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MODIFIED DIFFERENTIAL TRANSFORM METHOD FOR SINGULAR

LANE-EMDEN EQUATIONS IN INTEGER AND FRACTIONAL

ORDER

H. R. MARASI1, N. SHARIFI1, H. PIRI1, §

Abstract. In the present work the modified differential transform method, incorporat-
ing the Adomian polynomials into the differential transform method(DTM), is used to
solve the nonlinear and singular Lane-Emden equations in integer and fractional order.
Numerical examples with different types are solved. The results show that this method
is very effective and simple.
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1. Introduction

In recent years, the study of singular initial value problems modelled by second order
nonlinear ordinary differential equations[1, 2] has attracted many mathematicians and
physicists. One of the important equations in this literature is the Lane-Emden type
equation of the form

∂2u

∂t2
+

2

t

∂u

∂t
+ f(u) = 0 (1)

with initial conditions
u(0) = a, u′(0) = b, (2)

where f is a given function of u and a,b are constants. Lane-Emden type equations, first
published by Janathan Homer Lane in 1870 [3] and further explored in detail by Emden[4].
Lane-Emden type equation was used the model the thermal behavior of a spherical cloud
of gas acting under the mutual attraction of its molecules and subject to the classical
lows of thermodynamics. So, a substantial amount of work has been done on this type of
problems. In astrophysics, the Lane-Emden equation is Poisson’s equation for the grav-
itational potential of a self-gravitating spherically symmetric polytropic fluid. Also, this
is a type of equations have many applications in the fields of radioactiviely colling and in
the mean-field treatment of a phase transition in critical adsorption or in the modelling of
clusters of galaxies.
In most differential equations with variable coefficients it is impossible to obtain an exact
solution, so one must resort to various approximation methods of solution, such as as-
ymptotic techniques[11, 12, 13], analytical[14, 15] and numerical methods[16]. Analytical
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techniques have been dominated by perturbation methods and have found many applica-
tions in science, engineering and technology. However, like other analytical techniques,
perturbation methods require the presence of a small parameter in the nonlinear equation.
Selection of small parameter requires a special skill and very important. Therefore, analyt-
ical methods which do not require a small parameter are welcome. Because of singularity
behavior at the origin and nonlinearity, the Lane-Emden equations may not be solved by
standard semi-analytical methods, such as the homotopy perturbation method[17], vari-
ational iteration method[7, 8] and Adomian decomposition method[6, 5]. The basic idea
of differential transform method was initially introduced by Zhou[18]. The DTM is an
alternative procedure for getting Taylor series solution of the equation. This method re-
duces the size of computations of taylor coefficients. The motivation for presenting this
work comes from the aim of introducing a reliable framework that combines the powerful
differential transform method and Adomian decomposition method.
Many physical problems can be described by mathematical models that involves fractional
differential equations. There are several mathematical definitions about the generalizing of
the notion of differential to fractional orders e.g. Riemann-Lioville, Grunuald-Letinikow,
Caputo and generalized functions approach.

Definition 1.1. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R, if there
exist a real number p ≥ µ such that f(t) = tpf1(t) where f1(t) ∈ C(0,∞) and it is said to

be in the space Cm
µ if f (m) ∈ Cµ,m ∈ N .

Definition 1.2. For a continuous function f : [0,∞) → R, the Caputo derivative of
fractional order α is defined by

cDαf(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds,

where n− 1 < α < n, n = [α] + 1 and [α] denotes the integer part of α.

Definition 1.3. The Riemann- Liouville fractional derivative of order α for a continuous
function f is defined by

Dαf(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

0

f(s)

(t− s)α−n−1
ds, n = [α] + 1,

where the right-hand side is pointwise defined on (0,∞).

Definition 1.4. Let [a, b] be an interval in R and α > 0. The Riemann-Liouville fractional
order integral of a function f ∈ L1([a, b], R) is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds,

whenever the integral exists.

2. The fractional differential transform method(FDTM)

In the FDTM the analytic function u(t) is expanded in terms of a fractional power series
in the form

u(t) =

∞∑
k=0

U(k)(t− t0)
k
θ ,

where θ is the order of the fraction to be selected and U(k) is the kth fractional differential
transform of u(t). Since the initial conditions are implemented by integer-order derivatives
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for practical applications, the transformation of the initial conditions is defined as follows

U(k) =


1

(kθ )!
[
∂

k
θ

∂t
k
θ

u(t)]t=t0 ,
k

θ
∈ Z+,

0,
k

θ
̸∈ Z+,

(3)

where k = 0, 1, · · · , (αθ − 1) and α is the order of the fractional diffential equation being
considered. Thus θ should be chosen such that αθ is a positive integer. Here we present
some basic properties of the FDTM. Let u(t), v(t) and w(t) be functions of time t and
U(k), V (k) and W (k) are their corresponding fractional differential transforms with order
of fraction θ. Then for constant c and p the followings hold,
i: If u(t) = v(t)± w(t), then U(k) = V (k)±W (k).
ii: If u(t) = cv(t), then U(k) = cV (k).

iii: If u(t) = Dα
t v(t), then U(k) =

Γ(α+1+ k
θ
)

Γ(1+ k
θ
)
V (k + αθ).

We consider the case of a nonlinear function f(u) that is approximated by the series

f(u) =
∞∑
n=0

An,

where the An are the Adomian polynomials determined by the definitional formula

An =
1

n!
[
dn

dλn
[f(

∞∑
i=0

λiui)]]λ=0, n = 0, 1, · · · .

For the nonlinear fractional differential equation of the form

Dαu = f(u),

where f(u) denotes a nonlinear function, we apply recurrence scheme of the form

Γ(α+ 1 + k
θ )

γ(1 + k
θ )

U(k + αθ) = Ãk,

where Ãk are obtained from the Adomian polynomials of f(u) by replacing each u(k) and

Dβuk by U(k) and
Γ(α+1+ k

θ
)

γ(1+ k
θ
)
U(k + αθ), respectively [20].

3. Numerical Applications

The Lane-Emden equation has been used to formulate several phenomena in mathe-
matical physics and astrophysics. This equation encounters wide applications in modeling
of the thermal behaviour of a spherical cloud of gas acting under a mutual attraction of
its molecules and subject to the classical laws of thermodynamics. In this section, we
solve three differential equations, the so-called Lane-Emden equation, to demonstrate the
effectiveness and the validity of the present method.

Example 3.1. Consider the fractional Lane-Emden equation

Dβu+
2

t
ut = −u, 1 < β ≤ 2, (4)

subject to the initial conditions

u(0) = 1, ut(0) = 0. (5)
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Taking the fractional differential transform and choosing θ = 2
β , we write the recurrence

scheme

Γ(1 + (k + 1)β2 )

Γ(1 + (k − 1)β2
U(k + 1) + 2(k + 1)U(k + 1) = −U(k − 1), k = 1, 2, · · · . (6)

So, we will get the approximations

U(0) = 1, U(1) = 0, U(2) = − 1

4 + Γ(1 + β)
, U(3) = 0,

U(4) =
1

4 + Γ(1 + β)
· Γ(1 + β)

Γ(1 + 2β) + 8Γ(1 + β)
, U(5) = 0, · · · .

Here, if we put β = 2 then we will get the following solution

u(t) = 1− 1

3!
t2 +

1

5!
t4 − 1

7!
t6 + · · ·

which is the Taylor expansion of the exact solution u(t) = sin t
t of the problem in this case.

Example 3.2. Consider the fractional non-linear Lane-Emden equation

Dβu+
2

t
ut = −u5, 1 < β ≤ 2, (7)

subject to the initial conditions

u(0) = 1, ut(0) = 0. (8)

By taking the fractional differential transform and choosing θ = 2
β , we obtain the

recurrence scheme

Γ(1 + (k+1
2 )β)

Γ(1 + k−1
2 β)

U(k + 1) + 2(k + 1)U(k + 1) = −Ãk−1, k = 1, 2, · · · (9)

where Ãk are DTM’s of the Adomian polynomials, Ak, for the non-linear term, u5, as
follows
A0 = (u0)

5, Ã0 = (U(0))5,

A1 = 5(u0)
4u1, Ã1 = 5(U(0))4U(1),

A2 = 5(u0)
4u2 + 10(u0)

3(u1)
2, Ã2 = 5(U(0))4U(2) + 10(U(0))3(U(1))2,

A3 = 5(u0)
4u3 + 20(u0)

3u1u2 + 10(u0)
2(u1)

3, Ã3 = 5(U(0))4U(3) + 20(U(0))3U(1)U(2) +
10(U(0))2(U(1))3,
...
Then, we have the following approximations

U(0) = 1, U(1) = 0, U(2) = − 1

Γ(1 + β) + 4
, U(3) = 0,

U(4) =
5Γ(1 + β)

6(Γ(1 + 2β) + 8Γ(1 + β))
, U(5) = 0, U(6) = −420

864

Γ(1 + 2β)

Γ(1 + 3β) + 12Γ(1 + 2β)
, · · ·

So

u(t) = 1− 1

Γ(1 + β) + 4
t2+

5

6

Γ(1 + β)

Γ(1 + 2β) + 8Γ(1 + β)
t4−420

864

Γ(1 + 2β)

Γ(1 + 3β) + 12Γ(1 + 2β)
t6+...

When the limit of the series solution as β approaches 2 is evaluated, we obtain

u(t) = 1− 1

6
t2 +

1

24
t4 − 5

432
t6 + · · · = 1√

1 + t2

3

,
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which is the exact solution of the problem in this case.

Example 3.3. Now, we consider the following fractional non-linear Lane-Emden equation

Dβu+
2

t
ut = −eu, 1 < β ≤ 2, (10)

subject to conditions
u(0) = 0, u(1) = 0. (11)

Taking the fractional differential transform and choosing θ = 2
β we write the recurrence

scheme

Γ(1 + (k+1
2 )β)

Γ(1 + k−1
2 β)

U(k + 1) + 2(k + 1)U(k + 1) = −Ãk−1, k = 1, 2, · · · (12)

where Ãk are obtained from the Adomian polynomials for the nonlinear term, eu, as follows

A0 = eu0 Ã0 = eU(0),
A1 = u1e

u0 , Ã1 = U(1)eU(0),

A2 = (u2 +
(u1)2

2 )eu0 , Ã2 = (U(2) + (U(1))2

2 )eU(0),

A3 = (u3 + u1u2 +
(u1)3

3! )eu0 Ã3 = (U(3) + U(1)U(2) + (U(1))3

3! )eU(0),
...
Then, we can obtain the following values

U(0) = U(1) = U(3) = 0, U(2) = − 1

Γ(1 + β) + 4
, U(4) =

1

6

Γ(1 + β)

Γ(1 + 2β) + 8Γ(1 + β)
,

U(5) = 0, U(6) = − 8

5!× 3
× Γ(1 + 2β)

Γ(1 + 3β) + 12Γ(1 + 2β)
, · · ·

This yields the series solution

u(t) =
−1

Γ(1 + β) + 4
t2 +

1

6

Γ(1 + β)

Γ(1 + 2β) + 8Γ(1 + β)
t4 − 8

360

Γ(1 + 2β)

Γ(1 + 3β) + 12Γ(1 + 2β)
t6 + ...

When the limit of the series solution as β approaches 2 is evaluated, we obtain

u(t) = − 1

3× 2!
t2 +

1

5× 4!
x4 − 8

21× 6!
t6 +

122

81× 8!
t8 − · · · (13)

which is the same solution obtained in [19] by modified homotopy perturbation method
for the case β = 2. Using the Matlab symbolic code, we plot the Pade approximations
of[2,2], [3,3] and [5,5] in fig.1. This shows the trend of convergence of the solution for these
three approximants. Shown in fig.2 are the modified FDTM solution of the problem with
5 components as parametrized by β.

4. Conclusion

Instead of computing the differential transform of the nonlinear term, it is replaced
in the recurrence relation by its Adomian polynomial of index k. The nonlinear partial
differential equations related to the Lane-Emden problem are solved. The validity and
the effectiveness of the method are shown in a systematic fashion. The proposed solutions
of the three singular linear and nonlinear differential equations of Lane-Emden problem
using the method have verified the physical properties of the equilibrium of Lane-Emden
problem, as x → ∞ the solution monotonically approaches a constant. This is indeed an
important physical property of the Lane-Emden problem known as the equilibrium state.
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Figure 1. Plots of the [2,2], [3,3], [5,5] Pade approximants for Example(3.3).
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Figure 2. Plots of the FDTM Solution with 5 components for Example(3.3) as
parametrized by β.
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