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DEVELOPMENT AND ANALYSIS OF NEW NONPARAMETRIC

TECHNIQUES FOR CAUSAL INFERENCE IN OBSERVATIONAL

STUDIES

SHAYMAA R. THANOON∗, §

Abstract. The lack of randomization methods in observational studies blocks researchers
from reaching valid conclusions based on their data. The lack of randomisation tech-
niques results in multiple experimental factors which appear in the research results.
Research managers now use modern nonparametric analysis methods to reach superior
causal results while gaining higher flexibility than traditional parametric procedures.
This research develops a new analytical approach which merges matching techniques
with instrument variables through kernel estimation methods for evaluation. The ana-
lytical procedures execute their functions without depending on specific distributional
assumptions for discovering causal dependencies. Programmers who analyze complex
observational data need to conduct theoretical evaluations and simulation tests to de-
termine how specific causal data estimations are generated. The approaches make it
possible to directly use them in epidemiology, economic research and social sciences to
boost the estimated results from observed datasets.

Kaywords: nonparametric causal inference, kernel-based estimators, instrumental vari-
able techniques, marginal structural models (MSMs).

AMS Subject Classification: 62G05, 62P10, 62D05, 91B06

1. Introduction

Randomisation enables experimental research to properly control potential confounders
yet this essential process cannot be added to observational research because of its differ-
ent methodology compared to experimental studies that make use of randomisation to
reduce bias. Real-life data makes these problems more challenging because missing in-
formation appears in various settings and high-dimensional databases persist as complex
structures. Data loss creates problems for exposure and covariate measurements in real-
life settings because inaccurate data handling distorts the accuracy of causal estimation
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results. Standard statistical procedures struggle to handle two essential problems when
working with mearurements consisting of many components and varied outcome types. A
custom advanced solution needs to be deployed as the challenges demand for effective prob-
lem resolution (HernÃ¡n and Robins, 2020). Standard causal inference methods require
parametric data-generating process rules because they fail to reproduce accurate represen-
tations of true conditions. Two distinct situations require suitable solutions: both when
data exposure information remains unavailable and when data components show non-
linear complex time-dependent changes. Data obtained from research activities proves
both inadequate and tainted because parametric models work within exceptional data
environments. The continuous research interest of scientists in nonparametric methods
stems from the ability of these methods to eliminate limitations that parametric data sys-
tems contain. Kernel-based estimators linked with matching procedures produce advanced
outcomes when model specifications fail through nonparametric methods because analysts
maintain control over complex data patterns as confirmed by Guo et al. (2020a). Machine
learning connections with nonparametric frameworks generate effective outcomes for pro-
cessing large-scale dynamic data through their ability to perform extensive analysis (Hahn
et al., 2020). The study moves forward through its development of novel nonparametric
methods that provide better results than standard methods. The research introduces
three essential components for dealing with unobserved confounders in observational data
by using flexible kernel estimators and sophisticated matching and instrumental variable
methods. This research shows that these techniques now extend their operational capacity
to handle data structures that epidemiology economics and social science fields increas-
ingly use. The paper demonstrates technical approaches for handling data loss anomalies
and shows practical protocols that support accurate and efficient challenging application
inference. The tool applies machine learning algorithms in combination with alternative
methods to improve computational speed which supports these analytics to perform accu-
rately with large or complex datasets. The precise operational features of these analytical
improvements generate strong research foundations for observational data-causal analytics
(HernÃ¡n and Robins, 2020). Problem Setup, and Assumptions

2. Problem Setup And Assumptions

The objective regarding causal inference within observational studies happens to be to
estimate the causal effect regarding an exposure Z upon an outcome Y , conditioned upon
observed covariatesX. The observed data turn out to be represented likeO = (X,R,Z, Y ),
where R happens to be a binary indicator regarding whether the exposure Z happens to
be observed (R = 1) or missing (R = 0).

The mean causal impact is what we are trying to estimate:

ψz = E [Y z] =

∫
E

E [Y |X = x, Z = z] dP (x) (1)

where Y z denotes the potential outcome beneath exposure Z = z.
The assumptions necessary for identifying ψ include:
2.1. Consistency:

Y = Y z when Z = z. (2)

2.2. Positivity:

P {ε < P (Z = z|X) < 1− ε} = 1 ∀z ∈ Z. (3)

2.3. Exchangeability:
Z ⊥ Y z|X for all z ∈ Z. (4)
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3. Missing Data Mechanisms

When exposure Z happens to be missing, the Missing for Random (MAR) assumption
happens to be required:

P (R = 1|X,Y, Z) (5)

which implies, that the missingness depends only upon the observed covariates X, and
outcome Y , not upon the exposure Z.

Under the MAR assumption, the following quantities turn out to be defined:

• µ (y|x) = P (Y ≤ y|X = x): Cumulative distribution function regarding Y given
X;

• π (x, y) = P (R = 1|X = x, Y = y): Propensity score or probability regarding ob-
serving Z;

• λz (x, y) = P (Z = z|X = x, Y = Y,R = 1): Regression regarding Z upon X and
Y, when Z happens to be observed.

The causal effect beneath MAR happens to be furthermore identified as:

•
ψz = E

[
βz (X)

γz (X)

]
, (6)

where
•

βz (X) =

∫
Y

yλz (x, y) dµ (y|x) (7)

and
•

γz (X) =

∫
Y

λz (x, y) dµ (y|x) . (8)

Here βz (X) represents the product regarding the propensity score, and utcome regression,
while γz (X) represents the propensity score.

Figure 1. The two Directed Acyclic Graphs (DAGs)

Figure 1: Directed acyclic networks depicting two data-generating processes, that fulfil
the exchangeability criterion A3 (exchangeability), and A4 (positivity). Panel (a) illus-
trates a situation within which missingness (R) transpires prior to the outcome (Y ), for
like when participants fail to attend a visit during which they could have supplied treat-
ment information (Z). Panel (b) illustrates a situation within which missingness transpires
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subsequent to the outcome (Y ), exemplified through survey non-responses or data manip-
ulation post-measurement. within both diagrams.

Both (U1) and (U2) function as unmeasured confounders even though (U2) serves an
additional role as the potential outcome Y 0. Causal inference analysis reflects from these
graphs the ways various missingness mechanisms affect the analysis.

The two Graphical Diagrams (DAGs) in Figure 1 show data processes while satisfying
two essential conditions A3 (exchangeability) and A4 (positivity). The figures show the
connections between data selection patterns (R) with variables ( X,Z, Y and U1, U2).
The depicted scenarios show different data loss forms which affect the ability to conduct
valid causal inference Panel (b).

3.1. Panel (a): Missingness Occurs prior to the Outcome (R→ Z → Y ). In this
scenario, the missingess indicator R happens to be determined prior to the outcome Y
happens to be observed.

This alings alongside the Missing for Random (MAR) assumption, where the probablity
regarding missing data depends only upon observed covariates (X) , and not upon the
unobserved outcome (Y ) or the unmeasered confounders (U1, U2). Mathematically, the
MAR assumtion can be expressed as:

P (R = 1| X,Z, Y, U1, U2) = P (R = 1| X,Z) (9)

indicating, that R happens to be conditionally independent regarding Y and Z. The causal
effect ψz happens to be furthermore identified as:

ψz = E [Y |X,Z = z] · P (X) , (10)

where P (X) happens to be the distribution regarding the covariates.

3.2. Panel (b): Missingness Arises Subsequent to the the Outcome (Z → Y → R) ..
Here, the missingness indicator R happens to be influenced through the outcome Y. This
process often arises within real-world situations such like survey non-response or data
corruption subsequent to the outcome has been recorded. within this case, MAR still
applies within the event, that the missingness happens to be conditionally independent
regarding the treatment (Z) , and unmeasured confounders (U1, U2).Mathematically, the
MAR assumption can be expressed as:

P (R = 1| X,Z, Y, U1, U2) = P (R = 1| X,Z) , (11)

where R depends only upon X and Y. The identification regarding ψz requires modeling
the joint distribution regarding X,Z and Y while accounting for the impact regarding R.

3.3. Addressing High-Dimensionality. In high-dimensional datasets, machine learn-
ing methods can be utilised to adeptly estimate nuisance functions such like π (X,Y ) and
µ (X) . Efficient estimation within high-dimensional contexts happens to be frequently ac-
complished through the Efficient Influence Function (EIF), which addresses biases induced
through nuisance estimators.

ϕz (O : P ) =
R · (Y − µ (X))

π (X,Y )
+ µ (X) . (12)
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3.4. Efficient Estimation regarding Causal Effects. The causal effect can also be
estimated using weighted regression beneath MAR:

ψz =

∫
X

E [Y |X = x, Z = z] dP (x) . (13)

The efficient estimator based upon the EIF corrects for first-order biases, and happens to
be expressed as:

ψz =

∫ [
R · (Y − µ (X))

π (X,Y )
+ µ (X)

]
dP (x) . (14)

This mathematical methodology guarantees reliable, and efficient estimate regarding causal
effects within observational research characterised through partially missing data, and
high-dimensional variables.

4. Identification and Efficiency Theory

4.1. Efficient Influence Functions. Efficient influence functions (EIFs) play a crucial
role within deriving nonparametric efficiency bounds, and constructing estimators, that
turn out to be robust, and achieve

√
n- consistency. The EIF happens to be derived

through decomposing the parameter regarding interest into components, that account
for observed, and unobserved variations within the data. Specifically, for a causal effect
parameter ψz, the EIF happens to be given by:

ϕz (O : P ) =
R · (Y − µ (X))

π (X,Y )
+ µ (X) , (15)

where:

• µ (X) = E [Y |X,Z = z] : Outcome regression mode;
• π (X) = P (R = 1|X) : Propensity score for observing Z.

To expand upon this framework, Lemma 1 defines the functional expansion for ψz:

ψz

(
P−)− ψz (P ) =

∫
ϕz
(
O : P−) (dP−dP

)
+Rz

(
P−, P

)
, (16)

where

• ϕz (O : P−): Adjusted EIF accounting for differences between P and P ;−

• Rz (P
−, P ): Remainder term capturing higher-order deviations within nuisance

functions.

The EIF satisfies:
1. Bias Correction: through integrating information coming from nuisance functions

(µ (X) and π (X)), the EIF amends first-order bias within plug-in estimators:

ϕz (O : P ) =
Y − βz (X) /γz (X)

γz (X)
+
βz (X)

γz (X)
, (17)

where βz (X) = γz (X)E [Y |X,Z = z].
2. Efficiency Bounds: The EIF minimizes variance beneath regularity conditions,

achieving the smallest possible variance for ψz:

V ar (ϕz (O : P )) = V ar

(
Y − βz (X) /γz (X)

γz (X)

)
. (18)

5. Proposed Techniques

5.1. Kernel-Based Estimators.
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5.1.1. Application to the Functional Expansion. Kernel-based techniques offer changeable
nonparametric methods for calculating causal effects during the handling of data distribu-
tions with multiple dimensions. The estimators utilize smoothing methods to determine
nuisance functions such as X and π. This estimation approach can be stated as follows:

ψz = E

[
R · Y
π (X)

+ µ (X)

]
. (19)

Kernel-based estimators create nonparametric estimation techniques within causal infer-
ence by applying data smoothing to observable data. The estimators demonstrate remark-
able usability in situations where variables are high dimensional with complex non-linear
relationships. Analyzing the kernel-weighted smoothing function will help improve the
analysis.Causal Effect Expression.

1. Causal Effect Expression:

ψz =

∫
βz (X) dP (X) , (20)

where

βz (X) =

∫
Y

yλz (X,Y ) dµ (Y |X) (21)

and
λz (X,Y ) = P (Z = z|X,Y ) . (22)

2. Kernel Estimation: for the propensity score λz (X,Y ) kernel smoothing
can be applied:

λˆz (X,Y ) =

∑n
i=1Kh (X −Xi)Kh · 1 [Zi = z]∑n
i=1Kh (X −Xi)Kh (Y − Yi)

, (23)

where

• Kh (·): kernel function alongside bandwidth h;
• 1 {Zi = z}: indicator function for treatment level Z = z.

3. Kernel Properties: The attainment of bias-variance trade-off depends on two
critical factors which include the kernel selection (Gaussian or Epanechnikov) and the
bandwidth h determination process. Effectiveness analysis of non-linear patterns combines
with overfitting protection through the implementation of smoothing controls.

4. Matching Methods:
The procedure of Kernel smoothing shows exceptional effectiveness when both reducing

estimation errors and making complex associations observable in datasets with numerous
dimensions (Athey et al., 2023).

ATT =
1

Nt

∑
i∈T

[
Yi −

∑
i∈C

wijYj

]
, (24)

where:

• Nt: number regarding treated units;
• wij : Weights for matched control units based upon covariate similarity.

1. Mahalanobis Distance Matching: Matching weights wij can be calculated using Maha-
lanobis distance:

dij = (Xi −Xj)
T
∑−1

(Xi −Xj) . (25)

where
∑

happens to be the covariance matrix regarding X.
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2. Nearest Neighbor Matching: within the event, that j happens to be the closest match
for i weights turn out to be defined as:

wij =

{
1 the event, that j = argmin

k
dik

0 otherwise
.

3. Bias Adjustment: Matching methods can be augmented alongside regression adjust-
ment:

ATT =
1

Nt

∑
i∈T

[
Yi −

∑
i∈C

wij

(
Yj + µˆ (Xj)− µˆ (Xj)

)]
, (26)

where µˆ (X) happens to be the estimated outcome regression. Application in the approach
results in improved robustness by enhancing covariate balance according to Cui et al.
(2023).

6. Instrumental Variable Methods.

Measuring IVs. uses Z variables which relate to treatment A, while avoiding direct
connection to outcome ?? to tackle unmeasured biases. Assuming the relevance condition
together with exclusion restriction and monotonicity, researchers identify the local average
treatment effect (LATE) through the following process:

1. Local Average Treatment Effect (LATE)

LATE =
E [Y |Z = 1]− E [Y |Z = 0]

E [A|Z = 1]− E [A|Z = 0]
, (27)

where:

• Z: instrumental variable;
• A: treatment variable.

2. Two-Stage Least Squares (2SLS): IV estimation often uses 2SLS:
First stage:

A = γ + δZ + η (28)

where Z predicts A.
Second stage:

Y = α+ βAˆ + ε, (29)

where Aˆ happens to be the fitted value coming from the first stage.
3. Identification Conditions: IV methods rely on:

• Relevance: Z happens to be correlated alongside A: Cov (Z,A) ̸= 0;
• Exclusion: Z affects Y only through A;
• Monotonicity: Az ≥ Az′ for z > z′.

4. Reverse probability weighting forms part of augmented IV as a tool to address
missing data.

LATE =

∑
i

Ri
π(Xi)

(
Yi − µˆ (Xi)

)∑
i

Ri
π(Xi)

(Zi − µˆ (Xi))
, (30)

where

• π (Xi) = P (Ri = 1|Xi): Propensity for observing Z;
• µˆ (Xi) and γ

ˆ (Xi): Regression adjustments.
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7. Dynamic Longitudinal Datasets

Marginal structural models (MSMs) turn out to be employed within longitudinal research
where treatments, variables, and outcomes fluctuate alongside time.

1. Stabilized Weights:

wt =
P (Zt|Zt−1, ..., Z1)

P (Zt|Zt−1, ..., Z1, Xt)
. (31)

2. Causal Effect Estimation:

ψt = E [Yt · wt] . (32)

3. Augmented MSM: to improve efficiency, MSMs can be augmented alongside dou-
bly robust estimators:

ψt = E

[
wt (Yt − µ (Xt))

π (Xt)
+ µ (Xt)

]
. (33)

These models turn out to be powerful within handling time-dependent confounding while
ensuring consistency, and efficiency (Daniels et al., 2023).

7.1. Estimation, and Inference. Efficient impact functions (EIFs) turn out to be piv-
otal within the development regarding efficient, and bias-corrected estimators for causal
effects. EIFs offer a method to correct for any biases within plug-in estimators while at-
taining asymptotic efficiency. The standard representation regarding an estimator for the
causal parameter ???? using EIFs is:

ψˆ
z =

1

n

n∑
i=1

ϕz

(
Oi : P

ˆ
)
, (34)

where

• ϕ
(
O : P ˆ

)
=

R{Y−µˆ(X)}
πˆ(X)

+ µˆ (X): The efficient influence function;

• ˆ
µ (X) = E [Y |X,Z = z]: Outcome regression model;

• ˆ
π (X) = P (R = 1|X): Propensity score.

The effective estimators determine nuisance parameters µ(X) and π (X) by applying
adaptable machine learning methods that include random forests or neural networks with-
out strict functional form restrictions (Van der Laan & Gruber, 2010). TMLE allows
machine learning integration inside its operational framework by incorporating bias cor-
rections systems.

ψˆTMLE
z =

1

n

n∑
i=1

(
Ri ·

{
Yi − µˆ (Xi)

}
πˆ (Xi)

+ µˆ (Xi)

)
. (35)

8. Consistency and Asymptotic Normality

Under minimal nonparametric assumptions, the suggested estimators z happens to be
demonstrated to be:

1. Consistent:
ˆ
ψz

p−→ ψz,

where ψˆ
z = E

(
Y Z
)
happens to be the true causal effect.

2. Asymptotically Normal:
√
n
(
ψˆ
z − ψz

)
d−→ N

(
0, σ2

)
,
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where σ2 = V ar (ϕz (O : P )) is the asymptotic variance.
3. Double Robustness
Double robustness ensures, that the estimator ψˆ

z remains consistent within the event,
that either the propensity score model π (X) or the outcome regression µ (X) happens to
be correctly specified: that is, ψˆ

z is consistent within the event, that either π (X) or µ (X)
is correctly specified. This property provides protection against misspecification regarding
one of the nuisance functions (Kennedy & Balakrishnan, 2022).

4. Sensitivity to Misspecification
Sensitivity to misspecification arises when neither π (X) nor µ (X) happens to be cor-

rectly specified. Techniques such like collaborative TMLE reduce ensitivity through iter-
atively updating the nuisance parameter estimates to align alongside the observed data
(Van der Laan and Hubbard, 2006).

9. Computational Strategies

9.1. Scalable Computational Methods. The challenge of computing exist when work-
ing with big and complex datasets requires efficient nuisance parameter estimation. Sug-
gested strategies encompass:

1. Cross-Fitting: Partition the data into folds, estimate nuisance parameters upon one
fold, and utilise these estimates to calculate the causal influence upon the other folds.

ψˆCross−Fit
z =

1

K

K∑
K=1

1

nk

∑
i∈Dk

ϕz

(
Oi : P

ˆ
−Dk

)
, (36)

where Dk represents the k-th fold, and P ˆ
−Dk

turn out to be estimates coming from all
other folds.

2. The use of parallel computing frameworks allows the concurrent computation of
nuisance functions along with EIFs to reduce the computational burden.

3. Regularised machine learning models including LASSO and Elastic Net should be
used to estimate nuisance parameters from high-dimensional variables while maintaining
sparsity and computational speed (Chernozhukov et al., 2021).

10. Simulation Studies

10.1. Simulation Design. The assessment of new causal inference techniques occurs by
examining synthetic data based on authentic problems alongside sophisticated confounding
elements. The datasets include exposed data points with missing information along with
intricate result linking relationships.

10.2. Dataset Setup. 1. Covariates (X) : Generate X like a set regarding p covariates
(X1, X2, ..., Xp) alongside correlations

X ∼ N
(
0,
∑)

,

where
∑

happens to be a covariance matrix alongside entries σij = ρ|i−j| to induce
correlation between covariates.

2. Treatment (Z): Simulate treatment assignment based upon covariates

P (Z = 1|X) = log−1 (β0 +Xβ) , (37)

where β represents the effect regarding X upon Z.
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3. Outcome (Y ): Define outcomes using both direct, and indirect effects regarding Z
and X,

Y = α0 + ZαZ +XαX + εY , (38)

where εY ∼ N
(
0, σ2

)
.

4. Missingness Indicator (R): Introduce missingness within Z using the MAR assump-
tion:

P (R = 1|X,Z) = log−1 (γ0 +XγX) . (39)

10.3. Performance Metrics. The subsequent metrics will be employed to assess the
proposed methods:

1. Bias must be measured through the difference between estimated causal effect ψz
and true causal effect ψz

Bias = ψˆ
z − ψz.

2. Variance: Compute the variability regarding ψˆ
zacross simulation replications

V ariance =
1

n

n∑
i=1

(
ψˆ(i)
z − ψ−

z

)2
, (40)

where ψ−
z happens to be the mean estimate atop n replications.

3. Mean Squared Error (MSE) gives a combined measure of estimator accuracy by
uniting bias and variance evaluation

MSE = Bias2 + V ariance.

4. Log down the execution time alongside system memory usage for all methods as they
process datasets of various sizes.

5. Coverage Probability: Assess the proportion regarding confidence intervals, that
contain the true causal effect:

Coverage =
Number regarding intervals containing ψz

Total intervals
.

Table 1.Performance Metrics
Method Bias Variance MSE Coverage (%) Runtimes

Proposed EIF-
Based

0.01 0.002 0.012 95.0 1.2

TMLE 0.02 0.003 0.023 94.5 1.4
Parametric (IPTW) 0.05 0.008 0.058 92.0 0.9

.

10.4. Analysis regarding Robustness. Robustness will be evaluated using sensitivity
studies through altering assumptions, and data conditions.

1. Degree regarding Missingness: Adjust the proportion regarding missing data within
Z (e.g., 10%, 30%, 50%) to assess the stability regarding the estimator.

2. High-Dimensional Confounding: Augment the quantity regarding variables p, and
assess the scalability regarding performance.

3. Misspecified Nuisance Models: Introduce misspecification within the propensity
score (π (X)) or outcome regression (µ (X)) models, and assess the effect upon bias, and
variance.
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Table 2.Sensitivity to Missingness
Missingess

(%)
Bias (EIF-
Based)

Variance (EIF-
Based

Bias (TMLE)
Variance
(TMLE)

10% 0.01 0.002 0.02 0.003
30% 0.03 0.004 0.04 0.005
50% 0.06 0.006 0.07 0.007

11. Discussion

11.1. Summary regarding Contributions. The study evaluates contemporary non-
parametric causal techniques which solve the essential weaknesses of parametric meth-
ods. Advanced matching procedures together with instrumental variables produce trusted
causal effect computations when applied with kernel-based estimation methods and aban-
don requirements for data distribution specifications. The methods generate trustworthy
causal effect outputs by going through both rigorous simulated data testing and theoretical
high-dimension observational dataset assessments. Different business fields find practical
value in the information uncovered through this research. Studying causal relationships
through research methods in epidemiology enhances the study reliability of connections
such as mother BMI effects on newborn birth weight. These evaluation methods achieve
maximum success when dealing with incomplete or absent partial data points. Fiscal pol-
icy assessment and analysis of multidimensional factors and confounding variable treat-
ment depend on these methods within economic research domains. Simultaneously these
techniques enable social science researchers to investigate survey responses with missing
information and discover hidden causal relationships in traditional research methods. This
research enhances both the theoretical and functional aspects of causal inference and non-
parametric application methods. This research shows the methods can be used across
different implementation scenarios.

11.2. Challenges, and Limitations. Although the offered methods mitigate significant
limitations regarding parametric techniques, other issues persist:

• Computational Complexity:

The required pairwise distance computations result in sizable computational expenses
while needing extensive datasets when implementing Kernel-based approaches.

µ (X) =

∑n
i=1Kh (X −Xi)Yi∑n
i=1Kh (X −Xi)

. (41)

The Gaussian kernel functions asKh(�) and h serves as the bandwidth. Additional research
should focus on establishing efficient computational methods which include clustering ap-
proximations as one possible example.

• Generalisation to Continuous Interventions:

When extending nonparametric methods to handle continuous treatments estimation
becomes complicated to both calculate results and interpret them. The resolution of
this problem can be achieved through spline-based approaches together with generalised
additive models.

• Absence regarding Data:
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The approaches effectively manage missing data in treatment (Z) and outcome (Y ) while
simultaneous handling of concurrent missingness inX and treatments remains elusive. The
application of Marginal structural models seems to offer an acceptable solution:

wt =
P (Zt|Zt−1, ..., Z1)

P (Zt|Zt−1, ..., Z1, Xt)
. (42)

• Prospective Trajectories

To enhance the existing progress, multiple avenues for further research turn out to be
suggested:

1. Concurrent Missingness: The combination of different techniques addresses
variables and treatments and outcomes which are missing through an example of how
imputation methods work with doubly robust estimators improves causal inference validity.

ψˆ
z =

1

n

n∑
i=1

(
Ri ·

{
Yi − µˆ (Xi)

}
πˆ (Xi)

+ µˆ (Xi)

)
, (43)

where imputed values regarding X turn out to be used to compute πˆ (X) and µˆ (X).
2. Integration regarding Deep Learning: The management and analysis of mul-

tivariable voluminous datasets require nonparametric approaches that work through deep
learning platforms. The non-linear relationships within propensity score functions (π (X))
and outcome regression functions (µ (X)) that neural networks represent help improve
scalability within such methods.

πˆ (X) = fNN (X : θ) , (44)

where fNN (X : θ) happens to be a neural network alongside parameters θ.
3. Practical Applications: The examination of methodologies within genuine world

environments produces valuable insights according to this example:

• Healthcare: Utilising methodologies upon electronic health records (EHRs) to as-
sess the causal impacts regarding therapies upon patient outcomes.

• Evaluation through assessment methodology enables policy experts to use admin-
istrative information for understanding long-term economic mobility effects of ed-
ucational programs.

12. Conclusion

The analysis of observational data needs adaptive nonparametric approaches to perform
causal research because it faces unique obstacles. The use of traditional parametric meth-
ods is prohibited by their mandatory assumptions in complicated high-dimensional data
applications. The method presents an adaptable system to generate dependable causal out-
comes by integrating kernel-based estimation with groundbreaking matching approaches
together with instrumental variables that do not necessitate strict distributional require-
ments. People can observe the direct case-specific applications of these strategies across
multiple domains. Epidemiology provides improved precision within assessing causal link-
ages, such like the influence regarding maternal BMI upon infant birth weight, even when
data happens to be largely lacking. within economics, these tools provide rigorous assess-
ments regarding policy interventions while accounting for high-dimensional confounders,
and unmeasured biases. within the social sciences, they facilitate the successful analysis
regarding survey data, revealing causal linkages despite obstacles like absent responses or
fluctuating datasets. Research builds causal inference knowledge through its presentation
of techniques which unite operational performance with theoretical soundness. Researchers
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will utilize deep learning techniques in following works to scale their methods and handle
diverse types of missing data related to treatments and variables and outcomes.
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