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OPTIMIZATION OF ELLIPTIC TYPE DIFFERENTIAL INCLUSIONS

AND DUALITY

E. N. MAHMUDOV1 §

Abstract. This paper deals with the Dirichlet problem for convex differential (PC)
inclusions of elliptic type. On the basis of conjugacy correspondence the dual problems
are constructed. Using the new concepts of locally adjoint mappings in the form of Euler-
Lagrange type inclusion is established extremal relations for primary and dual problems.
Then duality problems are formulated for convex problems and duality theorems are
proven. The results obtained are generalized to the multidimensional case with a second
order elliptic operator.
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1. Introduction

The present paper is devoted to an optimal control problems described by so-called
differential inclusions of elliptic type. A lot of problems in economic dynamics, as well as
classical problems on optimal control in vibrations, chemical engineering, heat, diffusion
processes, differential games, and so on, can be reduced to such investigations with ordi-
nary and partial differential inclusions [1-15]. We refer the reader to the survey papers
[11], [16-20]. The present paper is organized as follows.

In Section 2 first are given some suitable definitions, supplementary notions and results
considered by author in [18-19]. Then a certain extremal Dirichlet’s problem is formulated
for so-called elliptic differential (PC) inclusions with Laplace’s operator and with second
order elliptic operator in the multidimensional case. In the reviewed results for optimality
the arisen adjoint inclusions using the locally adjoint multivalued (LAM) functions are
stated in the Euler-Lagrange form [9, 18, 19]. It turn out that such form of optimality
conditions automatically implies the Weierstrass-Pontryagin maximum condition. Appar-
ently it happens because the LAM is more applicable apparat in different type of problems
governed by differential inclusions [16-20].

In section 3 the main problem is to formulate and study the dual problems to the stated
problems with convex structures. Convexity is a crucial marker in classifying optimization
problems, and it’s often accompanied by interesting phenomena of duality. It is well known
that duality theory by virtue of its applications is one of the central directions in convex
optimality problems. In mathematical economics duality theory is interpreted in the form
of prices, in mechanics the potential energy and complementary energy are in a mutually
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dual relation, the displacement field and the stress field are solutions of the direct and the
dual problems, respectively.

To establish the dual problem we use the duality theorems of operations of addition and
infimal convolution of convex functions. Here a remarkable specific feature of second order
elliptic partial differential inclusions in comparisons with ordinary ones is that it admit
valuable results in the case of multidimensional domain. Our approach to establish duality
theory for continuous problem is based on the passage to the formal limit from duality
problem in approximating problem. But to avoid difficult and fatiguing calculations we
omit it and announce only dual problem constructed for continuous problems (PC) and
then (PM ). Consequently, construction of duality problem in our paper is an unforeseen
part of the ”iceberg”. Further it is shown that direct and duality problems are connected
to each other by the duality relations. The proved duality theorems allow one to conclude
that a sufficient condition for an extremum is an extremal relation for the primary and dual
problems. It means that if some pair of feasible solutions (u(.), u∗(.)) satisfy this relation,
then u(.) and u∗(.) are solutions of the primary and dual problem, respectively. We
note that a considerable part of the investigations of Ekeland and Temam [7] for simple
variational problem is devoted to such problems. Besides there are similar results for
ordinary differential inclusions in [17-19]. Some duality relations and optimality conditions
for an extremum of different control problems with partial differential inclusions can be
found in [18-19]. At the end of Section 3 we consider a linear optimal control problem of
elliptic type.

Furthermore, observe that in elliptic differential inclusions for simplicity of the expo-
sition the solution is taken in the space of classical solutions. Apparently, by passing to
more general function spaces of generalized solutions the most natural approach for elliptic
differential inclusions is the use of single-valued selections of a multi-valued mapping [1,
3, 8, 9].

2. Necessary concepts and problems statements

Throughout this section and the next sections we use special notation conventional in
the [18-19]. Let Rn be the n-dimensional Euclidian space, (u1, u2) is a pair of elements
u1, u2 ∈ Rn and ⟨u1, u2⟩ is their inner product. A multivalued mapping F : Rn → P (Rn)
(P (Rn) denotes the family of all subsets of Rn) is convex if its graph gph F = {(u, v) :
v ∈ F (u)} is a convex subset of R2n. It is convex-valued if F (u) is a convex set for each
u ∈ dom F = {u : F (u) ̸= ∅}. Let us introduce the notations:

M(u, v∗) = sup
v
{⟨v, v∗⟩ : v ∈ F (u)},

F (u, v∗) = {v ∈ F (u) : ⟨v, v∗⟩ = M(u, v∗)}, v∗ ∈ Rn.

For convex F we let M(u, v∗) = −∞ if F (u) = ∅. Obviously the function M and the sets
F (u, v∗) can be interpreted as Hamiltonian function and argmaximum sets, respectively.

Definition 2.1. For a convex mapping F a multivalued mapping from Rn into Rn defined
by F ∗(v∗, (u, v)) = {u∗ : (u∗,−v∗) ∈ K∗

gph F (u, v)}is called the locally adjoint mapping

(LAM) to F at the point (u, v) ∈ gph F,where K∗
gph F (u, v) is the dual to the basic cone

Kgph F (u, v).

We refer to [1, 6, 8, 9] for various definitions in this direction.
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It is clear that for a convex F the Hamiltonian is concave on u and convex on v∗ function.
Let us denote

H(u∗, v∗) = inf{⟨u, u∗⟩ − ⟨v, v∗⟩ : (u, v) ∈ gph F}.
It is clear that by the conjugacy correspondence of convex analysis [4],[6]-[9]:

H(u∗, v∗) = inf
u

{⟨u, u∗⟩ −M(u, v∗)} = −(−M(., v∗))∗(−u∗).

Corollary 2.1. The inclusion u∗ ∈ F ∗(v∗, (u, v)) and equality H(u∗, v∗) = ⟨u, u∗⟩ −
M(u, v∗) are equivalent.

In section 3 we study the following problem for elliptic differential inclusion with ho-
mogeneous boundary value conditions:

minimize J(u(.)) :=

∫∫
R
g(u(x), x)dx

subject to ∆u(x) ∈ F (u(x), x), x ∈ R2, (1)

and u(x) = 0, x ∈ B, (2)

where ∆ is a Laplace’s operator, F (., x) : Rn → P (Rn) is multivalued mapping for all
x = (x1, x2) in the bounded region R ⊂ R1 × R1, a closed piecewise-smooth simple curve
B is its boundary, g : Rn×R → R1 is a continuous convex function on u and dx = dx1dx2.
We label this continuous problem (PC) and call it Dirichlet problem for elliptic differential
inclusions. The problem is to find a solution ũ(x) of the boundary value problem (1), (2)
that minimizes the cost functional J(u(.)). Here, a feasible solution is understood to be a
classical solution for simplicity of the exposition.

The subject of the research in Section 3 in the following multidimensional optimal
control problem (PM ) for elliptic differential inclusions:

minimize J(u(.)) :=

∫
G
g(u(x), x)dx,

subject to L(u(x)) ∈ F (u(x), x), x ∈ G, (3)

and u(x) = 0, x ∈ S, (4)

where F (., x) : R1 → P (R1) is a convex closed multivalued mapping for all n-dimensional
vectors x = (x1, ..., xn) in the bounded set G ⊂ Rn, a closed piecewise-smooth surface S is
its boundary, g : R1×G → R1 is a continuous and convex on u function, dx = dx1dx2...dxn.
L is a second-order elliptic operator:

Lu :=
n∑

i,j=1

∂

∂xi
(aij

∂u

∂xj
)+

n∑
i=1

bi(x)
∂u

∂xi
+c(x)u, aij(x) ∈ C1(Ḡ), bi(x) ∈ C1(Ḡ), c(x) ∈ C(Ḡ)

where ∥aij(x)∥ is a positively definite matrix, ũ(x) and C1(Ḡ) are the spaces of continuous
functions and functions having a continuous derivative in G, respectively.
A function u(x) in C2(G)

∩
C(Ḡ),that satisfies the inclusion (3) in G and the boundary

condition (4) on S we call a classical solution of the problem posed, where C2(G) is the
space of functions u(x) having continuous all second-order derivatives. It is required to
find a classical solution ũ(x) of the boundary value problem (PM ) that minimizes the cost
functional J(u(.)).

In the next theorem is referred sufficient conditions for optimality for problems (PC)
and (PM ) of Mahmudov [18].
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Theorem 2.1 Assume that a continuous function g is convex with respect to u, and F (., x)
is a convex mapping for all fixed x. Then for the optimality of the solution ũ(x) among all
feasible solutions in convex problem (PC) it is sufficient that there exist a classical solution
u∗(x) such that the following condition:

(a) ∆u∗(x) ∈ F ∗(u∗(x), (ũ(x),∆ũ(x)), x)− ∂g(ũ(x), x), u∗(x) = 0, x ∈ B,

(b) ∆ũ(x) ∈ F (ũ(x), u∗(x), x), x = (x1, x2) ∈ R.

For a problem (PM ) the Euler-Lagrange type inclusion (a) and argmaximum condition
(b) consist of the following conditions, respectively:

(i) L∗u∗(x) ∈ F ∗(u∗(x), (ũ(x), Lũ(x)), x)− ∂g(ũ(x), x),

(ii) Lũ(x) ∈ F (ũ(x), u∗(x), x), u∗(x) = 0, x ∈ S

where L∗ is the operator adjoint to L.

3. On duality in elliptic differential inclusions. According to the definition in
[4,8,9,18,19]. Let us denote

J∗(u
∗(x), z∗(x)) :=

∫∫
R
[H(∆u∗(x) + z∗(x), u∗(x), x)− g∗(z∗(x), x)]dx

where H is a Hamiltonian function and g∗(z∗, x) is conjugate function to function g(·, x)
for every fixed x ∈ R1 ×R1. Then the problem of determining the maximum

(PD) maximize
u∗(x), z∗(x), x ∈ R,
u∗(x) = 0, x ∈ B

J∗(u
∗(x), z∗(x)),

is called the dual problem to the primary convex problem (PC). It is assumed that
u∗(x) ∈ C2(R) ∩ C(R̄), z∗(x) ∈ C(R).
Theorem 3.1 Assume that u(x), x ∈ R is an arbitrarily feasible solution of the primary
problem (PC) and {u∗(x), z∗(x)} is a feasible solution of the dual problem (PD). Then
the inequality J(u(x)) ≥ J∗(u

∗(x)) is valid.
Proof . It is clear from the definitions of the functions H and g∗ that the following
inequalities hold :

H(∆u∗(x) + z∗(x), u∗(x), x) ≤ ⟨∆u∗(x) + z∗(x), u(x)⟩ − ⟨u∗(x),∆u(x)⟩,

g∗(z∗(x), x) ≥ ⟨z∗(x), u(x)⟩ − g(u(x), x)

Therefore;

H(∆u∗(x) + z∗(x), u∗(x), x)− g∗(z∗(x), x) (5)

≤ ⟨∆u∗(x), u(x)⟩ − ⟨u∗(x),∆u(x)⟩+ g(u(x), x).

Then since u∗(x) = 0, u(x) = 0, x ∈ B, by the familiar Green theorem [21] we have∫∫
R
[⟨∆u∗(x), u(x)⟩ − ⟨u∗(x),∆u(x)⟩] dx =

∫
B

[
⟨∂u

∗(x)

∂n
, u(x)⟩ − ⟨u∗(x), ∂u(x)

∂n
⟩
]
ds = 0

(6)
where n is outher normal for a curve B. Then integrating both sides of the inequality (5)
due to (6) we obtain the required inequality.
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Theorem 3.2 If the feasible solutions ũ(x) and {u∗(x), z∗(x)} , z∗(x) ∈ ∂g(ũ(x), x) satisfy
the conditions of Theorem 2.1 , then they are optimal solutions of the primary (PC) and
dual (PD) problems, respectively, and the values of the cost functionals are equal .
Proof . To proceed, first note that by Theorem 2.1 ũ(x) is a solution of the primary
problem (PC). We need to prove that the pair {u∗(x), z∗(x)} is a solution to problem
(PD). By Definition 2.1 of a LAM , the condition (a) of the Theorem 2.1 is equivalent to
the inequality ⟨∆u∗(x) + z∗(x), u− ũ(x)⟩ − ⟨u∗(x), v −∆ũ(x)⟩ ≥ 0 , (u, v) ∈ gphF (·, ·, x).

The latter yields

(∆u∗(x) + z∗(x), u∗(x)) ∈ domH(·, ·, x), (7)

where domH(·, ·, x) : = {(u∗, v∗) : H(u∗, v∗, x) > −∞}. Further, since [4,6,8,9] ∂g(u, x) ⊂
domg∗(·, x) it is clear that

z∗(x) ∈ domg∗(·, x) (8)

Consequently, it can be concluded from (7), (8) that the indicated pair of functions
{u∗(x), z∗(x)} is a feasible solutions, i.e. the set of feasible solutions to (PD) is nonempty.
Let us now justify the optimality of the solution {u∗(x), z∗(x)} to problem (PD). By the
Corollary 2.1 F ∗(v∗, (u, v), x) = {u∗ : H(u∗, v∗, x) = ⟨u, u∗⟩.−M(u, v∗, x)}. Using this
formula and the condition (a) of the Theorem 2.1 we get

H(∆u∗(x) + z∗(x), u∗(x), x) = ⟨ũ(x),∆u∗(x) + z∗(x)⟩ −M(ũ(x), u∗(x), x).

Now based on the condition (b) of Theorem 2.1 we have the following equality ⟨∆ũ(x), u∗(x)⟩ =
M(ũ(x), u∗(x), x). Thus

H(∆u∗(x) + z∗(x), u∗(x), x) = ⟨ũ(x),∆u∗(x) + z∗(x)⟩ − ⟨∆ũ(x), u∗(x)⟩. (9)

On the other hand the inclusion z∗(x) ∈ ∂g(ũ(x), x) is equivalent with the equality

g∗(z∗(x), x) = ⟨ũ(x), z∗(x)⟩ − g(ũ(x), x). (10)

Then in view of (8)-(10) as in the proof of Theorem 3.1 it is not hard to show that
J(ũ(x)) = J∗(u

∗(x), z∗(x)). This completes the proof of the theorem.
Now let us formulate the dual problem to the convex problem (PM ) with homogeneous
boundary conditions. In this case the duality problem consists in the following

(PMD) maximize
u∗(x), z∗(x), x ∈ G,
u∗(x) = 0, x ∈ S

J∗(u
∗(x), z∗(x)),

Here

J∗(u
∗(x), z∗(x)) =

∫
G
[H(L∗u∗(x) + z∗(x), u∗(x), x)− g∗(z∗(x), x)]dx

u∗(x) ∈ C2(G) ∩ C(Ḡ), z∗(x) ∈ C(G), x = (x1, . . . , xn).

Now by replacing the Laplace operator ∆ with the second order elliptic operator L and
using the idea suggested in the proofs of Theorems 3.1 and 3.2 it is easy to get the following
theorem.
Theorem 3.3 If ũ(x) and pair of functions {u∗(x), z∗(x)}, are feasible solutions to the
primary convex problem (PM) with homogeneous boundary value conditions and dual
problem (PMD), respectively, then J(ũ(x)) ≥ J∗(u

∗(x), z∗(x)). In addition, if the asser-
tions (i) , (ii) for sufficiency of optimality are valid here and z∗(x) ∈ ∂g(ũ(x), x), then the
values of the cost functionals are equal and {u∗(x), z∗(x)} is solution of the dual problem
(PMD).

Let us consider the following example:
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minimize J(u(x)) =

∫∫
R
g(u(x), x)dx,

subject to ∆u(x) = Au(x) +Bw(x), w(x) ∈ V

where A is n × n matrix, B is a rectangular n × r matrix, V ⊂ Rr is a closed convex
set and g is continuously differentiable function on u. It is required to find a controlling
parameter w(x) ∈ V such that the feasible solution corresponding to it minimizes J(u(·)).

Let us introduce a convex mapping F (u) = Au + BV . By elementary calculations, it
can be shown, that

H(u∗, v∗) = inf
u,w

{⟨u, u∗⟩ − ⟨Au+Bw, v∗⟩ : w ∈ V }

=

{
−MV (B

∗v∗), u∗ = A∗v∗,
−∞, u∗ ̸= A∗v∗

where MV (B
∗w∗) = sup

w∈V
⟨w,B∗w∗⟩.

Then obviously the duality problem for primary problem(PLD) has a form:

maximize J∗(u
∗(x), z∗(x)),

∆u∗(x) + z∗(x) = A∗u∗(x), x ∈ R,

u∗(x) = 0, x ∈ B

where J∗(u
∗(x), z∗(x)) = −

∫∫
R
[MV (B

∗u∗(x) + g∗(z∗(x), x)]dx.
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