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AN ALGORITHM FOR SOLVING FUZZY RELATION

PROGRAMMING WITH THE MAX-T COMPOSITION OPERATOR

ALI ABBASI MOLAI1, §

Abstract. This paper studies the problem of minimizing a linear objective function
subject to max-T fuzzy relation equation constraints where T is a special class of pseudo-
t-norms. Some sufficient conditions are presented for determination of its optimal so-
lutions. Some procedures are also suggested to simplify the original problem. Some
sufficient conditions are given for uniqueness of its optimal solution. Finally, an algo-
rithm is proposed to find its optimal solution.
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1. Introduction

Fuzzy Relation Equations (FRE) and the problems related to them have been stud-
ied by many researchers since the resolution of fuzzy relation equations was proposed by
Sanchez [12] in 1976 (see for instance, Refs. [1–5, 7–11, 15–18]). Their applications can
be seen in many areas, for instance, fuzzy control, fuzzy decision making, fuzzy symptom
diagnosis and especially fuzzy medical diagnosis [2, 8, 10,11,18]. An interested reader can
find a comprehensive survey of done works about FRE and its applications in Ref. [18].
The problem of minimizing a linear objective function subject to fuzzy relation equations
constraints with the max-min and the max-product composition has been widely investi-
gated in the literature. Fang and Li [3] showed the problem with max-min composition
can be converted into a 0-1 integer programming problem. This 0-1 integer programming
problem is solved by the branch-and-bound method with jump-tracking technique. Wu
et al. [15] enhanced Fang and Li’s method by providing an efficient procedure that visits
much fewer nodes in the solution tree than that of Fang and Li’s procedure. Wu and
Guu [16] proposed a necessary condition for an optimal solution to exist. Three rules
for simplifying the work of computing an optimal solution are provided based on this
necessary condition. Furthermore, the problem with the max-product composition was
investigated by Loetamonphong and Fang [9] and they applied a similar method to Fang
and Li’s idea. Their method for solving the model was improved by Guu and Wu [4] by
shrinking the region of search. Guu and Wu [4] identified a necessary condition for an op-
timal solution in terms of the maximum solution derived from fuzzy relational equations.
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This necessary condition provides that each component of an optimal solution is either
0 or the corresponding component in the vector of the maximum solution. Furthermore,
this necessary condition was also extended for the problem with max-strict t-norm com-
position [17]. Guu and Wu [5] generalized the necessary condition mentioned in [4, 17]
with max-T composition where T is a continuous Archimedean t-norm. In this paper, the
condition is generalized to a more general class with respect to the max-strict t-norm and
different to max-continuous Archimedean t-norm, i.e. max-T composition where T is a
special class of pseudo-t-norms. Moreover, some sufficient conditions are presented for de-
termination of the optimal solutions of the problem or some of their components. Under
these conditions, optimal solutions of the problem or some of their components can be
obtained easily. Some procedures are also proposed to simplify the original problem based
on the conditions. Since computing of the maximum solution is easy, the conditions are
very important to reduce the computation related to finding the optimal solutions. Some
sufficient conditions are also given for uniqueness of the optimal solution of the problem.
Finally, an algorithm is designed based on the conditions and the procedures. This pa-
per is organized as follows. Section 2 contains some preliminary definitions. Also, the
problem of fuzzy relation programming is briefly introduced and some required results are
reviewed. In Section 3, some sufficient conditions are provided to determine the optimal
solutions of the problem or some of their components. Some procedures are also given to
reduce the original problem. In Section 4, an algorithm is proposed to solve the problem.
Two numerical examples are presented to illustrate the procedures and the algorithm.
Conclusions are expressed in Section 5.

2. Preliminaries and formulation of the fuzzy relation programming

We first express some assumptions. Throughout this paper, L denotes the real unit
interval [0,1] and J always stands for any nonempty set of subscripts and n = {1, ..., n},
for ∀n ∈ N . Also, notation A ⊂ B , for two sets A and B, is equivalent to A ⊆ B and
A ̸= B. We now remind the definitions and results that they are needed in the next
sections.

Definition 2.1. [13] (A) A binary operation T on L is called a pseudo-t-norm if it
satisfies the following conditions: (T1) T (1, a) = a and T (0, a) = 0 for all a ∈ L, and
(T2) a, b, c ∈ L and b ≤ c ⇒ T (a, b) ≤ T (a, c).
(B) [13] A pseudo-t-norm T on L is said to be infinitely ∨-distributive if it satisfies the
following condition: (T∨) a, bj ∈ L(j ∈ J) ⇒ T (a,∨j∈Jbj) = ∨j∈JT (a, bj).
(C) [14] A pseudo-t-norm T on L is said to be infinitely ∧-distributive if it satisfies the
following condition: (T∧) a, bj ∈ L(j ∈ J) ⇒ T (a,∧j∈Jbj) = ∧j∈JT (a, bj).
(D) [14]A pseudo-t-norm T on L is said to be infinitely distributive if it is both infinitely
∨-distributive and infinitely ∧-distributive.
(E) [7] Let T be an infinitely ∨-distributive pseudo-t-norm on L. Define
I(T ), S(T ) ∈ LL×L as: I(T )(a, b) := ∨{u ∈ L | T (a, u) ≤ b}, and
S(T )(a, b) := ∧{u ∈ L | T (a, u) ≥ b}, where a, b ∈ L. It is tacitly assumed that
∨∅ = 0 and ∧∅ = 1.
(F) [6] A pseudo-t-norm T on L is said to be strong if it satisfies the condition: (T3)
T (a, 0) = 0 for all a ∈ L.

Theorem 2.1. [7] If T is an infinitely ∨-distributive pseudo-t-norm on L, then two
conditions (1) T (a, c) ≤ b ⇐⇒ c ≤ I(T )(a, b) for all a, b, c ∈ L and (2) T (a, 0) = 0 for all
a ∈ L are equivalent each other.
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We are now ready to formulate the fuzzy relation programming as follows:

Min Z(x) =
m∑
i=1

ci.xi, (2.1)

s.t. x ∈ X(A, b) := {x ∈ [0, 1]m | A • x = b}. (2.2)

Where cj ∈ R is the coefficient associated with the variable xj ; A = [aij ] is m × n fuzzy
relation matrix with 0 ≤ aij ≤ 1; and the operation ”•” represents the Max-T composition
operator. The operator of T is an infinitely ∨-distributive strong pseudo-t-norm (see
Ref. [7]). Furthermore, T satisfies the following condition:

∀a, b, c ∈ (0, 1], b < c =⇒ T (a, b) < T (a, c). (2.3)

To characterize X(A, b), we define X = {x ∈ Rn | 0 ≤ xj ≤ 1, ∀j ∈ n}. For x1, x2 ∈ X,
we say x1 ≤ x2 if and only if x1j ≤ x2j , ∀j ∈ n. In this way, ”≤” forms a partial order

relation on X and (X,≤) becomes a lattice. Moreover, we call x̂ ∈ X(A, b) a maximum
solution if x ≤ x̂, ∀x ∈ X(A, b). Similarly, x̃ ∈ X(A, b) is called a minimal solution if x ≤ x̃
implies x = x̃, ∀x ∈ X(A, b). According to [7], when X(A, b) ̸= ∅, it can be completely
determined by one maximum solution and a finite number of minimal solutions. The
maximum solution can be obtained by assigning [7]:

x̂j = ∧i∈mI(T )(aij , bi), ∀j ∈ n, (2.4)

Moreover, if we denote the set of all minimal solutions by X̌(A, b), then

X(A, b) =
∪

x̃∈X̌(A,b)

{x ∈ X | x̃ ≤ x ≤ x̂}. (2.5)

Definition 2.2. (A) For a feasible solution x ∈ X(A, b) ̸= ∅ in system (2.2), we call
xj0 a binding variable if T (aij0 , xj0) = bi , for some i ∈ m . (B) Let vector
x̂ = [x̂1, x̂2, ..., x̂n]

T be the maximum solution of X(A, b) . Then define
Ji = {j ∈ n | T (aij , x̂j) = bi}, for all

i ∈ m, Ij = {i ∈ m | T (aij , x̂j) = bi , for all j ∈ n, and Ĵ =
∏m

i=1 Ji.

Remark 2.1. [1] If xj is a binding variable, then T (ai0j , xj) = bi0, for some i0 ∈ m, by
Definition (2.2)(A). If ai0j = 0, then bi0 should be equal to zero. It is obvious that in this
case we can arbitrarily select a value for xj from [0, 1]. Hence, this obvious case is taken
out of our considerations.

Lemma 2.1. [1] (A) If x ∈ X(A, b), then for each i ∈ m there exists j0 ∈ n such that
T (aij0 , xj0) = bi and T (aij , xj) ≤ bi, ∀j ∈ n.

(B) If Ĵ ̸= ∅, then Ji ̸= ∅, for all i ∈ m.

In order to study X(A, b) in terms of the elements in Ĵ , given f ∈ Ĵ , we provide the
following definition:

Definition 2.3. [1] (1) Let f = (f(1), ..., f(m)) ∈ Ĵ such that for each

i ∈ m, f(i) ∈ Ji. Then we define vector x(f) = [x
(f)
1 , ..., x

(f)
n ]T as follows:

x
(f)
j =

∨
i∈I(f)j

S(T )(aij , bi) I
(f)
j ̸= ∅,

0 I
(f)
j = ∅,

(2.6)
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where I
(f)
j = {i ∈ m | f(i) = j}.

(2) Define set F as: F = {x(f) | f ∈ Ĵ}.

We now study the relation between X(A, b) and F in the following theorem.

Theorem 2.2. [7] (A) The set of solutions X(A, b) and the finite set F contain the
same minimal elements, i.e., X̌(A, b) = F0 , where F0 denotes the set of all the minimal
solutions of F . (B) X(A, b) =

∪
x̃∈F0

[x̃, x̂].

Now, we are ready to explain the process of solving problem (2.1)-(2.2), briefly. Similar
to [3], to solve the problem (2.1)-(2.2), the problem is decomposed to two sub-problems
as follows.

Min Z1(x) =

m∑
i=1

c1i .xi, (2.7)

s.t. x ∈ X(A, b), (2.8)

and

Min Z2(x) =

m∑
i=1

c2i .xi, (2.9)

s.t. x ∈ X(A, b), (2.10)

where c1i =

{
ci ci < 0,

0 ci ≥ 0,
and c2i =

{
0 ci < 0,

ci ci ≥ 0,
∀i ∈ m.

Obviously, ci = c1i + c2i , ∀i ∈ m. Similar to [3], we can easily show that the maximum
solution x̂ is an optimal solution for problem (2.7)-(2.8) and one of minimal solutions
X(A, b), say x̃∗, is an optimal solution for problem (2.9)-(2.10). The vector
x∗ = (x∗i )i∈I is now defined as follows.

x∗i =

{
x̂i if ci < 0,

x̃∗i if ci ≥ 0,
∀i ∈ m. (2.11)

Similar to [3], we can also show that x∗ is an optimal solution of problem (2.1)-(2.2).

3. Some sufficient conditions and simplification of the problem (2.9)-(2.10)

In this section, some sufficient conditions are presented to determine the optimal so-
lutions or some of their components. To do this, we briefly express the following lemma
from [1]. The lemma shows the relation between the minimal solutions of X(A, b) and its
maximum solution.

Lemma 3.1. [1] Suppose that T be an infinitely ∨-distributive strong pseudo-t-norm on
L, and T satisfies condition (2.3) and x̂ is the maximum solution. (A) For any feasible
solution x of X(A, b) with max-T composition, if xj is a binding variable, then xj = x̂j.
(B) Let x̃ is a minimal solution of X(A, b) with max-T composition, then x̃j = 0 or
x̃j = x̂j, for each j ∈ n.

A direct result of Lemma (3.1) and the process of solving problem (2.1)-(2.2) in Section
(2) are as follows.

Corollary 3.1. Under the conditions of Lemma (3.1), let x∗ is an optimal solution of
problem (2.9)-(2.10) with max-T composition, then x∗j = 0 or x∗j = x̂j, for each j ∈ n.
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Proof. If x∗j is not a binding variable, we can assign 0 to x∗j . With attention to the objective

of problem (2.9)-(2.10), the zero value is assigned to x∗j . If x∗j is a binding variable, then

x∗j = x̂j , by Lemma (3.1)(A). �
Corollary (3.1) reveals that the indices of an optimal solution x∗ with x∗j = x̂j are

contained in the index set of
∪

i∈m Ji. Moreover, one can simply set

x∗j = 0, for each j ̸∈
∪

i∈m Ji.
Now, we can present lemmas to reduce the search domain of the optimal solutions of
problem (2.9)-(2.10). The intuition behind those lemmas is to fix the components of
optimal solutions as many as possible by assigning 0 or x̂j to them, as stated in Corollary
(3.1).
We now present some sufficient conditions to determine the optimal solutions of problem
(2.9)-(2.10). Under the conditions, some the optimal solutions of problem (2.9)-(2.10)
or some their components can be determined directly. In the following lemmas, assume
X(A, b) ̸= ∅ .

Lemma 3.2. If, for some i0 ∈ m, Ji0 = {j0}, then for each optimal solution x∗ of problem
(2.9)-(2.10), we have: x∗j0 = x̂j0.

Proof. For ∀x∗ ∈ X(A, b), and for i0 ∈ m, bi0 = ∨j∈nT (ai0j , x
∗
j ). Since Ji0 = {j0},

therefore, bi0 = T (ai0j0 , x
∗
j0
). From Lemma (3.1)(A), we can conclude that x∗j0 = x̂j0 . �

Under the conditions of Lemma (3.2), by setting x∗j0 = x̂j0 , for each optimal solution x∗,
we can remove row i0 and column j0 from matrix A and components j0 and i0 of vectors
x and b, respectively.

Lemma 3.3. If there exits t ∈ n such that
∪n

j=1,j ̸=t Ij ⊂ It, then problem (2.9)-(2.10) has

only one optimal solution as x∗ = [x∗1, ..., x
∗
n]

T , where x∗j =

{
x̂j j = t,

0 j ̸= t,
∀j ∈ n.

Proof. Since X(A, b) ̸= ∅, it is concluded that It = m. Otherwise, ∃i0 ∈ m such that
Ji0 = ∅. Hence, X(A, b) = ∅, which is a contradiction. Due to Ij ⊂ It, for each j ∈ n−{t},
variable x∗t (:= x̂t) is binding in the constraints in which variable x∗j , for each j ∈ n− {t},
is binding as well. Regarding Corollary (3.1), we simply set x∗j = 0 to be optimal vector

x∗, for each j ∈ n − {t}. Note that with x∗j = 0, for each j ∈ n − {t}, the feasibility of

problem (2.9)-(2.10) can be maintained. Also, since Ij ⊂ It, ∀j ∈ n − {t}, we conclude
∃i0 ∈ It such that ∀j ∈ n − {t}, i0 ̸∈ Ij , i.e., Ji0 = {t}. From Lemma (3.2), we conclude
that ∀x∗ ∈ X(A, b), x∗t = x̂t. From the obtained results and

∪n
j=1,j ̸=t Ij ⊂ It, x

∗ is the

only optimal solution of problem (2.9)-(2.10). �
Lemma 3.4. If ∃t1, ..., tr ∈ n such that

∪n
j=1,j ̸∈{t1,...,tr} Ij ⊂ It1 , ..., Itr and Itk = m, for

∀k ∈ r, then the optimal solutions of problem (2.9)-(2.10) are as x∗ such that

c2
T
x∗ = mink∈{1,...,r}{c2

T
x(k)}, where x(k) = [x

(k)
1 , ..., x

(k)
n ]T and x

(k)
j =

{
x̂j j = tk,

0 j ̸= tk,
∀j ∈

n.

Proof. We first show that for each k ∈ r, the vector x̃(k) is a minimal solution of set
X(A, b). Then it is shown that x̃(k), for each k ∈ r, are only minimal solutions of X(A, b).
Assume that k ∈ r be arbitrary. Due to Ij ⊂ Itk , for each j ∈ n − {tp|p ∈ r}, and

Itk = m, variable x̃
(k)
tk

(:= x̂tk) is binding in the constraints in which variable x̃
(k)
j , for each

j ∈ n − {tk}, is binding as well. Regarding Corollary (3.1), we simply set x̃
(k)
j = 0 to be
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minimal vector x̃(k), for each j ∈ n− {k}. Note that with x̃
(k)
j = 0, for each j ∈ n− {k},

the feasibility of problem (2.9)-(2.10) can be maintained. Hence, vector x̃(k) is a minimal
solution of X(A, b). Since

∪n
j=1,j ̸∈{t1,...,tr} Ij ⊂ It1 , ..., Itr , then X(A, b) has only r minimal

solutions. We can select the optimal vector(s) x∗ such that c2
T
x∗ = mink∈{1,...,r}{c2

T
x(k)}.

Therefore, x∗ is the optimal solution(s) of problem (2.9)-(2.10). �

Lemma 3.5. If ∃t ∈ n such that ∀s ∈ n− {t}, It ⊂ Is, then for each optimal solution x∗

of problem (2.9)-(2.10), we have x∗t = 0.

Proof. Assume x∗t and x∗s, for ∀s ∈ n− {t}, be the associated optimal variables of It and
Is, for ∀s ∈ n−{t}, respectively. Due to It ⊂ Is, for ∀s ∈ n−{t}, variables x∗s are binding
in the constraints in which variable x∗t is binding as well. Therefore, for each optimal
solution x∗ of problem (2.9)-(2.10), we conclude that x∗t = 0. �

Under the conditions of Lemma (3.5), by setting x∗t = 0, for each optimal solution x∗ of
problem (2.9)-(2.10), we can remove column t of matrix A and component t of vector x.

Lemma 3.6. If ∃t ∈ n such that It ̸= ∅ and ∀s ∈ n − {t}, It
∩

Is = ∅, then for each
optimal solution x∗ of problem (2.9)-(2.10), we have x∗t = x̂t.

Proof. Since It
∩

Is = ∅, for ∀s ∈ n − {t}, and It ̸= ∅, we have Ji = {t}, for each i ∈ It.
Hence, from Lemma (3.2), we conclude that for each optimal solution x∗ of problem (2.9)-
(2.10), we have x∗t = x̂t. �

Under the conditions of Lemma (3.6), by setting x∗t = x̂t, we can remove rows i ∈ It
and column t from matrix A and components t and i ∈ It from two vectors x and b,
respectively.

Lemma 3.7. If problem (2.9)-(2.10) satisfies two conditions: (1) For each t ∈ n, It ̸= ∅
and (2) For each t, s ∈ n such that t ̸= s and It

∩
Is = ∅, then the problem (2.9)-(2.10)

will have only one optimal solution x∗ such that x∗ = x̂.

Proof. For ∀t ∈ n, It ̸= ∅, and ∀s ∈ n − {t}, It
∩

Is = ∅, then regarding Lemma (3.6),
for each optimal solution x∗ of problem (2.9)-(2.10), we have x∗t = x̂t. Since the current
relation is true for each t ∈ n, we conclude that x∗ = x̂. Therefore, problem (2.9)-(2.10)
has only one optimal solution. �

The following corollary is a direct result of Lemma (3.7).

Corollary 3.2. Under the conditions of Lemma (3.7), the feasible domain of problem
(2.1)-(2.2) has only one feasible solution.

Lemma 3.8. If ∃t ∈ n such that It = ∅, then for each optimal solution x∗ of problem
(2.9)-(2.10), we have x∗t = 0.

Proof. Since It = ∅, we conclude that I
(f)
t = ∅ and ∀x(f) ∈ F , x

(f)
t = 0. With regard to

Theorem (2.2)(A), for each optimal solution x∗ of problem (2.9)-(2.10), we have x∗t = 0. �

Under the conditions of Lemma (3.8), by setting x∗t = 0, we can remove column t from
matrix A and component t of vector x.

4. An algorithm for solving problem (2.9)-(2.10)

We brief the obtained results in the previous section as an algorithm.
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Algorithm 4.1. Problem (2.9)-(2.10) has been given.
Create the maximum solution x̂ of X(A, b). If A • x̂ = b, then X(A, b) ̸= ∅. Go to Step 1.
Otherwise, stop. The problem is infeasible.
Step 1. Create sets Ji, for ∀i ∈ m, and Ij, for ∀j ∈ n.
Step 2. If ∃t ∈ n such that

∪n
j=1,j ̸=t Ij ⊂ It, then problem (2.9)-(2.10) has only one optimal

solution as x∗ = [x∗1, ..., x
∗
n]

T , where x∗j =

{
x̂j j = t,

0 j ̸= t,
∀j ∈ n. Stop.

Step 3. If ∃t1, ..., tr ∈ n such that
∪n

j=1,j ̸∈{t1,...,tr} Ij ⊂ It1 , ..., Itr and Itk = m, for ∀k ∈ r,

then optimal solutions of problem (2.9)-(2.10) are as x∗ such that

c2
T
x∗ = mink∈{1,...,r}{c2

T
x̃(k)}, where x̃(k) = [x̃

(k)
1 , ..., x̃

(k)
n ]T and

x̃
(k)
j =

{
x̂j j = tk,

0 j ̸= tk,
∀j ∈ n. Stop.

Step 4. If problem (2.9)-(2.10) satisfies two conditions: (1) For each t ∈ n, It ̸= ∅ and (2)
For each t, s ∈ n, such that t ̸= s and It

∩
Is = ∅, then problem (2.9)-(2.10) has only one

optimal solution x∗ with x∗ = x̂. Stop.
Note: In Steps 5, 6, and 7, if matrixes A or b became empty, then assign zero to the
remained variables. Stop.
Step 5. If ∃i ∈ m such that |Ji| = 1, where Ji = {j}, then let x∗j = x̂j. Remove rows i
and column j from matrix A and components j0 and i0 of vectors x and b, respectively.
Update Ji, Ij, A, x and b. Remove Ji and Ij which are empty.
Step 6. If ∃t ∈ n such that ∀s ∈ n − {t}, It ⊂ Is, then for each optimal solution x∗ of
problem (2.9)-(2.10), x∗t = 0. Remove column t of matrix A and component t of vector x.
Update Ji, Ij, A, x and b. Remove Ji and Ij which are empty.
Step 7. If ∃t ∈ n such that It ̸= ∅ and ∀s ∈ n − {t}, It

∩
Is = ∅, then for each optimal

solution x∗ of problem (2.9)-(2.10), x∗t = x̂t. Remove rows i ∈ It and column t from matrix
A and components t and i ∈ It from two vectors x and b, respectively. Update Ji, Ij, A,
x and b. Remove Ji and Ij which are empty.
Step 8. If matrixes A and b be nonempty and the conditions Steps 1, 2, 3, and 4 aren’t
satisfied for the remained problem, then solve the problem by branch-and-bound method.
Produce the optimal solution. Stop.

Example 4.1. Consider the following problem.
min z = x1 + 2x2 + x3 + 3x4,

s.t.


4
10 1 2

3
8
10

2
10

3
10

8
15

4
10

8
10

45
100

8
10

26
100

4
10

6
10

4
10

2
10

 •


x1
x2
x3
x4

 =


25
100
2
10
3
10
15
100

,

xi ∈ [0, 1], i = 1, 2, 3, 4.
Where ”•” is the operator of max-product composition. The maximum solution of the

feasible domain of the problem is as: x̂ =
(

375
1000

25
100

375
1000

3125
10000

)T

. Since x̂ satisfies

the constraints of the problem, the problem is feasible.
Step 1. I1 = {3, 4}, I2 = {1, 4}, I3 = {1, 2, 3, 4}, and I4 = {1}. J1 = {2, 3, 4}, J2 = {3},

J3 = {1, 3}, and J4 = {1, 2, 3}.
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Step 2.
∪4

j=1,j ̸=3 Ij ⊂ I3. Therefore, the vector x∗ =
(
0 0 375

1000 0
)T

is the unique

optimal solution of the problem with the objective function value z∗ = 0.375. Stop.

Example 4.2. Consider the following problem.
min z = x1 + 2x2 + x3 + 3x4 + 1.5x5 + 4x6,

s.t.


0.5 0.4 0.35 0.97 0.97 0.42
0.92 0.88 0.34 1 1 0.44
0.71 0.19 0.6 0.47 0.63 0.22
0.54 0.25 0.35 0.54 0.78 0.342
0.87 0.82 0.51 0.95 0.95 0.41

 •


x1
x2
x3
x4
x5
x6

 =


0.3
0.31
0.35
0.25
0.29

,

xi ∈ [0, 1], i = 1, ..., 6.
Where ”•” is the operator of max-TY composition that TY is defined as follows:

TY (a, b) =

{
b

1
a , a.b > 0,

0, a.b = 0,
where a, b ∈ [0, 1].

The maximum solution of the feasible domain of the problem is as:

x̂ =
(
0.34 0.36 0.53 0.31 0.31 0.6

)T
.

Since x̂ satisfies the constraints of the problem, the problem is feasible.
Step 1. I1 = {2, 5}, I2 = {2, 5}, I3 = {3, 5}, I4 = {1, 2, 5}, I5 = {1, 2, 4, 5} and
I6 = {1, 2, 4, 5}. J1 = {3, 4, 5}, J2 = {1, 2, 4, 5, 6}, J3 = {3}, J4 = {5, 6} and
J5 = {1, 2, 3, 4, 5, 6}.
Step 2. The problem doesn’t satisfy the conditions of this step.
Step 3. The problem doesn’t satisfy the conditions of this step.
Step 4. The problem doesn’t satisfy the conditions of this step.
Step 5. Since J3 = {3}, let x∗3 = x̂3 = 0.53. Put J ′

1 = {4, 5}, J ′
5 = {1, 2, 4, 5, 6}, J ′

i = Ji,
for i = 2, 4, 6, and I ′j = Ij, for ∀j ̸= 3. Remove J3 and I3. Remove row 3 and column 3
of matrix A and component 3 of vectors x and b.
Step 6. The problem doesn’t satisfy the conditions of this step.
Step 7. The problem doesn’t satisfy the conditions of this step.
Step 8. The conditions of Step 2 are true for the reduced problem. Since
I ′1

∪
I ′2

∪
I ′4

∪
I ′5 ⊂ I ′6, according to step 2, the reduced problem has only one optimal solu-

tion as: x∗6 = x̂6 = 0.6 and x∗j = 0, for j ̸= 3, 6. Therefore, the unique optimal solution of
the original problem is as:

x∗ =
(
0 0 0.53 0 0 0.6

)T
,

with the objective function value: z∗ = 2.93. Stop.

5. Conclusions

In this paper, the problem of linear objective function optimization was considered.
Some sufficient conditions were proposed for determination of the optimal solutions of the
problem in terms of the maximum solution of its feasible domain. Under these conditions,
some optimal solutions of the problem were determined directly. Some procedures were
also proposed to simplify the original problem based on the conditions. Moreover, some
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sufficient conditions were presented for uniqueness of the optimal solution of the original
problem. Finally, an algorithm was suggested to find the optimal solution of the problem
based on the procedures and the conditions.
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