This follows that there exists a
Hamlitonian cycle,

C = (c0, c1, c2, . . . cx = c0)

such that c0 = (a0, v1), c1 = (a1, v1), . . . cn = (an, v1), cn+1 = (a1, v2), . . . c2n = (an, v2), . . .
cx−n − (a0, vp), . . . cx−1 = (an, vp),
where a′is are elements of G and vi ∈ V (H).
We get (an, v1) is adjacent to (a0, v2), (an, v2) is adjacent to (a0, v3), and so on (an, vp−1)
is adjacent to (a0, vp), also (an, vp) is adjacent to (a0, v1) (by definition of ∆T (G)[H]).
This gives us an ordering a0, a1, a2, . . . an+1 = a0 of elements of G in such a way that
consecutive elements are neighbour as are the first and last elements, but the two edges
are not consecutive elements, if both the edges are not of same triangle. So by Lemma
4.2, ∆T (G) is Hamiltonian. Hence, the theorem. □

5. Conclusions

In this paper, we derive Eulerian and Hamiltonian properties of Γ-composition and
∆-composition of graphs.
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