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SOLVABILITY THE TELEGRAPH EQUATION WITH PURELY

INTEGRAL CONDITIONS

A. MERAD1, A. BOUZIANI2 §

Abstract. In this paper a numerical technique is developed for the one-dimensional
telegraph equation. We prove the existence, uniqueness, and continuous dependence
upon the data of solution to a telegraph equation with purely integral conditions. The
proofs are based on a priori estimates and Laplace transform method. Finally, we obtain
the solution by using a simple and efficient algorithm for numerical solution.

Keywords: Telegraph equation, a priori estimates, Laplace transform method, Purely
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1. Introduction

In the rectangular domain D = {(x, t) : 0 < x < 1, 0 < t ≤ T} , we consider a second
order telegraph equation

∂2u

∂t2
− c2

∂2u

∂x2
+ a

∂u

∂t
+ bu = f (x, t) , 0 < x < 1, 0 < t ≤ T, (1)

subject to the initial conditions

u(x, 0) = φ (x) , 0 < x < 1, (2)

∂u(x, 0)

∂t
= ψ (x) , 0 < x < 1, (3)

and the purely integral conditions∫ 1

0
u (x, t) dx = 0, 0 < t ≤ T, (4)∫ 1

0
xu (x, t) dx = 0, 0 < t ≤ T, (5)

where f, φ, and ψ are known functions, c, a, b, and T are known positives constants.
The first investigation of this type of problems goes back to [4] in 1996, in which the

author proved the existence, uniqueness, and continuous dependence of the solution upon
the data of certain hyperbolic problems with only integral boundary conditions. Later,
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similar problems have been studied in [7, 10, 11, 13, 21] by using the energetic method
and the Rothe time-discretization method. We refer the reader to [3, 4, 6, 8, 9, 10, 12, 15,
20, 22, 23, 24] for hyperbolic equations with Neumann and integral condition. For other
problems with nonlocal conditions, related to other equations, we refer to [2, 4, 10, 11, 12]
and references therein.

In this paper a Laplace transform method is presented for the problem of obtaining
numerical approximations.The main tool used in this paper is the Laplace transform and
then used the numerical technique for the inverse Laplace transform to obtain the numer-
ical solution. We use a numerical method for inverting the Laplace transform to get the
solution.

The paper is organized as follows. In Section 2, we begin by introducing certain function
spaces which are used in the next sections, and we reduce the posed problem to one with
homogeneous integral conditions. In Section 3, we first establish the existence of the
solution by the Laplace transform. In Section 4, we establish a priori estimates, which
give the uniqueness and continuous dependence.

2. Preliminaries and Notations

Definition 2.1. Denote by L2(0, T ;H) the set of all measurable abstract functions u (., t)
from (0, T ) into H equiped with the norm

∥u∥L2(0,T ;H) =

(∫ T

0
∥u (., t)∥2H dt

)1/2

<∞. (6)

Definition 2.2. We denote by C0 (0, 1) the vector space of continuous functions with
compact support in (0, 1). Since such functions are Lebesgue integrable with respect to dx,
we can define on C0(0, 1) the bilinear form given by

((u,w)) =

∫ 1

0
ℑm
x u · ℑm

x wdx, m ≥ 1, (7)

where

ℑm
x u =

∫ x

0

(x− ξ)m−1

(m− 1)!
u (ξ, t) dξ, for m ≥ 1. (8)

The bilinear form (2.2) is considered as a scalar product on C0 (0, 1) for which C0 (0, 1) is
not complete.

Definition 2.3. Denote by Bm
2 (0, 1) , the completion of C0 (0, 1) for the scalar product

(2.2), which is denoted (., .)Bm
2 (0,1) , introduced in [5]. By the norm of function u from

Bm
2 (0, 1) , m ∈ N∗, we understand the nonnegative number :

∥u∥
Bm
2 (0,1)

=

(∫ 1

0
(ℑm

x u)
2 dx

)1/2

= ∥ℑm
x u∥ , for m ≥ 1. (9)

Lemma 2.1. For all m ∈ N∗, the following inequality holds:

∥u∥2Bm
2 (0,1) ≤

1

2
∥u∥2

Bm−1
2 (0,1)

. (10)

Proof. See [5]. �
Corollary 2.1. For all m ∈ N∗, we have the elementary inequality

∥u∥2Bm
2 (0,1) ≤

(
1

2

)m

∥u∥2L2(0,1) . (11)



A. MERAD, A. BOUZIANI: SOLVABILITY THE TELEGRAPH EQUATION 247

Definition 2.4. We denote by L2(0, T ;Bm
2 (0, 1)) the space of functions which are square

integrable in the Bochner sense, with the scalar product

(u,w)L2(0,T ;Bm
2 (0,1)) =

∫ T

0
(u (., t) , w (., t))Bm

2 (0,1) dt. (12)

Since the space Bm
2 (0, 1) is a Hilbert space, it can be shown that L2(0, T ;Bm

2 (0, 1)) is a
Hilbert space as well. The set of all continuous abstract functions in [0, T ] equipped with
the norm

sup
0≤t≤T

∥u (., t)∥Bm
2 (0,1)

is denoted C(0, T ;Bm
2 (0, 1)).

Corollary 2.2. For every u ∈ L2 (0, 1) , from which we deduce the continuity of the
imbedding L2 (0, 1) −→ Bm

2 (0, 1), for m ≥ 1.

3. Existence of the Solution

In this section we shall apply the Laplace transform technique to find solutions of partial
differential equations, we have the Laplace transform

U (x, s) =

∫ ∞

0
u (x, t) exp (−st) dt, (13)

where s is positive reel parameter. Taking the Laplace transforms on both sides of (1.1) ,
we have

−c2 d
2

dx2
[U (x, s)] +

(
s2 + as+ b

)
U (x, s) = F (x, s) + (s+ a)φ (x) + ψ (x) , (14)

where

F (x, s) =

∫ ∞

0
f (x, t) exp (−st) dt.

Similarly, we have ∫ 1

0
U (x, s) dx = 0, (15)∫ 1

0
xU (x, s) dx = 0, (16)

Thus, considered equation is reduced in boundary value problem governed by second order
inhomogeneous ordinary differential equation. We obtain a general solution of (3.2) as

U (x, s) = − c√
s2 + as+ b

∫ x

0
[F (τ, s) + (s+ a)φ (τ) + ψ (τ) ]×

sinh

(√
s2 + as+ b

c
[x− τ ]

)
dτ

+C1 (s) exp

(
−
√
s2 + as+ b

c
x

)
+ C2 (s) exp

(√
s2 + as+ b

c
x

)
, (17)
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where C1and C2 are arbitrary functions of s. Substitution of (3.5) into (3.3) − (3.4) , we
have

C1 (s)

∫ 1

0
exp

(
−
√
s2 + as+ b

c
x

)
dx+ C2 (s)×

∫ 1

0
exp

(√
s2 + as+ b

c
x

)
dx =

c√
s2 + as+ b

×

∫ 1

0

[
F (τ, s) + (s+ a)φ (τ) + ψ (τ)

∫ 1

τ
sinh

(√
s2 + as+ b

c
[x− τ ]

)
dx

]
dτ, (18)

C1 (s)

∫ 1

0
x exp

(
−
√
s2 + as+ b

c
x

)
dx+ C2 (s)×

∫ 1

0
x exp

(√
s2 + as+ b

c
x

)
dx =

c√
s2 + as+ b

×

∫ 1

0

[
F (τ, s) + (s+ a)φ (τ) + ψ (τ)

∫ 1

τ
x sinh

(√
s2 + as+ b

c
[x− τ ]

)
dx

]
dτ,(19)

where (
C1 (s)
C2 (s)

)
=

(
a11 (s) a12 (s)
a21 (s) a22 (s)

)−1

×
(
b1 (s)
b2 (s)

)
, (20)

and

a11 (s) =

∫ 1

0
exp

(
−
√
s2 + as+ b

c
x

)
dx,

a12 (s) =

∫ 1

0

(√
s2 + as+ b

c
x

)
dx,

a21 (s) =

∫ 1

0
x

(
−
√
s2 + as+ b

c
x

)
dx,

a22 (s) =

∫ 1

0
x

(√
s2 + as+ b

c
x

)
dx,

b1 (s) =
c√

s2 + as+ b

∫ 1

0

[
F (τ, s) + (s+ a)φ (τ) + ψ (τ)×∫ 1

τ sinh
(√

s2+as+b
c [x− τ ]

)
dx

]
dτ,

b2 (s) =
c√

s2 + as+ b

∫ 1

0

[
F (τ, s) + (s+ a)φ (τ) + ψ (τ)×∫ 1

τ x sinh
(√

s2+as+b
c [x− τ ]

)
dx

]
dτ, (21)

It is possible to evaluate the integrals in (3.5) and (3.7) exactly. In general, one may
have to resort to numerical integration in order to compute them, however. For example,
the Gauss’s formula (25.4.30) given in Abramowitz and stegun [1] may be employed to
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calculate these integrals numerically, we have∫ 1

0
exp

(
±
√
s2 + as+ b

c
x

)
dx

≃ 1

2

N∑
i=1

wi exp

(
±
√
s2 + as+ b

2c
[xi + 1]

)
,

∫ 1

0
x exp

(
±
√
s2 + as+ b

c
x

)
dx

≃ 1

2

N∑
i=1

wi

(
1

2
[xi + 1]

)
exp

(
±
√
s2 + as+ b

2c
[xi + 1]

)
,

∫ x

0
[F (τ, s) + (s+ a)φ (τ) + ψ (τ) ] sinh

(√
s2 + as+ b

c
[x− τ ]

)
dτ

≃ x

2

N∑
i=1

wi

[
F
(x
2
[xi + 1] ; s

)
+ (s+ a)φ

(x
2
[xi + 1]

)
+ ψ

(x
2
[xi + 1]

)]
×

× sinh

(√
s2 + as+ b

c

[
x− x

2
[xi + 1]

])
,

∫ 1

0

[
F (τ, s) + (s+ a)φ (τ) + ψ (τ)

∫ 1

τ
sinh

(√
s2 + as+ b

c
[x− τ ]

)
dx

]
dτ

≃ 1

4

N∑
i=1

wi

[
F

(
1

2
[xi + 1] ; s

)
+ (s+ a)φ

(
1

2
[xi + 1]

)
+ ψ

(
1

2
[xi + 1]

)](
1− 1

2
[xi + 1]

)
×

×
N∑
i=1

wj sinh

(√
s2 + as+ b

c

[
1

2

[(
1− 1

2
[xi + 1]

)
xj +

(
1 +

1

2
[xi + 1]

)]
− 1

2
(xi + 1)

])
,

∫ 1

0

[
F (τ, s) + (s+ a)φ (τ) + ψ (τ)

∫ 1

τ
x sinh

(√
s2 + as+ b

c
[x− τ ]

)
dx

]
dτ

≃ 1

4

N∑
i=1

wi

[
F

(
1

2
[xi + 1] ; s

)
+ (s+ a)φ

(
1

2
[xi + 1]

)
+ ψ

(
1

2
[xi + 1]

)]
×

(
1− 1

2
[xi + 1]

)(
1

2

[(
1− 1

2
[xi + 1]

)
xj +

(
1 +

1

2
[xi + 1]

)]) N∑
i=1

wj×

sinh

(√
s2 + as+ b

c

[
1

2

[(
1− 1

2
[xi + 1]

)
xj +

(
1 +

1

2
[xi + 1]

)]
− 1

2
(xi + 1)

])
(22)

where xi and wi are the abscissa and weights, defined as

xi : i
th zero of Pn (x) , ωi = 2/

(
1− x2i

) [
P

′
n (x)

]2
.

Their tabulated values can be found in [1] for different values of N.
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3.1. Numerical inversion of Laplace transform. Sometimes, an analytical inversion
of a Laplace domain solution is difficult to obtain; therefore a numerical inversion method
must be used. A nice comparison of four frequently used numerical Laplace inversion
algorithms is given by Hassan Hassanzadeh, Mehran Pooladi-Darvish [16]. In this work we
use the Stehfest’s algorithm [25] that is easy to implement. This numerical technique was
first introduced by Graver [14] and its algorithm then offered by [25].Stehfest’s algorithm
approximates the time domain solution as

u (x, t) ≈ ln 2

t

2m∑
n=1

βnU

(
x;
n ln 2

t

)
, (23)

where, m is the positive integer,

βn = (−1)n+m
min(n,m)∑
k=[n+1

2 ]

km (2k)!

(m− k)!k! (k − 1)! (n− k)! (2k − n)!
, (24)

and [q] denotes the integer part of the real number q.The parameter m is a free parameter
that should be optimized by trial and error. It was seen that with increasingm accuracy of
result increases up to a point and then owing to the rounding errors it decreases [25]. Thus,
for choosing optimum m, it is beneficial to apply an algorithm repeatedly for different
values of m and study its effect on the solution. The other way to choose optimal value of
m could be, to apply the Stehfest’s algorithm for inverting the Laplace transform of some
elementry functions which are known.

Remark 3.1. 1) Stehfest’s method gives accurate results for many problems including
diffusion problem, fractional functions in the Laplace domain. However, it fails to predict
et type functions or those with oscillatory behavior such as sine and wave functions (see
[16]). 2) Note that more than one numerical inversion algorithm can also be performed to
check the accuracy of the result.

4. Uniqueness and Continuous dependence of the Solution

We first establish an a priori estimate, the uniqueness and continuous dependence of
the solution with respect to the data are immediate consequences.

Theorem 4.1. If u (x, t) is a solution of problem (1.1)− (1.5) and f ∈ C
(
D
)
, then we

have

∥u (., τ)∥2L2(0,1)

≤ c1

(∫ τ

0
∥f (., t)∥2B1

2(0,1)
dt+ ∥φ∥2L2(0,1) + ∥ψ∥2B1

2(0,1)

)
, (25)

∥∥∥∥∂u (., t)∂t

∥∥∥∥2
B1

2(0,1)

≤ c2

(∫ τ

0
∥f (., t)∥2B1

2(0,1)
dt+ ∥φ∥2L2(0,1) + ∥ψ∥2B1

2(0,1)

)
, (26)

where

c1 =
1

(b+ 2c2)
max

(
1,

1

2a
,

(
b+ 2c2

)
2

)
, c2 = max

(
1,

1

2a
,

(
b+ 2c2

)
2

)
and 0 ≤ τ ≤ T.
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Proof. Taking the scalar product in B1
2 (0, 1) of both sides of equation (1.1) with ∂u

∂t , and
integrating over (0, τ), we have∫ τ

0

(
∂2u (., t)

∂t2
,
∂u (., t)

∂t

)
B1

2(0,1)

dt− c2
∫ τ

0

(
∂2u (., t)

∂x2
,
∂u (., t)

∂t

)
B1

2(0,1)

dt+

a

∫ τ

0

(
∂u (., t)

∂t
,
∂u (., t)

∂t

)
B1

2(0,1)

+ b

∫ τ

0

(
u (., t) ,

∂u (., t)

∂t

)
B1

2(0,1)

=

∫ τ

0

(
f (., t) ,

∂u (., t)

∂t

)
B1

2(0,1)

dt. (27)

Integrating by parts on the left-hand side of (4.3) , we obtain

1

2

∥∥∥∥∂u (., τ)∂t

∥∥∥∥2
B1

2(0,1)

+

(
b

2
+ c2

)
∥u (., τ)∥2B1

2(0,1)
+ a

∫ τ

0

∥∥∥∥∂u (., t)∂t

∥∥∥∥2
B1

2(0,1)

dt ≤∫ τ

0

(
f (., t) ,

∂u (., t)

∂t

)
B1

2(0,1)

dt+
1

2
∥ψ∥2B1

2(0,1)
+

(
b+ 2c2

4

)
∥φ∥2L2(0,1) (28)

By the ε−Cauchy inequality, the first term in the right-hand side of (4.4) is bounded by

ε

2

∫ τ

0
∥f (., t)∥2B1

2(0,1)
dt+

1

2ε

∫ τ

0

∥∥∥∥∂u (., t)∂t

∥∥∥∥2
B1

2(0,1)

dt. (29)

We choose ε = 1
2a so that the second term will be simplified by the third term in the

left-hand sid. Thus we have∥∥∥∥∂u (., τ)∂t

∥∥∥∥2
B1

2(0,1)

+
(
b+ 2c2

)
∥u (., τ)∥2L2(0,1)

≤ 1

2a

∫ τ

0
∥f (., t)∥2B1

2(0,1)
dt+ ∥ψ∥2B1

2(0,1)
+

(
b+ 2c2

2

)
∥φ∥2L2(0,1) . (30)

From (4.6) , we obtain estimates (4.1) and (4.2) . �
Corollary 4.1. If problem (1.1) − (1.5) has a solution, then this solution is unique and
depends continuously on (f, φ, ψ).

5. Conclusion

In this work we study a Telegraph equation with purely integral conditions. The exis-
tence and uniqueness of the solution are proved. The proof is based on a priori estimates
and Laplace transform method. Sometimes an analytical inversion of a Laplace domain
solution is difficult to obtain; therefore a numerical inversion method must be used. We
use the Stehfest’s algorithm that is easy to implement to obtain approximate solution.
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