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A EFFICIENT COMPUTATIONAL METHOD FOR SOLVING

STOCHASTIC ITÔ-VOLTERRA INTEGRAL EQUATIONS

FAKHRODIN MOHAMMADI1, §

Abstract. In this paper, a new stochastic operational matrix for the Legendre wavelets
is presented and a general procedure for forming this matrix is given. A computational
method based on this stochastic operational matrix is proposed for solving stochastic
Itô-Voltera integral equations. Convergence and error analysis of the Legendre wavelets
basis are investigated. To reveal the accuracy and efficiency of the proposed method
some numerical examples are included.
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1. Introduction

Random or stochastic integrals are very important for modeling many phenomena in
physics, mechanics, medical, finance, sociology, biology, etc. So many studies have been
appeared in the recent literature which describe these stochastic mathematical models
rather than deterministic ones. In many cases such phenomena dependent on a Gaussian
white noise that mathematically are modeled as stochastic differential equations, stochastic
integral equations or stochastic integro-differential equations of the Itô type [1–7].

Similar to the deterministic case, most stochastic differential and integral equation
cannot be solved analytically and therefore numerical solution becomes a practical way to
face this difficulty. Recently, there has been a growing interest in numerical solutions of
stochastic differential and integral equations [1, 3–10].

Recently, different orthogonal basis functions, such as block pulse functions, Walsh func-
tions, Fourier series, orthogonal polynomials and wavelets, were used to estimate solutions
of functional equations. As a powerful tool, wavelets have been extensively used in sig-
nal processing, numerical analysis, and many other areas. Wavelets permit the accurate
representation of a variety of functions and operators [11, 12]. Legendre wavelets have
been widely applied in system analysis, system identification, optimal control and numer-
ical solution of integral and differential equations [13–16]. In this paper, an stochastic
operational matrix for Legendre wavelets is derived. Then application of this stochas-
tic operational matrix in solving stochastic Itô-Voltera integral equation is investigated.
Illustrative examples are included to demonstrate the validity and applicability of the
technique.
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This paper is organized as follows: In section 2 some basic definition and preliminar-
ies about stochastic process and Itô integral are presented. The Legendre wavelets and
their properties are discussed in section 3. In section 4 stochastic operational matrix for
Legendre wavelets and a general procedure for deriving this matrix are introduced. In sec-
tion 5 application of this stochastic operational matrix in solving stochastic Itô-Volterra
integral equations are described. Finally, a conclusion is given in section 7.

2. Preliminaries

In this section we review some basic definition of the stochastic calculus and the block
pulse functions (BPFs).

2.1. Stochastic calculus.

Definition 2.1. (Brownian motion process) A real-valued stochastic process B(t), t ∈
[0, T ] is called Brownian motion, if it satisfies the following properties
(i) The process has independent increments for 0 ≤ t0 ≤ t1 ≤ ... ≤ tn ≤ T ,
(ii) For all t ≥ 0, B(t+ h)−B(t) has Normal distribution with mean 0 and variance h,
(iii) The function t→ B(t) is continuous functions of t.

Definition 2.2. Let {Nt}t≥0 be an increasing family of σ-algebras of subsets of Ω. A
process g(t, ω) : [0,∞) × Ω → Rn is called Nt-adapted if for each t ≥ 0 the function
ω → g(t, ω) is Nt-measurable.

Definition 2.3. Let V = V(S, T ) be the class of functions f(t, ω) : [0,∞) × Ω → R such
that
(i) The function (t, ω)→ f(t, ω) is B × F-measurable, where B denotes the Borel algebra
on [0,∞) and F is the σ -algebra on Ω.
(ii) f is adapted to Ft, where Ft is the σ -algebra generated by the random variables
B(s), s ≤ t.
(iii)E

(∫ T
S f2(t, ω)dt

)
<∞.

Definition 2.4. (The Itô integral) Let f ∈ V(S, T ), then the Itô integral of f is defined by∫ T

S
f(t, ω)dBt(ω) = lim

n→∞

∫ T

S
ϕn(t, ω)dBt(ω), (lim in L2(P ))

where, ϕn is a sequence of elementary functions such that

E

(∫ T

s
(f(t, ω)− ϕn(t, ω))2 dt

)
→ 0, as n→∞.

For more details about stochastic calculus and integration please see [2].

2.2. Block pulse functions. BPFs have been studied by many authors and applied for
solving different problems. In this section we recall definition and some properties of the
block pulse functions [3, 17].

The m-set of BPFs are defined as

bi(t) =

{
1 (i− 1)h ≤ t < ih
0 otherwise

(1)

in which t ∈ [0, T ), i = 1, 2, ...,m and h = T
m . The set of BPFs are disjointed with each

other in the interval [0, T ) and

bi(t)bj(t) = δijbi(t), i, j = 1, 2, ...,m, (2)
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where δij is the Kronecker delta. The set of BPFs defined in the interval [0, T ) are
orthogonal with each other, that is∫ T

0
bi(t)bj(t)dt = hδij , i, j = 1, 2, ...,m. (3)

If m → ∞ the set of BPFs is a complete basis for L2[0, T ), so an arbitrary real bounded
function f(t), which is square integrable in the interval [0, T ), can be expanded into a
block pulse series as

f(t) '
m∑
i=1

fibi(t), (4)

where

fi =
1

h

∫ T

0
bi(t)f(t)dt, i = 1, 2, ...,m. (5)

Rewritting Eq. (37) in the vector form we have

f(t) '
m∑
i=1

fibi(t) = F TΦ(t) = ΦT (t)F, (6)

in which

Φ(t) = [b1(t), b2(t), ...., bm(t)]T , F = [f1, f2, ...., fm]T . (7)

Morever, any two dimensional function k(s, t) ∈ L2 ([0, T1]× [0, T2]) can be expanded with
respect to BPFs such as

k(s, t) = ΦT (t)KΦ(t), (8)

where Φ(t) is the m-dimensional BPFs vectors respectively, and K is the m × m BPFs
coefficient matrix with (i, j)-th element

kij =
1

h1h2

∫ T1

0

∫ T2

0
k(s, t)bi(t)bj(s)dtds, i, j = 1, 2, ...,m, (9)

and h1 = T1
m and h2 = T2

m . Let Φ(t) be the BPFs vector, then we have

ΦT (t)Φ(t) = 1, (10)

and

Φ(t)ΦT (t) =


b1(t) 0 . . . 0

0 b2(t)
. . .

...
...

. . .
. . . 0

0 . . . 0 bm(t)


m×m

. (11)

For an m-vector F we have

Φ(t)ΦT (t)F = F̃Φ(t), (12)

where F̃ is an m×m matrix, and F̃ = diag(F ). Also, it is easy to show that for an m×m
matrix A

ΦT (t)AΦ(t) = ÂTΦ(t), (13)

where Â = diag(A) is an m-vector.
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3. Legendre wavelets

Wavelets constitute a family of functions constructed from dilation and translation of
a single function ψ called the mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously, we have the following family of continuous
wavelets

ψa,b(t) = a−
1
2ψ

(
t− a
b

)
, a, b ∈ R, a 6= 0. (14)

The Legendre wavelets are defined on the interval [0, 1) as

ψmn(t) =

{ √
m+ 1

22
k+1
2 pm

(
2k+1t− (2n− 1)

)
n
2k
≤ t < n+1

2k

0 otherwise,
(15)

where n = 0, 1, ..., 2k−1 and m = 0, 1, · · · ,M−1 is the degree of the Legendre polynomials
for a fixed positive integer M . Here Pm(t) are the well-known Legendre polynomials of
degree m [13, 15].

Any square inegrable function f(x) defined over [0, 1) can be expanded in terms of the
extended Legendre wavelets as

f(x) '
∞∑
n=0

∞∑
m=0

cnmψnm(x) = CTΨ(x), (16)

where cmn = (f(t), ψmn(t)) and (., .) denotes the inner product on L2[0, 1]. If the infinite
series in (16) is truncated, then it can be written as

f(x) '
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(x), (17)

where C and Ψ(x) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
, (18)

Ψ(x) =
[
ψ00(x), . . . , ψ0(M−1)(x)|ψ10(x), . . . , ψ1(M−1)(x)|, . . . , |ψ(2k−1)0(x), . . . , ψ(2k−1)(M−1)(x)

]T
.

By changing indices in the vectors Ψ(x) and C the series (17) can be rewritten as

f(x) '
m̂∑
i=1

ciψi(x) = CTΨ(x), (19)

where

C = [c1, c2, ..., cm̂] , Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)] , (20)

and

ci = cnm, ψi(x) = ψnm(x), i = (n− 1)M +m+ 1. (21)

Similarly, any two dimensional function k(s, t) ∈ L2 ([0, 1]× [0, 1]) can be expanded into
Legendre wavelets basis as

k(s, t) ≈
m̂∑
i=1

m̂∑
j=1

kijψi(s)ψj(t) = ΨT (s)KΨ(t), (22)

where K = [kij ] and kij = (ψi(s), (u(s, t), ψj(t))).
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3.1. Relation between the BPFs and Legendre wavelets. In this section we will
derive the relation between the Legendre wavelets and BPFs. It is worth mention that
here we set T = 1 in definition of BPFs.

Theorem 3.1. Let Ψ(t) and Φ(t) be the m̂-dimensional Legendre wavelets and BPFs
vector respectively, the vector Ψ(t) can be expanded by BPFs vector Φ(t) as

Ψ(t) ' QΦ(t), (23)

where Q is an m̂× m̂ block matrix and

Qij = ψi

(
2j − 1

2m̂

)
, i, j = 1, 2, ..., m̂ (24)

Proof. Let φi(t), i = 1, 2, ..., m̂ be the i-th element of Legendre wavelets vector. Expanding
φi(t) into an m̂-term vector of BPFs, we have

ψi(t) '
m̂∑
i=1

Qijbj(t) = QT
i Φ(t), i = 1, 2, ..., m̂, (25)

where Qi is the i-th row and Qij is the (i, j)-th element of matrix Q. By using the
orthogonality of BPFs we have

Qij =
1

h

∫ 1

0
ψi(t)bj(t)dt =

1

h

∫ j
m̂

j−1
m̂

ψi(t)dt = m̂

∫ j
m̂

j−1
m̂

ψi(t)dt, (26)

by using mean value theorem for integrals in the last equation we can write

Qij = m̂

(
j

m̂
− j − 1

m̂

)
ψi(ηi) = ψi(ηj), ηj ∈

(
j − 1

m̂
,
j

m̂

)
, (27)

now by choosing ηj = 2j−1
2m̂ so we have

Qij = ψi

(
2j − 1

2m̂

)
, i, j = 1, 2, ..., m̂. (28)

and this prove the desired result. �

The following Remark is the consequence of relations (12), (13) and Theorem 3.1.

Remark 3.1. For an m̂-vector F we have

Ψ(t)ΨT (t)F = F̃Ψ(t), (29)

in which F̃ is an m̂× m̂ matrix as

F̃ = QF̄Q−1, (30)

where F̄ = diag
(
QTF

)
. Moreover, it can be easy to show that for an m̂× m̂ matrix A

ΨT (t)AΨ(t) = ÂTΨ(t), (31)

where ÂT = UQ−1 and U = diag(QTAQ) is a m̂-vector.
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3.2. Convergence and error analysis. Here we investigate the convergence and error
analysis of the Legendre wavelets basis.

Theorem 3.2. Let f(x) be a function defined on [0, 1) with bounded second derivatives,
say |f ′′(x)| ≤M , and

∑∞
n=0

∑∞
m=0 cmnψmn(x) be its infinite Legendre wavelets expansion,

then

|cmn| ≤
√

12M

(2n)
5
2 (2m− 3)2

, (32)

this means the Legendre wavelets series converges uniformly to f(x) and

f(x) =

∞∑
n=1

∞∑
m=0

cnmψnm(x), (33)

Proof. See [18]. �

Theorem 3.3. Suppose f(x) be a continuous function defined on [0, 1), with second deriva-
tives f ′′(x) bounded by M , then we have the following accuracy estimation

‖eM,k(t)‖2 ≤

(
3M2

2

∞∑
n=0

∞∑
m=M

1

n5(2m− 3)4
+

3M2

2

∞∑
n=2k

M−1∑
m=0

1

n5(2m− 3)4

) 1
2

, (34)

where

‖eM,k(t)‖2 =

∫ 1

0

f(x)−
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)

2

dx


1
2

.

Proof. We have:

σ2M,k =

∫ 1

0

f(x)−
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)

2

dx

=

∫ 1

0

 ∞∑
n=0

∞∑
m=0

cnmψnm(x)−
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)

2

dx

=
∞∑
n=0

∞∑
m=M

c2nm

∫ 1

0
ψ2
nm(x)dx+

∞∑
n=2k

M−1∑
m=0

c2nm

∫ 1

0
ψ2
nm(x)dx =

∞∑
n=0

∞∑
m=M

c2nm+
∞∑

n=2k

M−1∑
m=0

c2nm,

now by considering Eq. (32), the desired result is achieved. �

4. Stochastic operational matrix of Legendre wavelets

In this section we obtain the stochastic integration operational matrix for Legendre
wavelets. For this purpose we first remind some useful results for BPFs [3, 4].

Lemma 4.1. [3] Let Φ(t) be the m̂-dimensional BPFs vector defined in (7), then integra-
tion of this vector can be derived as∫ t

0
Φ(s)ds ' PΦ(t), (35)
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where P is called the operational matrix of integration for BPFs and is given by

P =
h

2


1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2
0 0 0 . . . 1


m̂×m̂

. (36)

Lemma 4.2. [3] Let Φ(t) be the m̂-dimensional BPFs vector defined in (7), the Itô integral
of this vector can be derived as∫ t

0
Φ(s)dB(s) ' PsΦ(t), (37)

where Ps is called the stochastic operational matrix of BPFs and is given by

Ps =


B
(
h
2

)
B (h) B (h) . . . B (h)

0 B
(
3h
2

)
−B (h) B (2h)−B(h) . . . B (2h)−B(h)

0 0 B
(
5h
2

)
−B (2h) . . . B (3h)−B(2h)

...
...

...
. . .

...

0 0 0 . . . B
(
(2m̂−1)h

2

)
−B ((m̂− 1)h)


m̂×m̂

.

Now we are ready to derive a new operational matrix of stochastic integration for the
Legendre wavelets basis. For this end we use BPFs and the matrix Q introduced in (23).

Theorem 4.1. Suppose Ψ(t) be the m̂-dimensional Legendre wavelets vector defined in
(20), the integral of this vector can be derived as∫ t

0
Ψ(s)ds ' QPQ−1Ψ(t) = ΛΨ(t), (38)

where Q is introduced in (23) and P is the operational matrix of integration for BPFs
derived in (36).

Proof. Let Ψ(t) be the Legendre wavelets vector, by using Theorem 3.1 and Lemma 4.1
we have ∫ t

0
Ψ(s)ds '

∫ t

0
QΦ(s)ds =Q

∫ t

0
Φ(s)ds = QPΦ(t), (39)

now Theorem 3.1 give∫ t

0
Ψ(s)ds 'QPΦ(t) = QPQ−1Ψ(t) = ΛΨ(t), (40)

and this complete the proof. �

Theorem 4.2. Suppose Ψ(t) be the m̂-dimensional Legendre wavelets vector defined in
(20), the Itô integral of this vector can be derived as∫ t

0
Ψ(s)dB(s) ' QPsQ

−1Ψ(t) = ΛsΨ(t), (41)

where Λs is called stochastic operational matrix for Legendre wavelets, Q is introduced in
(23) and Ps is the stochastic operational matrix of integration for BPFs derived in (38).
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Proof. Let Ψ(t) be the Legendre wavelets vector, by using Theorem 3.1 and Lemma 4.2
we have ∫ t

0
Ψ(s)dB(s) '

∫ t

0
QΦ(s)dB(s) =Q

∫ t

0
Φ(s)dB(s) = QPsΦ(t), (42)

now Theorem 3.1 result∫ t

0
Ψ(s)dB(s) =QPsΦ(t) = QPsQ

−1Ψ(t) = ΛsΨ(t), (43)

and this complete the proof. �

5. Application in solving stochastic integral equations

In this section, we solve stochastic Itô-Volterra integral equations by using the stochastic
operational matrix of the Legendre wavelets. Consider the following stochastic Itô-Volterra
integral equation as

X(t) = f(t) +

∫ t

0
k1(s, t)X(s)ds+

∫ t

0
k1(s, t)X(s)dB(s), t ∈ [0, T ), (44)

where X(t), f(t), k1(s, t) and k2(s, t), for s, t ∈ [0, T ), are the stochastic processes defined
on the same probability space (Ω, F, P ), andX(t) is unknown. Also B(t) is a Brownian mo-

tion process and
∫ t
0 k1(s, t)X(s)dB(s) is the Itô integral. For solving this problem by using

the stochastic operational matrix of Legendre wavelets, we approximate X(t), f(t), k1(s, t)
and k2(s, t) in terms of m̂-dimentional Legendre wavelets as follows

f(t) = F TΨ(t) = ΨT (t)F, (45)

X(t) = XTΨ(t) = ΨT (t)X, (46)

k1(s, t) = Ψ(s)TK1Ψ(t) = Ψ(t)TKT
1 Ψ(s), (47)

k2(s, t) = Ψ(s)TK2Ψ(t) = Ψ(t)TKT
2 Ψ(s), (48)

where X and F are Legendre wavelets coefficients vector, and K1 and K2 are Legendre
wavelets coefficient matrices defined in Eq. (20). Substituting above approximations in
Eq. (46), we have

XTΨ(t) = F TΨ(t) + Ψ(t)TK1

(∫ t

0
Ψ(s)Ψ(s)TXds

)
+ Ψ(t)TK2

(∫ t

0
Ψ(s)Ψ(s)TXdB(s)

)
,

now by using Remark 3.1 we get

XTΨ(t) = F TΨ(t) + ΨT (t)K1

(∫ t

0
X̃Ψ(s)ds

)
+ ΨT (t)K2

(∫ t

0
X̃Ψ(s)dB(s)

)
,

where X̃ is a linear function of vector X. Applying the operational matrices Λ and Λs for
Legendre wavelets derived in Eqs. (38) and (41) we get

XTΨ(t) = F TΨ(t) + ΨT (t)K1X̃ΛΨ(t) + Ψ(t)TK2X̃ΛsΨ(t), (49)

by setting Y1 = K1X̃Λ, Y2 = K2X̃Λs and using Remark 3.1 we derive

XTΨ(t)− Ŷ1Ψ(t)− Ŷ2Ψ(t) = F TΨ(t), (50)

in which where Ŷ1 and Ŷ2 are linear function of vectors Y1 and Y2. This equation is hold
for all t ∈ [0, 1), so we can write

XT − Ŷ1 − Ŷ2 = F T . (51)
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Since Ŷ1 and Ŷ2 are linear functions of X, Eq. (51) is a linear system of equations
for unknown vector X. After solving this linear system and determining X, we can
approximate solution of the stochastic Itô-Volterra integral equation (44) by substituting
obtained vector X in Eq. (46).

6. Numerical examples

In this section, we demonstrate the efficiency of the proposed method in the section 5
with some illustrative examples. It will be shown that the Legendre wavelets operational
matrix method is very efficient for solving stochastic Itô-Volterra integral equation. The
algorithms are performed by Maple 13 with 20 digits precision.

Example 6.1. Consider the following stochastic Itô-Volterra integral equation [3, 7]

X(t) = 1 +

∫ t

0
s2X(s)ds+

∫ t

0
sX(s)dB(s), s, t ∈ [0, 1] , (52)

where X(t) is an unknown stochastic process defined on the probability space (Ω,F , P ),
and B(t) is a Brownian motion process. The exact solution of this stochastic Itô-Volterra
integral equation is

X(t) = exp

(
t3

6
+

∫ t

0
sdB(s)

)
. (53)

The stochastic operational matrix of Legendre wavelets and the presented method in section
5 are employed for deriving a numerical solution of this Itô-Volterra integral equation. The
approximate solution computed by the presented method and exact solution are represented
in Fig. 6.1 for m̂ = 128. The absolute error of the numerical results are shown in the
Table 6.1 for different values of m̂.

Figure 1. The approximate solution and exact solution for m̂ = 128.

Example 6.2. Let us consider the following stochastic Itô-Volterra integral equation [3,7]

X(t) =
1

12
+

∫ t

0
cos(s)X(s)ds+

∫ t

0
sin(s)X(s)dB(s), s, t ∈ [0, 1] , (54)

where X(t) is an unknown stochastic process defined on the probability space (Ω,F , P ),
and B(t) is a Brownian motion process. The exact solution of this stochastic Volterra
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Table 1. The absolute error of the numerical results for different values of m̂.

t m̂ = 32 m̂ = 64 m̂ = 128

0.1 0.00319130 0.00057210 0.00222540
0.3 0.00371524 0.00917624 0.00402876
0.5 0.44932060 0.86719460 0.95334270
0.7 0.05396580 0.06228580 0.06238580
0.9 0.12015880 0.12185880 0.13135880

integral equation is

X(t) =
1

12
exp

(
−t
4

+ sin(t) +
sin(2t)

8
+

∫ t

0
sin(s)dB(s)

)
. (55)

This stochastic Itô-Volterra integral equation is solved by using the stochastic operational
matrix of Legendre wavelets and the proposed method in section 5. In Fig. 6.2 the ap-
proximate solution computed by the presented method and exact solution are shown for
m̂ = 128. The absolute error of the numerical results for different values of m̂ are shown
in the Table 6.2.

Figure 2. The approximate solution and exact solution for m̂ = 128.

Table 2. The absolute error of the numerical results for different values of m̂.

t m̂ = 32 m̂ = 64 m̂ = 128

0.1 0.00027709 0.00004562 0.00020525
0.3 0.00030467 0.00097477 0.00045423
0.5 0.06034923 0.11215321 0.12302135
0.7 0.00676411 0.00789211 0.00795211
0.9 0.01402822 0.01434822 0.01538822

Example 6.3. Consider the following stochastic Itô-Volterra integral equation [6]

X(t) =
1

3
+

∫ t

0
ln(s+ 1)X(s)ds+

∫ t

0

√
ln(s+ 1)X(s)dB(s), s, t ∈ [0, 1] , (56)

where X(t) is an unknown stochastic process defined on the probability space (Ω,F , P ),
and B(t) is a Brownian motion process. The exact solution of this stochastic Volterra
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integral equation is

X(t) =
1

3
exp

(
−t
2

+
1

2
t ln(t+ 1) +

1

2
ln(t+ 1) +

∫ t

0

√
ln(s+ 1)dB(s)

)
. (57)

The Legendre wavelets stochastic operational matrix and the proposed method in section 5
are used for solving this stochastic Itô-Volterra integral equation. The exact solution and
approximate solution computed by the presented method for m̂ = 128 are shown in Fig.
6.3. The absolute error of the numerical results are shown in the Table 6.3 for different
values of m̂.

Figure 3. The approximate solution and exact solution for m̂ = 128.

Table 3. The absolute error of the numerical results for different values of m̂.

t m̂ = 32 m̂ = 64 m̂ = 128

0.1 0.00102914 0.00106840 0.00142866
0.3 0.00344068 0.00001788 0.00625188
0.5 0.11389535 0.28145811 0.31242841
0.7 0.03226066 0.03587166 0.03487166
0.9 0.05533170 0.05679170 0.05930170

7. Conclusion

A new stochastic operational matrix for the Legendre wavelets is derived. The BPFs
and their relation with Legendre wavelets are used to derive this stochastic operational
matrix. An efficient computational method based on this stochastic operational matrix
is introduced for solving stochastic Itô-Voltera integral equations. Convergence and error
analysis of the Legendre wavelets basis are considerd. Efficiency of the proposed method
is confirmed by some numerical examples.
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