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COERCIVE SOLVABILITY OF PARABOLIC DIFFERENTIAL

EQUATIONS WITH DEPENDENT OPERATORS

A. ASHYRALYEV1, A. HANALYEV2 §

Abstract. In the present paper the nonlocal-boundary value problem for the differential
equation of parabolic type

v′(t) +A(t)v(t) = f(t) (0 ≤ t ≤ T ), v(0) = v(λ) + φ, 0 < λ ≤ T

in an arbitrary Banach space with the linear positive operators A(t) is considered. The

well-posedness of this problem is established in Banach spaces Cβ,γ
0 (E) of all continuous

functions E-valued functions φ(t) on [0, T ] satisfying a Hölder condition with a weight
(t+τ)γ . New exact estimates in Holder norms for the solution of three nonlocal-boundary
value problems for parabolic equations are obtained.
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1. Introduction. A Cauchy Problem

It is known that (see, e.g., [1]- [5] and the references given therein) many applied prob-
lems in fluid mechanics, other areas of physics and mathematical biology were formulated
into nonlocal mathematical models. However, such problems were not well investigated in
general.

In the paper [6] the well-posedness in the spaces of smooth functions of the nonlocal
boundary value problem

v
′
(t) +Av(t) = f(t)(0 ≤ t ≤ 1), v(0) = v(λ) + µ (0 < λ ≤ 1)

for the differential equation in an arbitrary Banach space E with the strongly positive
operator A was established. The importance of coercive (well-posedness) inequalities is
well-known [10] and [32].

Finally, methods for numerical solutions of the evolution differential equations have been
studied extensively by many researchers (see [7]-[9], [11]- [32] and the references therein).

Before going to discuss well-posedness of nonlocal-boundary value problem, let us con-
sider the abstract Cauchy problem for the differential equation

v′(t) +A(t)v(t) = f(t) (0 ≤ t ≤ T ), v(0) = v0 (1)

in an arbitrary Banach space E with the linear (unbounded) operators A(t). Here v(t) and
f(t) are the unknown and the given functions, respectively, defined on [0, T ] with values
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in E. The derivative v′(t) is understood as the limit in the norm of E of the corresponding
ratio of differences. A(t) is a given, closed, linear operator in E with domain D(A(t)) = D,
independent of t and dense in E. Finally, v0 is a given element of E.

A function v(t) is called a solution of the problem (1.1) if the following conditions are

satisfied:

i. v(t) is continuously differentiable on the segment [0, T ]. The derivative at the
endpoints of the segment are understood as the appropriate unilateral derivatives.

ii. The element v(t) belongs to D = D(A(t)) for all t ∈ [0, T ], and the function
A(t)v(t) is continuous on [0, T ].

iii. v(t) satisfies the equation and the initial condition (1.1).

A solution of problem (1.1) defined in this manner will from now on be referred to as
a solution of problem (1.1) in the space C(E) = C([0, T ], E). Here C(E) stands for the
Banach space of all continuous functions φ(t) defined on [0, T ] with values in E equipped
with the norm

||φ||C(E) = max
0≤t≤T

||φ(t)||E .

From the existence of the such solutions evidently follows that f(t) ∈ C(E) and v0 ∈ D.
We say that the problem (1.1) is well posed in C(E) if the following conditions are

satisfied:

1. Problem (1.1) is uniquely solvable for any f(t) ∈ C(E) and any v0 ∈ D. This
means that an additive and homogeneous operator v(t) = v(t; f(t), v0) is defined
which acts from C(E) × D to C(E) and gives the solution of problem (1.1) in
C(E).

2. v(t; f(t), v0), regarded as an operator from C(E)×D to C(E), is continuous. Here
C(E) ×D is understood as the normed space of the pairs (f(t), v0), f(t) ∈ C(E)
and v0 ∈ D, equipped with the norm

||(f(t), v0)||C(E)×D = ||f ||C(E) + ||v0||D.
By Banach’s theorem in C(E) and these properties one has coercive inequality∥∥v′∥∥

C(E)
+ ∥A(.)v∥C(E) ≤ MC [∥f∥C(E) + ||v0||D], (2)

where MC (1 ≤ MC < +∞) does not depend on v0 and f(t).
The inequality (2) is called the coercivity inequality in C(E) for (1.1). If A(t) = A,

then the coercivity inequality implies the analyticity of the semigroup exp{−sA}(s ≥ 0),
i.e. the following estimates

∥exp (−sA)∥E→E , ∥sA exp(−sA)∥E→E ≤ M(s > 0)

hold for some M ∈ [1,+∞). Thus, the analyticity of the semigroup exp{−sA}(s ≥ 0) is a
necessary for the well-posedness of problem (1.1) in C(E). Unfortunately, the analyticity
of the semigroup exp{−sA} (s ≥ 0) is not a sufficient for the well-posedness of problem
(1.1) in C(E).

Suppose that for each t ϵ[0, T ] the operator −A(t) generates an analytic semigroup
exp{−sA(t)} (s ≥ 0) with exponentially decreasing norm, when s −→ +∞, i.e. the
following estimates

∥exp (−sA(t))∥E→E , ∥sA(t) exp(−sA(t))∥E→E ≤ Me−δs(s > 0) (3)
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hold for some M ∈ [1,+∞), δ ∈ (0,+∞). From this inequality it follows the operator
A−1(t) exists and bounded, and hence A(t) is closed in C(E).

Suppose that the operator A(t)A−1(s) is Hölder continuous in t in the uniform operator
topology for each fixed s, that is,

||[A(t)−A(τ)]A−1(s)||E→E ≤ M |t− τ |ε, 0 < ε ≤ 1, (4)

where M and ε are positive constants independent of t, s and τ for 0 ≤ t, s, τ ≤ T.
If the function f(t) is not only continuous, but also continuously differentiable on [0, T ],

and v0 ∈ D, it is easy to show that the formula

v(t) = v(t, 0)v0 +

t∫
0

v(t, s)f(s)ds (5)

gives a solution of problem (1.1). Here v(t, s) is the fundamental solution of (1.1).
Now we will give lemmas and estimates from [13] concerning the semigroup exp{−sA(t)}

(s ≥ 0) and the fundamental solution v(t, s) of (1.1) and theorem on well-posedness of
(1.1) which will be useful in the sequel.

Lemma 1.1. For any 0 < s < s+ τ < T , 0 ≤ t ≤ T and 0 ≤ α ≤ 1 one has the inequality

∥exp (−sA(t))− exp (−(s+ τ)A(t))∥E→E ≤ M
τα

(s+ τ)α
, (6)

where M does not depend on α, t, s, and τ.

Lemma 1.2. For any 0 ≤ s, τ, t ≤ T and 0 ≤ ε ≤ 1 the following estimates hold:∥∥[exp (−tA(τ))− exp (−sA(τ))]A−1(τ)
∥∥
E→E

≤ M |t− s|e−δ min {t,s}, (7)∥∥A(t)[exp (−tA(τ))− exp (−sA(τ))]A−2(τ)
∥∥
E→E

≤ M |t− s|e−δ min {t,s}, (8)

where M ≥ 0 and δ > 0 do not depend on ε, t, s, and τ.

Lemma 1.3. For any 0 ≤ s < t ≤ T and u ϵD the following identities hold:

v(t, s)u = exp{−(t− s)A(s)}u (9)

+

t∫
s

v(t, z)[A(s)−A(z)]A−1(s)exp {−(z − s)A(s)}A(s)udz,

v(t, s)u = exp{−(t− s)A(t)}u (10)

+

t∫
s

exp {−(t− z)A(t)}[A(z)−A(t)]v(z, s)udz.

Lemma 1.4. For any 0 ≤ s < t ≤ t + r ≤ T, 0 ≤ α ≤ 1 and 0 ≤ ε ≤ 1 the following
estimates hold:

∥v(t, s)∥E→E ≤ M, (11)∥∥A(t)v(t, s)A−1(s)
∥∥
E→E

≤ M, (12)

∥A(t)v(t, s)∥E→E ≤ M

t− s
, (13)

where M ≥ 0 does not depend on ε, t and s.
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With the help of A(t) we introduce the fractional spaces Eα(E,A(t)), 0 < α < 1,
consisting of all v ϵE for which the following norms are finite:

∥ v ∥Eα= sup
z>0

z1−α ∥ A(t)exp{−zA(t)}v ∥E .

From (1.3) and (1.4) it follows that Eα(E,A(t)) = Eα(E,A(0)) for all 0 < α < 1 and
0 ≤ t ≤ T.

A function v(t) is said to be a solution of problem (1.1) in F (E) if it is a solution of
this problem in C(E) and the function v′(t) and A(t)v(t) belong to F (E).

As in the case of the space C(E), we say that the problem (1.1) is well-posed in F (E),
if the following two conditions are satisfied:

1. For any f ∈ F (E) and v0 ∈ D there exists the unique solution v(t) = v(t; f(t), v0)
in F (E) of problem (1.1).This means that an additive and homogeneous operator
v(t; f(t), v0) is defined which acts from F (E)×D to F (E) and gives the solution
of (1.1) in F (E).

2. v(t; f(t), v0), regarded as an operator from F (E)×D to F (E), is continuous.Here
F (E) ×D is understood as the normed space of the pairs (f(t), v0), f(t) ∈ F (E)
and v0 ∈ D, equipped with the norm

||(f(t), v0)||F (E)×D = ||f ||F (E) + ||v0||D.

We set F (E) equal to Cβ,γ
0 (E), (0 ≤ γ ≤ β, 0 < β < 1) space, obtained by completion

of the set of all smooth E-valued functions φ(t) on [0, T ] with respect to the norm

∥ φ ∥
Cβ,γ

0 (E)
= max

0≤t≤T
||φ(t)||E + sup

0≤t<t+τ≤T

(t+ τ)γ ∥ φ(t+ τ)− φ(t) ∥E
τβ

.

Let us give, the following theorem on well-posedness of (1.1) in Cβ,γ
0 (E) from [13].

Theorem 1.1. Suppose v′0 ∈ Eβ−γ , f(t) ∈ Cβ,γ
0 (E)(0 ≤ γ ≤ β, 0 < β < 1). Suppose that

the assumptions (1.3) and (1.4) hold and 0 < β ≤ ε < 1. Then for the solution v(t) in

Cβ,γ
0 (E) of the Cauchy problem (1.1) the coercive inequalities

∥ v′ ∥C(Eβ−γ)≤ M [∥ v′0 ∥Eβ−γ
+β−1(1− β)−1 ∥ f ∥

Cβ,γ
0 (E)

],

∥ v′ ∥
Cβ,γ

0 (E)
+ ∥ A(.)v ∥

Cβ,γ
0 (E)

≤ M [|v′0|
β,γ
0 + β−1(1− β)−1 ∥ f ∥

Cβ,γ
0 (E)

]

hold, where M does not depend on β, γ, v′0 and f(t). Here, |w|β,γ0 denotes norm of the

Banach space Eβ,γ
0 consists of those w ∈ E for which the norm

|w|β,γ0 = max
0≤z≤T

||e−zA(t)w||E + sup
0≤z<z+τ≤T

τ−β(z + τ)γ ||(e−(z+τ)A(t) − e−zA(t))w||E

is finite.

In the present paper the nonlocal-boundary value problem for differential equation of
parabolic type

v′(t) +A(t)v(t) = f(t) (0 ≤ t ≤ T ), v(0) = v(λ) + φ, 0 < λ ≤ T (14)

in an arbitrary Banach space with the linear positive operators A(t) is considered. The

well-posedness of problem (14) in Cβ,γ
0 (E) spaces is established. New exact estimates in

Holder norms for the solution of three nonlocal-boundary value problems for parabolic
equations are obtained.
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2. Nonlocal Boundary Value Problem. Well-Posedness

Now we will give lemmas on the fundamental solution v(t, s) of (1).

Lemma 2.1. Assume that A(t)A(p)−1 = A(t+ λ)A(p)−1, p ∈ [0, T ] for any 0 ≤ t ≤ t+ λ
Then, for any 0 ≤ s < t ≤ t+ λ and u ϵD the following identity holds

v(t, s)u = v(t+ λ, s)u. (15)

The proof of Lemma 2.1 is based on identities (9) and (10).

Lemma 2.2. Under the assumption of Lemma 2.1 there exists the inverse of the operator
I − v(λ, 0) in E and the following estimate holds∥∥∥(I − v(λ, 0))−1

∥∥∥
E→E

≤ M(λ), (16)∥∥∥A(0) (I − v(λ, 0))−1A(λ)−1
∥∥∥
E→E

≤ M(λ). (17)

The proof of Lemma 2.2 is based on identity (15).
A function v(t) is called a solution of the problem (14) if the following conditions are

satisfied:

i. v(t) is continuously differentiable on the segment [0, T ].
ii. The element v(t) belongs to D for all t ∈ [0, T ], and the function A(t)v(t) is

continuous on [0, T ].
iii. v(t) satisfies the equation and the nonlocal boundary condition (14).

We say that the problem (14) is well posed in C(E) if the following conditions are
satisfied:

1. Problem (14) is uniquely solvable for any f(t) ∈ C(E) and any φ ∈ D. This means
that an additive and homogeneous operator v(t) = v(t; f(t), φ) is defined which
acts from C(E)×D to C(E) and gives the solution of problem (1.1) in C(E).

2. v(t; f(t), φ), regarded as an operator from C(E)×D to C(E), is continuous. Here
C(E) ×D is understood as the normed space of the pairs (f(t), φ), f(t) ∈ C(E)
and φ ∈ D, equipped with the norm

||(f(t), φ)||C(E)×D = ||f ||C(E) + ||φ||D.

By Banach’s theorem in C(E) and these properties one has coercive inequality∥∥v′∥∥
C(E)

+ ∥A(.)v∥C(E) ≤ MC [∥f∥C(E) + ||φ||D], (18)

where MC (1 ≤ MC < +∞) does not depend on φ and f(t).
The inequality (18) is called the coercivity inequality in C(E) for (14). If A(t) = A, then

the coercivity inequality implies the analyticity of the semigroup exp{−sA}(s ≥ 0). Thus,
the analyticity of the semigroup exp{−sA}(s ≥ 0) is a necessary for the well-posedness of
problem (14) in C(E). Unfortunately, the analyticity of the semigroup exp{−sA} (s ≥ 0)
is not a sufficient for the well-posedness of problem (14) in C(E).

A function v(t) is said to be a solution of problem (14) in F (E) if it is a solution of this
problem in C(E) and the function v′(t) and A(t)v(t) belong to F (E).

As in the case of the space C(E), we say that the problem (14) is well-posed in F (E),
if the following two conditions are satisfied:
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1. For any f ∈ F (E) and φ ∈ D there exists the unique solution v(t) = v(t; f(t), φ)
in F (E) of problem (14).This means that an additive and homogeneous operator
v(t; f(t), φ) is defined which acts from F (E) ×D to F (E) and gives the solution
of (14) in F (E).

2. v(t; f(t), φ), regarded as an operator from F (E)×D to F (E), is continuous.Here
F (E) ×D is understood as the normed space of the pairs (f(t), φ), f(t) ∈ F (E)
and φ ∈ D, equipped with the norm

||(f(t), φ)||F (E)×D = ||f ||F (E) + ||φ||D.

The main result of present paper is the following theorem on well-posedness of (14) in

Cβ,γ
0 (E).

Theorem 2.1. Suppose A(0)φ + f(λ) − f(0) ∈ Eβ−γ , f(t) ∈ Cβ,γ
0 (E)(0 ≤ γ ≤ β, 0 <

β < 1). Suppose that the assumptions (1.3), (1.4) and (15) hold and 0 < β ≤ ε < 1. Then

for the solution v(t) in Cβ,γ
0 (E) of the nonlocal boundary value problem (14) the coercive

inequalities

∥ v′ ∥C(Eβ−γ)≤ M(λ)[∥ A(0)φ+ f(λ)− f(0) ∥Eβ−γ
+β−1(1− β)−1 ∥ f ∥

Cβ,γ
0 (E)

],

∥ v′ ∥
Cβ,γ

0 (E)
+ ∥ A(.)v ∥

Cβ,γ
0 (E)

≤ M(λ)[|A(0)φ+ f(λ)− f(0)|β,γ0 + β−1(1− β)−1 ∥ f ∥
Cβ,γ

0 (E)
]

hold, where M(λ) does not depend on β, γ, φ and f(t).

Proof. If v(t) is a solution in Cβ,γ
0 (E) of problem (14), then it is a solution in C(E) of this

problem. Hence, by (5), we get the following representation for the solution of problem
(14)

v(t) = v(t, 0)v(0) +

∫ t

0
v(t, s)f(s)ds, (19)

v(0) = (I − v(λ, 0))−1

(∫ λ

0
v(λ, s)f(s)ds+ φ

)
.

Using equation (14) and formula (19), we get

v′0 = v′(0) = −A(0)v(0) + f(0) = −A(0) (I − v(λ, 0))−1

(∫ λ

0
v(λ, s)f(s)ds+ φ

)
+ f(0)

(20)

= A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)(f(λ)− f(s))ds

−A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

−A(0)(I − v(λ, 0))−1
(
(I − v(λ, 0))A−1(λ)f(λ) + φ

)
+ f(0)

= A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)(f(λ)− f(s))ds
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−A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

−A(0)A−1(λ)f(λ)−A(0)(I − v(λ, 0))−1φ+ f(0)

= A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)(f(λ)− f(s))ds

−A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

+A(0)(I − v(λ, 0))−1A−1(0) (−A(0)φ− f(λ) + f(0))

+A(0)(I − v(λ, 0))−1 v(λ, 0)
(
A−1(λ)f(λ)−A−1(0)f(0)

)
+A(0)(I − v(λ, 0))−1v(λ, 0) A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

= K1 +K2 +K3 +K4,

where

K1 = A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)(f(λ)− f(s))ds,

K2 = −A(0)(I − v(λ, 0))−1

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds,

K3 = A(0)(I − v(λ, 0))−1A−1(0) (−A(0)φ− f(λ) + f(0)) ,

K4 = A(0)(I − v(λ, 0))−1 v(λ, 0)
(
A−1(λ)f(λ)−A−1(0)f(0)

)
+A(0)(I − v(λ, 0))−1v(λ, 0) A−1(λ) (A(λ)−A(0)) A−1(0) f(λ).

Then the proof of Theorem 2.1 is based on the Theorem 1.1 and the following estimates

∥ v′0 ∥Eβ−γ
≤ M(λ)

[
∥ −A(0)φ− f(λ) + f(0) ∥Eβ−γ

+β−1(1− β)−1 ∥ f ∥
Cβ,γ

0 (E)

]
, (21)

|v′0|
β,γ
0 ≤ M(λ)

[
| −A(0)φ− f(λ) + f(0)|β,γ0 + β−1(1− β)−1 ∥ f ∥

Cβ,γ
0 (E)

]
. (22)

Let us estimate Km for any m = 1, 2, 3, 4 in Eβ−γ and Eβ,γ
0 , separately. We start with

K1. Applying the inequality (17), we get

∥K1∥Eβ−γ
≤ M(λ)

∥∥∥∥∥∥A(λ)
λ∫

0

v(λ, s)(f(λ)− f(s))ds

∥∥∥∥∥∥
Eβ−γ

, (23)

|K1|β,γ0 ≤ M(λ)

∣∣∣∣∣∣A(λ)
λ∫

0

v(λ, s)(f(λ)− f(s))ds

∣∣∣∣∣∣
β,γ

0

. (24)
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Using estimates (3), (11), (12) and (15), we obtain

z1−β+γ ∥ A(λ)exp{−zA(λ)}A(λ)

λ∫
0

v(λ, s)(f(λ)− f(s))ds||E (25)

≤ z1−β+γ

λ∫
0

||A2(λ) exp{−zA(λ)}v(t, s)||E→E ||f(λ)− f(s)||Eds

≤ Mz1−β+γ

λ∫
0

min

[
1

z2
,

1

(λ− s)2

]
(λ− s)βλ−γds||f ||

Cβ,γ
0 (E)

≤ M1z
1−β+γ

λ∫
0

(λ− s)βds

(z + λ− s)2λγ
||f ||

Cβ,γ
0 (E)

for all z > 0 . We will prove that

z1−β+γ

λ∫
0

(λ− s)βds

(z + λ− s)2λγ
≤ 1

β(1− β)
(26)

for any z > 0.If z ≤ λ, then

z1−β+γ

λ∫
0

(λ− s)βds

(z + λ− s)2λγ
≤ z1−β

λ∫
0

ds

(z + λ− s)2−β
≤ 1

1− β
.

If λ ≤ z, then

z1−β+γ

λ∫
0

(λ− s)βds

(z + λ− s)2λγ
≤ 1

zβ−γλγ

λ∫
0

ds

(λ− s)1−β
=

λβ−γ

βzβ−γ
<

1

β
.

From these estimates it follows (26) . Applying (26) , (23), (25), we get

∥K1∥Eβ−γ
≤ M(λ)

β(1− β)
||f ||

Cβ,γ
0 (E)

. (27)

Using estimates (3), (11), (12) and (15), we obtain

∥ exp{−zA(λ)}A(λ)
λ∫

0

v(λ, s)(f(λ)− f(s))ds||E (28)

≤
λ∫

0

||A(λ) exp{−zA(λ)}v(t, s)||E→E ||f(λ)− f(s)||Eds

≤ M

λ∫
0

min

[
1

z
,

1

(λ− s)

]
(λ− s)βλ−γds||f ||

Cβ,γ
0 (E)
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≤ M1

λ∫
0

1

z + λ− s
(λ− s)βλ−γds||f ||

Cβ,γ
0 (E)

≤ M1

λ∫
0

ds

(λ− s)1−β
λ−γds||f ||

Cβ,γ
0 (E)

≤ M1

β
λβ−γ ||f ||

Cβ,γ
0 (E)

≤ M1

β
T β−γ ||f ||

Cβ,γ
0 (E)

for any z > 0. If λ ≤ τ + z, then Using estimates (6) for α = β, (11), (12) and (15), we
obtain

τ−β(z + τ)γ

∥∥∥∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)

λ∫
0

v(λ, s)(f(λ)− f(s))ds

∥∥∥∥∥∥
E

(29)

≤ Mτ−β(z + τ)γ
τβ

(z + τ)β

∥∥∥∥∥∥A(λ)
λ∫

0

v(λ, s)(f(λ)− f(s))ds

∥∥∥∥∥∥
E

≤ M1

(z + τ)β−γ

λ∫
0

ds

(λ− s)1−β
λ−γ ||f ||

Cβ,γ
0 (E)

≤ M1

(z + τ)β−γ

λβ−γ

β
||f ||

Cβ,γ
0 (E)

≤ M2

β
||f ||

Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. If τ + z ≤ λ and τ ≤ z, then using estimates (12) and (3), we
obtain

τ−β(z + τ)γ

∥∥∥∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)

λ∫
0

v(λ, s)(f(λ)− f(s))ds

∥∥∥∥∥∥
E

(30)

≤ Mτ−β(z + τ)γ
λ∫

0

∥∥∥A(λ)(e−(z+τ)A(λ) − e−zA(λ))v(λ, s)(f(λ)− f(s))
∥∥∥
E
ds

≤ M1

(z + τ)−γ

λ∫
0

τ1−βds

(z + λ− s)2−β
λ−γ ||f ||

Cβ,γ
0 (E)

≤ M2

z1−β

τ1−β

1− β
||f ||

Cβ,γ
0 (E)

≤ M3

1− β
||f ||

Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. If τ + z ≤ λ and τ ≥ z, then, using estimates (3), (11), (12)
and (8), we obtain

τ−β(z + τ)γ

∥∥∥∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)

λ∫
0

v(λ, s)(f(λ)− f(s))ds

∥∥∥∥∥∥
E

(31)

≤ Mτ−β(z + τ)γ
λ−τ∫
0

∥∥∥A(λ)(e−(z+τ)A(λ) − e−zA(λ))v(λ, s)(f(λ)− f(s))
∥∥∥
E
ds

+Mτ−β(z + τ)γ
λ∫

λ−τ

∥∥∥A(λ)(e−(z+τ)A(λ) − e−zA(λ))v(λ, s)(f(λ)− f(s))
∥∥∥
E
ds

≤ τ−βM1

(z + τ)−γ

λ−τ∫
0

τds

(z + λ− s)2−β
λ−γ ||f ||

Cβ,γ
0 (E)
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+
τ−βM1

(z + τ)−γ

λ∫
λ−τ

ds

(λ− s)1−β
λ−γ ||f ||

Cβ,γ
0 (E)

≤ M2

(z + τ)β
τ

(1− β) (z + τ)1−β
||f ||

Cβ,γ
0 (E)

+
M2

(z + τ)β
τβ

β
||f ||

Cβ,γ
0 (E)

≤ M3

β (1− β)
||f ||

Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. Applying (24), (28), (29), (30), (31), we get

|K1|β,γ0 ≤ M(λ)

β(1− β)
||f ||

Cβ,γ
0 (E)

. (32)

Now, we estimate K2. Applying the inequality (17), we get

∥K2∥Eβ−γ
≤ M(λ)

∥∥∥∥∥∥A(λ)
λ∫

0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∥∥∥∥∥∥
Eβ−γ

, (33)

|K2|β,γ0 ≤ M(λ)

∣∣∣∣∣∣A(λ)
λ∫

0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∣∣∣∣∣∣
β,γ

0

. (34)

Using estimates (3), (11), (12) and (15), we obtain

z1−(β−γ)

∥∥∥∥∥∥A(λ) exp{−zA(λ)}
λ∫

0

A(λ)v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∥∥∥∥∥∥
E

(35)

≤ z1−β+γ

λ∫
0

||A2(λ) exp{−zA(λ)}v(λ, s)||E→E ||[A(λ)−A(s)]A−1(λ)||E→E ||f(λ)||Eds

≤ z1−β+γ

λ∫
0

min

[
1

z2
,

1

(λ− s)2

]
(λ− s)εds||f ||

Cβ,γ
0 (E)

≤

≤ M1z
1−β+γ

λ∫
0

(λ− s)εds

(z + λ− s)2
||f ||

Cβ,γ
0 (E)

for all z > 0 . We will prove that

z1−β+γ

λ∫
0

(λ− s)εds

(z + λ− s)2
≤ M

β(1− β)
(36)

for any z > 0. If z ≤ λ, then

z1−β+γ

λ∫
0

(λ− s)εds

(z + λ− s)2
≤ z1−βλγ

λ∫
0

(z + λ)ε−β ds

(z + λ− s)2−β
≤ 2λε−β+γ

1− β
≤ 2T 2

1− β
.

If λ ≤ z, then
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z1−β+γ

λ∫
0

(λ− s)εds

(z + λ− s)2
≤ 1

zβ−γ

λ∫
0

ds

(λ− s)1−ε
=

λε

εzβ−γ
<

λε

ελβ−γ
≤ T 2

β
.

From these estimates it follows (36) . Applying (36) , (33), (35), we get

∥K2∥Eβ−γ
≤ M(λ)

β(1− β)
||f ||

Cβ,γ
0 (E)

. (37)

Using estimates (3), (11), (12) and (15), we obtain

∥ exp{−zA(λ)}A(λ)
λ∫

0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds||E (38)

≤
λ∫

0

||A(λ) exp{−zA(λ)}v(t, s)||E→E

∥∥[A(λ)−A(s)]A−1(λ)
∥∥
E→E

||f(λ)||Eds

≤ M

λ∫
0

min

[
1

z
,

1

(λ− s)

]
(λ− s)εds||f ||

Cβ,γ
0 (E)

≤ M1

λ∫
0

1

z + λ− s
(λ− s)εds||f ||

Cβ,γ
0 (E)

≤ M1

λ∫
0

ds

(λ− s)1−ε
ds||f ||

Cβ,γ
0 (E)

≤ M1

ε
λε||f ||

Cβ,γ
0 (E)

≤ M1

ε
T ε||f ||

Cβ,γ
0 (E)

≤ M1

β
T ||f ||

Cβ,γ
0 (E)

for any z > 0. If λ ≤ τ + z, then Using estimates (3), (6) for α = β, (11), (12) and (15),
we obtain

τ−β(z + τ)γ

∥∥∥∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∥∥∥∥∥∥
E

(39)

≤ Mτ−β(z + τ)γ
τβ

(z + τ)β

∥∥∥∥∥∥A(λ)
λ∫

0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∥∥∥∥∥∥
E

≤ M1

(z + τ)β−γ

λ∫
0

ds

(λ− s)1−ε
||f ||

Cβ,γ
0 (E)

≤ M1

(z + τ)β−γ

λε

ε
||f ||

Cβ,γ
0 (E)

≤ M2T
2

β
||f ||

Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. If τ + z ≤ λ and τ ≤ z, then using estimates (3), (11) and
(13), we obtain

τ−β(z + τ)γ

∥∥∥∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∥∥∥∥∥∥
E

(40)

≤ Mτ−β(z + τ)γ
λ∫

0

∥∥∥A(λ)(e−(z+τ)A(λ) − e−zA(λ))v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)
∥∥∥
E
ds
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≤ M1

(z + τ)−γ

λ∫
0

(z + λ)ε−β τ1−βds

(z + λ− s)2−β
||f ||

Cβ,γ
0 (E)

≤ M2

z1−β

τ1−βT ε−β

1− β
||f ||

Cβ,γ
0 (E)

≤ M3

1− β
||f ||

Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. If τ + z ≤ λ and τ ≥ z, then using estimates (12) and (3),
we obtain

τ−β(z + τ)γ

∥∥∥∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)

λ∫
0

v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)ds

∥∥∥∥∥∥
E

(41)

≤ Mτ−β(z + τ)γ
λ−τ∫
0

∥∥∥A(λ)(e−(z+τ)A(λ) − e−zA(λ))v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)
∥∥∥
E
ds

+Mτ−β(z + τ)γ
λ∫

λ−τ

∥∥∥A(λ)(e−(z+τ)A(λ) − e−zA(λ))v(λ, s)[A(λ)−A(s)]A−1(λ)f(λ)
∥∥∥
E
ds

≤ τ−βM1

(z + τ)−γ

λ−τ∫
0

λε−βτds

(z + λ− s)2−β
||f ||

Cβ,γ
0 (E)

+
τ−βM1

(z + τ)−γ

λ∫
λ−τ

ds

(λ− s)1−ε
||f ||

Cβ,γ
0 (E)

≤ M2T
ε−β+γτ1−β

(1− β) (z + τ)1−β
||f ||

Cβ,γ
0 (E)

+
M2

(z + τ)β−γ

τ ε

ε
||f ||

Cβ,γ
0 (E)

≤ M3

β (1− β)
||f ||

Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. Applying (38), (39), (40), (41),we get

|K2|β,γ0 ≤ M(λ)

β(1− β)
||f ||

Cβ,γ
0 (E)

. (42)

Applying the inequality (17), we get

∥K3∥Eβ−γ
≤ M(λ) ∥A(0)φ+ f(λ)− f(0)∥Eβ−γ

, (43)

|K3|β,γ0 ≤ M(λ) |A(0)φ+ f(λ)− f(0)|β,γ0 . (44)

Finally, we estimate K4. Applying the inequality (17), we get

∥K4∥Eβ−γ
≤ M(λ) ∥A(λ)v(λ, 0)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
Eβ−γ

, (45)

|K4|β,γ0 ≤ M(λ) |A(λ)v(λ, 0)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∣∣β,γ
0

. (46)

Applying the inequality (17), we get

z1−(β−γ)
∥∥A2(λ) exp{−zA(λ)}v(λ, 0)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
E

(47)

≤ z1−β+γ ||A2(λ) exp{−zA(λ)}v(λ, 0)A−1(λ)||E→E

(
||f(λ)||E + ||A(λ)A−1(0)||E→E ||f(0)||E
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+||[A(λ)−A(0)]A−1(0)||E→E ||f(λ)||E
)

≤ Mz1−β+γ min

[
1

z
,
1

λ

]
||f ||

Cβ,γ
0 (E)

≤ M1
z1−β+γ

z + λ
||f ||

Cβ,γ
0 (E)

≤ M1λ
−β+γ ||f ||

Cβ,γ
0 (E)

for all z > 0. Applying (47) , (45), we get

∥K4∥Eβ−γ
≤ M1(λ)||f ||Cβ,γ

0 (E)
. (48)

Using estimates (3), (11), (12) and (15), we obtain

∥exp{−zA(λ)}A(λ)v(λ, 0)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
E

(49)

≤ ||A(λ) exp{−zA(λ)}v(λ, 0)A−1(λ)||E→E

(
||f(λ)||E + ||A(λ)A−1(0)||E→E ||f(0)||E

+||[A(λ)−A(0)]A−1(0)||E→E ||f(λ)||E
)

≤ M min

[
1

z
,
1

λ

]
||f ||

Cβ,γ
0 (E)

≤ M1
1

λ
||f ||

Cβ,γ
0 (E)

for any z > 0. If λ ≤ τ + z, then Using estimates (6) for α = β, (11), (12) and (15), we
obtain

τ−β(z + τ)γ
∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)v(λ, 0) (50)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
E

≤ Mτ−β(z+τ)γ
τβ

λ (z + τ)β
∥∥( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
E

≤ M1

λ(z + τ)β−γ

(
λβ−γ + λε

)
||f ||

Cβ,γ
0 (E)

≤ M2(λ)||f ||Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. If τ + z ≤ λ and τ ≤ z, then using estimates (12) and (3),
we obtain

τ−β(z + τ)γ
∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)v(λ, 0) (51)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
E

≤ M(z + τ)γ
(

τ1−β

(z + λ)2+γ−β
+

τ1−β

(z + λ)2−ε

)
||f ||

Cβ,γ
0 (E)

≤ M1(λ)||f ||Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. If τ + z ≤ λ and τ ≥ z, then using estimates (12) and (3),
we obtain

τ−β(z + τ)γ
∥∥∥(e−(z+τ)A(λ) − e−zA(λ))A(λ)v(λ, 0) (52)

×
( (

A−1(λ)f(λ)−A−1(0)f(0)
)
+A−1(λ) (A(λ)−A(0)) A−1(0) f(λ)

)∥∥
E

≤ M1

(z + τ)−γ

(
τ1−β

(z + λ)2+γ−β
+

τ1−β

(z + λ)2−ε

)
||f ||

Cβ,γ
0 (E)

≤ M1(λ)||f ||Cβ,γ
0 (E)

for any 0 ≤ z < z + τ ≤ T. Applying (46), (49), (50), (51), (52),we get

|K4|β,γ0 ≤ M1(λ)||f ||Cβ,γ
0 (E)

. (53)

Combining the estimates (27), (37), (43), (48) and (32), (42), (44), (53), we get estimates
(21), (22). Theorem 2.1 is proved. �
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It is easy to show that

|u|β,γ0 ≤ M

β − γ
||u||Eβ−γ

(u ∈ Eβ−γ) . (54)

Theorem 2.1 admit the following corollary.

Theorem 2.2. Suppose A(0)φ + f(λ) − f(0) ∈ Eβ−γ , f(t) ∈ Cβ,γ
0 (E)(0 ≤ γ ≤ β, 0 <

β < 1). Suppose that the assumptions (1.3), (1.4) and (15) hold and 0 < β ≤ ε < 1. Then

for the solution v(t) in Cβ,γ
0 (E) of the nonlocal boundary value problem (14) the coercive

inequalities

∥ v′ ∥
Cβ,γ

0 (E)
+ ∥ A(.)v ∥

Cβ,γ
0 (E)

+ ∥ v′ ∥C(Eβ−γ)

≤ M(λ)[
1

β − γ
||A(0)φ+ f(λ)− f(0)||Eβ−γ

+ β−1(1− β)−1 ∥ f ∥
Cβ,γ

0 (E)
]

hold, where M(λ) does not depend on β, γ, φ and f(t).

3. Applications

First, we consider the nonlocal boundary value problem for parabolic equation

∂u

∂t
− a(t, x)

∂2u

∂x2
+ δu = f(t, x), 0 < t < T, 0 < x < 1, (55)

u(0, x) = u(λ, x) + φ(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), 0 ≤ t ≤ T,

where a(t, x), φ(x) and f(t, x) are given sufficiently smooth functions and a(t, x) = a(t+
λ, x) > 0, δ > 0 is a sufficiently large number.

We introduce the Banach spaces Cβ[0, 1] (0 < β < 1) of all continuous functions φ(x)
satisfying a Hölder condition for which the following norms are finite

∥ φ ∥Cβ [0,1]=∥ φ ∥C[0,1] + sup
0≤x<x+τ≤1

|φ(x+ τ)− φ(x)|
τβ

,

where C[0, 1] is the space of the all continuous functions φ(x) defined on [0, 1] with the
usual norm

∥ φ ∥C[0,1]= max
0≤x≤1

|φ(x)|.

It is known that the differential expression

At,xv = −a(t, x)v′′(t, x) + δv(t, x)

define a positive operator At,x acting in Cβ[0, 1] with domain Cβ+2[0, 1] and satisfying the
conditions v(0) = v(1), vx(0) = vx(1).

Therefore, we can replace the nonlocal boundary value problem (55) by the abstract
nonlocal boundary value problem (14). We can obtain that

Theorem 3.1. For the solution of nonlocal boundary value problem (55) the following
coercive inequaly is valid:

∥ u ∥
C1+β,γ

0 (Cµ[0,1])
+ ∥ u ∥

Cβ,γ
0 (C2+µ[0,1])

+ ∥ u ∥C(C2(β−γ)+µ[0,1])

≤ M(λ, µ)

β(1− β)
∥ f ∥

Cβ,γ
0 (Cµ[0,1])

+
M(λ, µ)

β − γ
||−a(0, ·)∂

2φ(·)
∂x2

+δφ(·)+f(λ, ·)−f(0, ·)||C2(β−γ)+µ[0,1],

0 < 2(β − γ) + µ < 1, 0 ≤ γ ≤ β, 0 ≤ µ ≤ 1.

Here M(λ, µ) is independent of γ, β, f(t, x), φ(x).
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The proof of Theorem 3.1 is based on the abstract Theorem 2.1 and on the following
theorem on the structure of the fractional spaces Eα(C[0, 1], At,x).

Theorem 3.2. Eα(C[0, 1], At,x) = C2α[0, 1] for all 0 < α < 1
2 , 0 ≤ t ≤ T [33].

Second, let Ω be the unit open cube in the n-dimensional Euclidean space Rn (0 <
xk < 1, 1 ≤ k ≤ n) with boundary S, Ω = Ω ∪ S. In [0, T ]× Ω we consider the nonlocal
boundary value problem for the multidimensional parabolic equation

∂u(t, x)

∂t
−

n∑
r=1

αr(t, x)
∂2u(t, x)

∂x2r
+ δu(t, x) = f(t, x), (56)

−
n∑

r=1

αr(t, x)
∂2φ(x)

∂x2r
+ δφ(x) + f(λ, x)− f(0, x) = 0, x = (x1, . . . , xn) ∈ Ω, 0 < t < T,

u(0, x) = u(λ, x) + φ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S,

where αr(t, x), f(t, x) (t ∈ [0, T ], x ∈ Ω), φ(x)(x ∈ Ω) are given smooth functions and
αr(t, x) = αr(t+ λ, x) > 0, δ > 0 is a sufficiently large number.

We introduce the Banach spaces Cβ
01(Ω) (β = (β1, · · ·, βn), 0 < xk < 1, k = 1, . . . , n)

of all continuous functions satisfying a Hölder condition with the indicator β = (β1, · ·
·, βn), βk ∈ (0, 1), 1 ≤ k ≤ n and with weight xβk

k (1−xk−hk)
βk , 0 ≤ xk < xk+hk ≤ 1, 1 ≤

k ≤ n which equipped with the norm

∥ f ∥
Cβ

01(Ω)
=∥ f ∥C(Ω)

+ sup
0≤xk<xk+hk≤1,1≤k≤n

|f(x1, . . . , xn)− f(x1+h1, . . . , xn+hn)|
n∏

k=1

h−βk
k xβk

k (1−xk −hk)
βk ,

where C(Ω)-is the space of the all continuous functions defined on Ω, equipped with the
norm

∥ f ∥C(Ω)= max
x∈Ω

|f(x)|.

It is known that the differential expression

At,xv = −
n∑

r=1

αr(t, x)
∂2v(t, x)

∂x2
+ δv(t, x)

defines a positive operator At,x acting on Cβ
01(Ω) with domain D(At,x) ⊂ C2+β

01 (Ω) and
satisfying the condition v = 0 on S.

Therefore, we can replace the nonlocal boundary value problem (56) by the abstract
nonlocal boundary value problem (14). We can obtain that

Theorem 3.3. For the solution of the nonlocal boundary value problem (56) the following
coercive inequality is valid:

∥ u ∥
C1+β,γ

0 (Cµ
01(Ω)) +

n∑
r=1

∥ ∂2u

∂x2r
∥
Cβ,γ

0 (Cµ
01(Ω))

≤ M(µ)

(β − γ)(1− β)
∥ f ∥

Cβ,γ
0 (Cµ

01(Ω)),

0 < 2(β − γ) + µ < 1, 0 ≤ γ ≤ β,

µ = {µ1, · · ·, µn}, 0 < µk < 1, 1 ≤ k ≤ n,
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where M(µ) is independent of β, γ and f(t, x), φ(x).

The proof of Theorem 3.3 is based on the abstract Theorems 2.1, the coercivity inequal-
ity for an elliptic operator At,x in Cµ

01(Ω).
Third, we consider the nonlocal boundary value problem on the range {0 ≤ t ≤ T, x ∈

Rn} for the 2m-th order multidimensional parabolic equation

∂u

∂t
+

∑
|r|=2m

ar(t, x)
∂|τ |u

∂xr11 · · · ∂xrnn
+ δu(t, x) = f(t, x), (57)

0 < t < T, x, r ∈ Rn, |r| = r1 + · · ·+ rn,

u(0, x) = u(λ, x) + φ(x), x ∈ Rn,

where ar(t, x) = ar(t+ λ, x) and f(t, x), φ(x) are given sufficiently smooth functions and
δ > 0 is the sufficiently large number .

Let us consider a differential operator with constant coefficients of the form

B =
∑

|r|=2m

br
∂r1+...+rn

∂xr1
1

· · · ∂xrn
n

,

acting on functions defined on the entire space Rn. Here r ∈ Rn is a vector with nonnega-
tive integer components, |r| = r1+ · · ·+ rn. If φ (y) (y = (y1, · · ·, yn) ∈ Rn) is an infinitely
differentiable function that decays at infinity together with all its derivatives, then by
means of the Fourier transformation one establishes the equality

F (Bφ) (ξ) = B (ξ)F (φ) (ξ) .

Here the Fourier transform operator is defined by the rule

F (φ) (ξ) = (2π)−n/2
∫
Rn

exp {−i (y, ξ)}φ (y) dy,

(y, ξ) = y1ξ1 + · · ·+ ynξn.

The functionB (ξ) is called the symbol of the operatorB and is given by

B (ξ) =
∑

|r|=2m

br (iξ1)
r1 · · · (iξn)rn .

We will assume that the symbol

Bt,x(ξ) =
∑

|r|=2m

ar(t, x) (iξ1)
r1 · · · (iξn)rn , ξ = (ξ1, · · ·, ξn) ∈ Rn

of the differential operator of the form

Bt,x =
∑

|r|=2m

ar(t, x)
∂|r|

∂xr11 · · · ∂xrnn
(58)

acting on functions defined on the space Rn, satisfies the inequalities

0 < M1|ξ|2m ≤ (−1)mBt,x(ξ) ≤ M2|ξ|2m < ∞
for ξ ̸= 0. The problem (57) has a unique smooth solution. This allows us to reduce the
nonlocal boundary value problem (57) by the abstract nonlocal boundary value problem
(14) in a Banach space E = Cµ(Rn) of all continuous bounded functions defined on
Rnsatisfying a Hölder condition with the indicator µ ∈ (0, 1) with a strongly positive
operator At,x = Bt,x + δI defined by (58).
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Theorem 3.4. For the solution of the nonlocal boundary value problem (57) the following
coercivity inequality is satisfied

∥ u ∥
C1+β,γ

0 (Cµ(Rn))
+

∑
|τ |=2m

∥ ∂|r|u

∂xr11 · · · ∂xrnn
∥
Cβ,γ

0 (Cµ(Rn))

+ ∥ u ∥C(C2(β−γ)+µ(Rn))≤
M(λ, µ)

β(1− β)
∥ f ∥

Cβ,γ
0 (Cµ[0,1])

+
M(λ, µ)

β − γ
||

∑
|r|=2m

ar(0, ·)
∂|τ |φ(·)

∂xr11 · · · ∂xrnn
+ δφ(·) + f(λ, ·)− f(0, ·)||C2(β−γ)+µ(Rn),

0 < 2(β − γ) + µ < 1, 0 ≤ γ ≤ β, 0 ≤ µ ≤ 1.

Here M(λ, µ) is independent of γ, β, f(t, x), φ(x).

The proof of Theorem 3.4 is based on the abstract Theorems 2.1, the coercivity inequal-
ity for an elliptic operator At,x in Cµ(Rn) and on the following theorem on the structure
of the fractional spaces Eα(C

µ(Rn), At,x).

Theorem 3.5. Eα(C
µ(Rn), At,x) = C2mα+µ(Rn) for all 0 < α < 1

2m and 0 ≤ t ≤ T [10].
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