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A GENERALIZATION OF THE LEE WEIGHT TO Zpk

B. YILDIZ1, Z. ÖDEMİŞ ÖZGER2 §

Abstract. We introduce a new extension of the Lee weight to Zpk and later to Galois

rings GR(pk,m). The weight we define is a non-homogeneous weight and is different than
the one that is generally labeled as “generalized Lee weight”. Unlike the case of general-
ized Lee weight, we define a distance-preserving Gray map from (Zpk , extended Lee distance)

to (Fpk−1

p ,Hamming distance), thus making our extension practical for coding theory
purposes.
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1. Introduction

In the early history of coding theory, codes over finite fields were predominantly studied.
The most common weight used for such codes was the Hamming weight, which we will
denote by wH here, and is simply defined to be the number of nonzero coordinates. Many
encoding and decoding schemes as well as error correction algorithms are based on the
Hamming distance.

Codes over rings have been considered since early seventies (viz. [2], [12]), however it
was not until the beginning of the nineties that studying codes over rings became practical.
In 1994, Hammons et al.([6]) solved a long standing mystery in non-linear binary codes
by constructing the Kerdock and Preparata codes as the Gray images of linear codes over
Z4. This work started an intense activity on codes over rings. The rich algebraic structure
that rings bring together with some better than optimal nonlinear codes obtained from
linear codes over rings have increased the popularity of this topic. What started with the
ring Z4, later was extended to rings like Z2k , Zpk , Galois rings, Fq + uFq, etc. What all
these rings have in common is that they are finite chain rings which allows introducing
the concept of a type and a single form of a generating matrix for codes over these rings.

In studying codes over rings, weights other than the Hamming weight started to appear.
For example, in [6], the authors used the Lee weight on Z4, which we will denote by wL

and was defined as

wL(x) :=

 0 if x = 0,
2 if x = 2,
1 otherwise.
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Now, what makes this weight a useful weight is that we can define a so-called Gray map

ϕL : Z4 → F2
2,

with

ϕL(0) = (00), ϕL(1) = (01), ϕL(2) = (11), ϕL(3) = (10),

which turns out to be a non-linear isometry from (Zn
4 ,Lee distance) to (F2n

2 ,Hamming distance).
This means that if C is a linear code over Z4 of length n, sizeM and minimum Lee distance
d, then ϕL(C) is a possibly non-linear binary code with parameters [n,M, d].

In extending the Lee weight to other extensions of Z4, different approaches were followed.
A natural extension to Z2k was studied briefly by Carlet in [3] but was dismissed in favor
of the so-called homogeneous weight. We call the first extension the extended Lee weight
for Z2k and is defined as:

wL(x) :=

{
x if x ≤ 2k−1,
2k − x if x > 2k−1.

(1)

One of the advantages of working with such a weight is that we can define a Gray map

from Z2k to F2k−1

2 for this weight function in a very simple way:

0 → (000 · · · 000),
1 → (100 · · · 000),
2 → (110 · · · 000),

·
·

2k−1 → (111 · · · 111),
2k−1 + 1 → (011 · · · 111),
2k−1 + 2 → (001 · · · 111),

·
·

2k − 2 → (000 · · · 011),
2k − 1 → (000 · · · 001).

We simply put 1’ s in the first x coordinates and 0’ s in the other coordinates for all
x ≤ 2k−1. If x > 2k−1 then the Gray map takes x to 1 + ϕL(2

k−1 − x), where ϕL is the
Gray map for wL.

The homogeneous weight for integer rings was defined in [4] and was applied to Zpk by
most coding theorists as follows:

whom(x) :=


0 if x = 0,
pk−1 if 0 ̸= x ∈ pk−1Zpk ,

(p− 1)pk−2 otherwise.

Of course a Gray map for the homogeneous weight for finite chain rings exist. But it is
relatively harder to construct and it doesn’t have as simple a form as does the extended Lee
weight. For the algebraic constructions of the Gray map of whom one can look at [5] and
[9], while in [13], a combinatorial construction of the Gray map using finite geometries is
given. Researchers found it advantageous to work with the homogeneous weight for several
reasons. Firstly, there are some bounds in Number Theory about exponential sums which
are found to be related to the homogeneous weight; for these one can look at [8], [11] and
[10]. The homogeneous weight is also found to be related to finite geometries as seen in
[13]. Moreover, because there are only two nonzero weights, weight enumerators of codes
seem to be simpler and they satisfy certain divisibility properties as seen in [14].
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The homogeneous weight is certainly an extension of the Lee weight defined on Z4,
because if we put p = 2 and k = 2 we get the Lee weight on Z4. However it doesn’t seem
to be a natural extension and since there are only two non-zero weights, we don’t have a
rich class of codes that can be obtained from codes over rings.

Now, just as the Lee weight on Z4 was extended to (1) for Z2k , several researches defined
a generalized Lee weight on Zq as follows([1]):

wL(x) = min{x, q − x}. (2)

However, the problem with this weight is that no distance preserving Gray map has been
given up to now that takes codes over Zq to codes over the residue field. So, it is not clear
how this weight can be used in practical applications of coding theory.

In this work, we define a new weight, which we call the extended Lee weight, on Zpk and
we later extend it to Galois rings as well. The weight we introduce is a non-homogeneous
weight, however it has quite a simple Gray map attached to it. The Gray map is a non-

linear isometry from (Zn
pk
,Lee distance) to (Zpk−1n

p ,Hamming distance) and thus the Lee

weight in our definition is comparable to the homogeneous weight.
In Section 2, we introduce the wight together with a simple Gray map for this weight.

We will prove that the Gray map is distance preserving.
In Section 3, we will extend the Lee weight wL to Galois rings.
We will finish the paper with concluding remarks as well as possible directions for

research on this new weight.

2. The Extended Lee Weight over Zpk

We introduce a new weight on Zpk as follows:

wL(x) :=


x if x ≤ pk−1,
pk−1 if pk−1 ≤ x ≤ pk − pk−1,
pk − x if pk − pk−1 < x ≤ pk − 1.

Note that for p = 2 and k = 2 this reduces to the Lee weight for Z4 and for p = 2 and any
k, this is the weight that was used briefly by Carlet in [3].

As an example, for q = 9, the homogeneous weight on Z9 is as follows:

whom(x) :=

 0 if x = 0,
3 if x = 3, 6
2 otherwise.

The Lee weight however is given by

wL(x) :=


0 if x = 0,
1 if x = 1, 8
2 if x = 2, 7
3 if x = 3, 4, 5, 6

Of course for the weight to be of use in terms of coding theory we need to introduce a

Gray map as well. It turns out that we can define a Gray map from Zpk to Zpk−1

p just as
was done for the homogeneous weight as follows:
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0 → (000 · · · 000),
1 → (100 · · · 000),
2 → (110 · · · 000),

·
·

pk−1 → (111 · · · 111),
pk−1 + 1 → (211 · · · 111),
pk−1 + 2 → (221 · · · 111),

·
·

pk−1 + pk−1 − 1 → (222 · · · 221),
2pk−1 → (222 · · · 222),
2pk−1 + 1 → (322 · · · 222),

·
·

2pk−1 + pk−1 − 1 → (333 · · · 332),
3pk−1 → (333 · · · 333),

·
·

(p− 1)pk−1 → ((p− 1) · · · (p− 1)),
(p− 1)pk−1 + 1 → (0(p− 1) · · · (p− 1)),

·
·

pk − 2 → (000 · · · 0(p− 1)(p− 1)),
pk − 1 → (000 · · · 00(p− 1)).

We simply put 1’ s in the first x coordinates and 0’ s in the other coordinates for all
x ≤ pk−1. If x > pk−1 then the Gray map takes x to q+ϕL(r), where ϕL is the Gray map
for wL, q = (qqq · · · qqq) and q and r are such that

x = qpk−1 + r,

which can be found by division algorithm. Here, 0 ≤ x ≤ pk − 1, 0 ≤ q ≤ p − 1,
0 ≤ r ≤ pk−1 − 1.

We define the Lee distance on Zpk as

dL(x, y) := wL(x− y), x, y ∈ Zpk . (3)

Note that this is a metric on Zpk and by extending wL and dL linearly to (Zpk)
n in an

obvious way, we get a weight and a metric on (Zpk)
n. Note also that the Gray map in

this case has a very simple description compared to the Gray map for the homogeneous
weight. However, first we need to prove that the map defined above is indeed a distance
preserving Gray map:

Theorem 2.1. ϕL : (Zpk , dL) −→ (Fpk−1

p , dH) is a distance preserving (not necessarily
linear) map, where dL and dH denote the Lee and the Hamming distances respectively.

Proof. We will show that ∀x1, x2 ∈ Zpk dL(x1, x2) = dH(ϕL(x1), ϕL(x2)). Without loss

of generality assume that x1 < x2, and let x1 = q1p
k−1 + r1, x2 = q2p

k−1 + r2, where
0 ≤ q1, q2 ≤ p− 1, 0 ≤ r1, r2 ≤ pk−1 − 1. We will consider the problem in three cases.
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Case 1: Assume that q2 = q1 = q. Since x1 < x2, r2 > r1. Then,

dL(x1, x2) = dL(qp
k−1 + r1, qp

k−1 + r2)

= wL(qp
k−1 + r2 − (qpk−1 + r1))

= wL(r2 − r1) = r2 − r1,

and

dH(ϕL(x1), ϕL(x2)) = dH(q + ϕL(r1), q + ϕL(r2))

= wH(ϕL(r1)− ϕL(r2))

= r2 − r1.

Case 2: Assume that q2 ≥ q1 and 1 ≤ q2 − q1 ≤ p − 2. Let x2i, x1i denotes the ith

coordinates of ϕL(x2) and ϕL(x1) respectively. Here we have two subcases.
(i) Let r2 ≥ r1, then r2 − r1 ≥ 0.

dL(x1, x2) = wL(x2 − x1)

= wL((q2 − q1)p
k−1 + r2 − r1)

= pk−1.

dH(ϕL(x1), ϕL(x2)) = dH(q1 + ϕL(r1), q2 + ϕL(r2)) = pk−1,

since when 1 ≤ i ≤ r1 x2i = q2 + 1 and x1i = q1 + 1, when r1 + 1 ≤ i ≤ r2 x2i = q2 + 1
and x1i = q1, when r2 < i ≤ pk−1 x2i = q2 and x1i = q1. So ϕL(x1) and ϕL(x2) have pk−1

different coordinates.
(ii) Let r1 ≥ r2, then r2 − r1 ≤ 0. Again we have two subcases for this case. First

assume that q2 = q1 + 1. Then,

dL(x1, x2) = wL(x2 − x1)

= wL(q2p
k−1 + r2 − (q1p

k−1 + r1))

= wL(q2p
k−1 + r2 − q1p

k−1 − r1))

= wL((q2 − q1 − 1)pk−1 + pk−1 + r2 − r1))

= wL(p
k−1 + r2 − r1))

= pk−1 + r2 − r1,

since r2 − r1 < 0. Hence

dH(ϕL(x1), ϕL(x2)) = dH(q1 + ϕL(r1), q2 + ϕL(r2))

= pk−1 + r2 − r1,

since when 1 ≤ i ≤ r2 x2i = q2 + 1 = q1 + 2 x1i = q1 + 1, and when r2 + 1 ≤ i ≤ r1
x2i = q2 = q1 + 1 x1i = q1 + 1, and when r1 + 1 ≤ i ≤ pk−1 x2i = q2 = q1 + 1 x1i = q1.
Namely, ϕL(x1) and ϕL(x2) differ in pk−1 + r2 − r1 coordinates. Second assume that
q2 ≥ q1 + 2. Then,

dL(x1, x2) = wL(x2 − x1)

= wL(q2p
k−1 + r2 − (q1p

k−1 + r1))

= wL(q2p
k−1 + r2 − q1p

k−1 − r1))

= wL((q2 − q1 − 1)pk−1 + pk−1 + r2 − r1))

= pk−1.

Now,
dH(ϕL(x1), ϕL(x2)) = dH(q1 + ϕL(r1), q2 + ϕL(r2)) = pk−1,
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since when 1 ≤ i ≤ r2 x2i = q2+1 x1i = q1+1, and when r2+1 ≤ i ≤ r1 x2i = q2 ̸= q1+1
x1i = q1 + 1, and when r1 + 1 ≤ i ≤ pk−1 x2i = q2 x1i = q1. Namely, ϕL(x1) and ϕL(x2)
differ in pk−1 coordinates.

Case 3: In this case assume that q2 − q1 = p− 1, then q2 = p− 1, q1 = 0. So x1 = r1,
x2 = (p− 1)pk−1 + r2. Then,

dL(x1, x2) = wL(x2 − x1) = wL((p− 1)pk−1 + r2 − r1).

We have two subcases here.
(i) Assume that r2 ≤ r1, then,

wL(x2 − x1) = wL((p− 1)pk−1 + r2 − r1) = pk−1.

Also,

dH(ϕL(x1), ϕL(x2)) = dH((p− 1) + ϕL(r2), ϕL(r1)) = pk−1,

since when 1 ≤ i ≤ r2 x2i = (p−1)+1 = 0, x1i = 1, and when r2+1 ≤ i ≤ r1 x2i = (p−1),
x1i = 1, and when r1 + 1 ≤ i ≤ pk−1 x2i = (p − 1), x1i = 0. In other words ϕL(x1) and
ϕL(x2) differ in pk−1 coordinates.

(ii) Now assume that r2 > r1, then,

wL(x2 − x1) = wL((p− 1)pk−1 + r2 − r1)

= pk−1 − (r2 − r1)

= pk−1 + r1 − r2.

Also,

dH(ϕL(x1), ϕL(x2)) = dH((p− 1) + ϕL(r2), ϕL(r1)) = pk−1 + r1 − r2,

since when 1 ≤ i ≤ r1 x2i = (p − 1) + 1 = 0, x1i = 1, and when r1 + 1 ≤ i ≤ r2
x2i = (p− 1)+ 1 = 0, x1i = 0, and when r2 +1 ≤ i ≤ pk−1 x2i = (p− 1), x1i = 0. In other
words ϕL(x1) and ϕL(x2) differ in pk−1 − (r2 − r1) = pk−1 + r1 − r2 coordinates.

So we have seen that in each case we get dL(x1, x2) = dH(ϕL(x1), ϕL(x2)). �

Corollary 2.1. If C is a linear code over Zpk of length n, size M and minimum Lee

distance d, then ϕL(C) is a (possibly non-linear) code over Fp of length npk−1, size M and
minimum Hamming distance d.

3. The Extended Lee Weight over GR(pk,m)

In this section we will first introduce the Galois rings and the extended Lee weight over
Galois rings. The introduction given here is taken mainly from [14]. Let p be a prime
number and P (x) ∈ Zpk [x] be a basic irreducible polynomial of degree m. Then the Galois

ring GR(pk,m) is defined as the quotient Zpk [x] /(P (x)). If m1 is a positive integer such

that m1 | m, then GR(pk,m1) is a subring of GR(pk,m). A very important property of
Galois rings is that it is a finite chain ring and it also has a unique maximal ideal which
is given by (p) = pGR(pk,m) and the quotient field is

GR(pk,m)

pGR(pk,m)
∼= Fpm .

All the ideals of GR(pk,m) can be ordered as

{0} = pkGR(pk,m) ⊂ pk−1GR(pk,m) ⊂ · · · ⊂ pGR(pk,m) ⊂ GR(pk,m).
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SinceGR(pk,m) = Zpk [x]/(P (x)) with P (x) basic irreducible of degreem, every element

u ∈ GR(pk,m) can be written uniquely as

u ≡ u0 + u1x+ · · ·um−1x
m−1 (mod P (x)), ui ∈ Zpk . (4)

A linear code C over the Galois ring GR(pk,m) of length n is a submodule of GR(pk,m)n.
The following theorem from [7] gives us information about the type and dimension for
linear over Galois rings:

Theorem 3.1. (Huffman[7]) A GR(pk,m)-linear code C is permutationally equivalent to
a code with generating matrix of the form

G =


Is1 A1 · · · Ak

0 pIs2 pB1 · · pBk−1

0 0 · · · ·
· · · · · ·
· · · · · ·
0 0 · 0 pk−1Isk pk−1C


where the matrices Ai’s, Bj’s and so on matrices over GR(pk,m) and the columns are
grouped into blocks of size s1, s2, . . . , sk. The size of C is pmα, where

α =

k∑
i=1

si(k + 1− i).

In this case, we say that C is of type

(pkm)s1(p(k−1)m)s2 · · · (pm)sk .

The homogeneous weight for linear codes over Galois rings is given as:

whom(x) :=


0 if x = 0,

pm(k−1) if 0 ̸= x ∈ pk−1GR(pk,m),

(pm − 1)pm(k−2) otherwise.

The weight is naturally extended to codes by letting, for c = (c1, c2, . . . , cn) ∈ GR(pk,m)n,

whom(c) =
n∑

i=1

whom(ci).

Algebraic constructions for the Gray map for the homogeneous weight were given in [5] and
[9]. In 2009, Yildiz gave a combinatorial construction for the gray map of the homogeneous
weight over Galois rings, by using Affine geometries.

We can extend the Lee weight wL defined for Zpk to Galois rings, in the following way:

With u ∈ GR(pk,m) given by

u ≡ u0 + u1x+ · · ·um−1x
m−1 (mod P (x)), ui ∈ Zpk ,

we define

wL(u) =

m−1∑
i=0

wL(ui).

where wL(ui) is the Lee weight in Zpk .
The Gray map of this weight can be defined naturally in a similar way:

ϕL(u) = (ϕL(u0), ϕL(u1), . . . , ϕL(um−1))
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where ϕL(ui) is the Gray image of ui ∈ Zpk as was defined previously. Note that this is a

distance preserving map from GR(pk,m) to Fp(k−1)m
p .

Remark 3.1. The Gray map for the homogeneous weight in Galois rings GR(pk,m) is

a distance-preserving map from GR(pk,m) to Fp(k−1)m

p . This means that, for an Fp-code

C to be the image of a code over GR(pk,m) under this map, the length of C must be a

multiple of p(k−1)m, which is highly restrictive. On the other hand, the Gray map for the

Lee weight on GR(pk,m), ϕL, is a map from GR(pk,m) to Fpk−1m
p .

4. Conclusion

The homogeneous weight has been commonly used in extending the Lee weight on Z4

due to its relation to different areas of mathematics such as Finite Geometries and Number
Theory. However, it has only two non-zero weights, which can be restrictive in obtaining
different codes from linear codes over rings. We gave a different extension of the Lee
weight together with a Gray map that was simply defined. The Gray maps in both cases

take Zpk to Fpk−1

p , hence the two weights are comparable. However in the case of the Lee

weight over Zpk , we have pk−1 different non-zero weights, ranging from 1 to pk−1. This
gives us more diversity in obtaining good codes whose weights are not divisible.

Besides, for codes over Zpk the number of the codewords in a code that are of Lee weight

pk−1 is pk−1(p−2)+1 in our case, while this number is p−1 for the homogeneous weight.
Also while the Gray map of an element of GR(pk,m) with the homogeneous weight gives

a vector of length pm(k−1), the length of the resulting vector is pk−1m for the extended
Lee weight.

Possible directions for future work include finding connections between the extended
Lee weight and other mathematical structures in a similar way that was done for the
homogeneous weight. One can also consider the properties of the Lee weight enumerators
of codes over Galois rings similar to what was done in [14] for the homogeneous weight.
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