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TRIVIALLY EXTENDABLE GRAPHS

K.ANGALEESWARI1, P.SUMATHI2, V.SWAMINATHAN3 §

Abstract. Let G be a simple graph. Let k be a positive integer. G is said to be
k-extendable if every independent set of cardinality k is contained in a maximum in-
dependent set of G. G is said to be trivially extendable if G is not k-extendable for
1 ≤ k ≤ (β0(G) − 1). A well covered graph is one in which every maximal indepen-
dent set is maximum. Study of k-extendable graphs has been made in [7,8,9]. In this
paper a study of trivially extendable graphs is made. Characterization of graphs with
β0(G) = (n− 3) and which is trivially extendable has been done. Similarly graphs with
β0(G) = (n− 2) is also studied for trivial extensibility.
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1. Introduction

Extendable graphs are those for which all independent sets of some cardinality are
contained in maximum independent sets. The well covered graph is k-extendable for
every k. That is any independent set of cardinality k, 1 ≤ k ≤ β0(G) is contained
in maximum independent sets. There are graphs which are just the opposite of well
covered graphs. That is G is not k-extendable for any k < β0(G), these graphs are called
trivially extendable graphs. In this paper, a study of trivially extendable graphs are made.
Characterization of graphs which are trivially extendable with specific values of β0(G) are
done.

2. Trivially Extendable graphs

Definition 2.1. Let G = (V,E) be a simple graph. Let k be a positive integer. G is said to
be k-extendable if every independent set of cardinality k in G is contained in a maximum
independent set of G.
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of Mathematics, 2015; all rights reserved.

307



308 TWMS J. APP. ENG. MATH. V.5, N.2, 2015

Definition 2.2. G is said to be trivially extendable if G is k-extendable only for k = β0(G).

Example 2.1. Let G : s s s
s s
u1 u2 u3

u4 u5

β0(G) = 3. {u1, u3, u5} is the unique β0-set of G. Clearly {u4}, {u2, u4} are not
contained in β0-set of G. So G is trivially extendable graph.

Theorem 2.1. Let G be a graph in which every vertex supports at least two pendent
vertices. Then G is trivially extendable.

Remark 2.1. There are graphs which are trivially extendable but do not contain pendent
vertices, for example the Wheel W7.

Theorem 2.2. Let G be a graph with β0(G) = 2. G is trivially extendable if and only if
G has a full degree vertex (or) |V (G)| = 2.

Proof: Suppose β0(G) = 2. Suppose |V (G)| = 2. Then G = K2 and G is trivially
extendable. Suppose |V (G)| ≥ 3 and G is trivially extendable. Then there exists a vertex
u ∈ V (G) such that u is adjacent to every vertex of G. Therefore u is a full degree vertex
of G. Conversely, suppose G has a full degree vertex say u. Then {u} is not extendable.
Therefore G is trivially extendable.

Theorem 2.3. Let G be a graph with β0(G) = (n − 2). Let S = {u1, u2, . . . , un−2} be a
β0-set of G. Let V − S = {un−1, un}.
(i).If un−1 and un are not adjacent, then G is trivially extendable if and only if both
un−1 and un are of degree less than 3 and either one of un−1, un is of degree 2 with
N(un)−N(un−1) 6= φ, if deg(un−1) = 2 ((or) N(un−1)−N(un) 6= φ, if deg(un) = 2) (or)
both are of degree 2.
(ii).If un−1 and un are adjacent, then G is trivially extendable if and only if un−1 and un
are adjacent to exactly 2 vertices from S.

Proof: (i).Let β0(G) = (n − 2). Let S = {u1, u2, . . . , un−2} be a β0-set of G. Let
V − S = {un−1, un}. un−1 and un are not adjacent. Then G is bipartite.
Case(1): un−1 has degree 2 and N(un) − N(un−1) 6= φ. Without loss of generality, let
un−1 be adjacent to u1 and u2. Let 1 ≤ k ≤ (n − 3). Let S1 = {un−1, u3, . . . , uk+1}.
S1 is independent and |S1| = k. Suppose S1 is contained in a maximum independent
set say T . Then u1, u2 /∈ T . Since (V − S1) = {un, u1, u2, uk+2, . . . , un−2}, |V − S1| =
(n− 2)− (k + 1) + 2 + 1 = n− k. Let un be adjacent with some uj , j ≥ 3.
Subcase(1): T contains un−2.
Then uj /∈ T . Already u1, u2 /∈ T . Therefore |T | ≤ (n− 3), a contradiction.
Subcase(2): T does not contain un−2.
Then u1, u2, un−2 /∈ T . Therefore |T | ≤ (n− 3), a contradiction. Hence S is not contained
in any maximum independent set of G. But S is independent and cardinality of k,
1 ≤ k ≤ (n− 3). Therefore G is trivially extendable. Similar proof if un has degree 2 and
N(un−1)−N(un) 6= φ.
Case(2): un−1 (or) un have degree are greater than (or) equal to 3.
Suppose un−1 have degree≥ 3. Let T be an independent set of cardinality k,
1 ≤ k ≤ (n−t), where |N(un−1)| = t. Then T is not extendable. Let S2 be an independent
set of cardinality (n−t)+1. Let un−1 (or) un ∈ S2. S2 can contain at most (n−2)−t vertices
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from {u2, u3, . . . , un−2}. Therefore |S2| ≤ (n− 2)− t+ 2 = n− t. But |S2| = (n− t) + 1,
a contradiction. Therefore there exists no independent set of cardinality (n − t) + 1
containing un−1 (or) un, which implies any independent set of cardinality (n − t) + 1 is
contained in the maximum independent set {u1, u2, . . . , un−2}. Hence G is k-extendable
for all k ≥ (n− t) + 1. Therefore G is k-extendable exactly for (n− t) + 1 ≤ k ≤ (n− 2),
which means G is not trivially extendable.
Conversely, suppose G is trivially extendable with β0(G) = (n − 2). Then there exists
an independent set say T of cardinality k, 1 ≤ k ≤ (n − 3) which is not contained
in any β0-set of G. Since any set of (n − 3) elements in S is independent, T contains
either un−1 (or) un. If un−1 and un have degree 1, then every (n − 1) subset of G is
independent, a contradiction. Therefore deg(un−1) (or) deg(un) is greater than or equal
to 2. suppose deg(un−1) and deg(un) are greater than or equal to 3. If deg(un−1) (or)
deg(un) are greater than or equal to 4, then any (n − 3)-independent set is contained
in S and hence extendable, a contradiction. Therefore deg(un−1) and deg(un) are less
than or equal to 3. If deg(un−1) = deg(un) = 3 and N(un) = N(un−1) then there exists
a (n − 3)-independent set containing un−1 and un which is not contained in β0-set of
G. If deg(un−1) = deg(un) = 3 and N(un) 6= N(un−1) then any (n − 3)-independent set
cannot contain un−1 (or) un. Therefore G is (n−3)-extendable, a contradiction. Therefore
deg(un−1) (or) deg(un) is less than 3. Therefore deg(un−1) (or) deg(un) = 2. If N(un) =
N(un−1), then G is 1-extendable, a contradiction. Therefore N(un) − N(un−1) 6= φ (or)
N(un−1) − N(un) 6= φ. That is if deg(un−1) = 2 then N(un) − N(un−1) 6= φ and if
deg(un) = 2 then N(un−1)−N(un) 6= φ.
(ii) is analogous to that of (i).

Remark 2.2. Let G be a graph for which β0(G) = (n−2). Let S = {u1, u2, . . . , un−2} be a
β0-set of G. Let (V −S) = {un−1, un}. Suppose un−1 and un are independent. Then G is
trivially extendable if and only if G is either P3 ∪K2 ∪ (n− 5)K1 (or) P5 ∪ (n− 5)K1 (or)
2P3 ∪ (n− 6)K1.

Remark 2.3. Let G be a graph and let β0(G) = (n− 2). Let S = {u1, u2, . . . , un−2} be a
β0-set of G. Let (V − S) = {un−1, un}. Suppose un−1 and un are independent. If G is
connected then G is trivially extendable if and only if G = P5.

Remark 2.4. Let G be a graph and let β0(G) = (n− 2). Let S = {u1, u2, . . . , un−2} be a
β0-set of G. Let (V − S) = {un−1, un}. Suppose un−1 and un are not independent. Then
G is trivially extendable if and only if G is either (K4 − e) ∪ (n− 4)K1 (or)
D2,2 ∪ (n− 6)K1 (or) G ∪ (n− 5)K1, where G is

r rr
r r

Remark 2.5.
Let G be a connected graph with β0(G) = (n− 2). Let S = {u1, u2, . . . , un−2} be a
β0-set of G. Let V − S = {un−1, un}. Suppose un−1 and un are not independent. Then G
is trivially extendable if and only if G is either (K4 − e) (or) D2,2 (or) G is

r rr
r r
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Remark 2.6.
Let G be a graph. If β0(G) = (n− 1), then G is k-extendable for all k, 2 ≤ k ≤ (n− 1).

The following theorem gives a characterization of graphs which are trivially extendable
with β0(G) = (n− 3). The proof is lengthy and hence omitted.

Theorem 2.4. Let G be a simple graph of order n ≥ 7 with β0(G) = (n − 3). Let S =
{u1, u2, . . . , un−3} be a β0-set of G, V − S = {un−2, un−1, un}.
(i). If un−2, un−1, un are independent then G is trivially extendable if and only if
|N(un−2) ∪N(un−1) ∪N(un)| = 4.
(ii).(a). Let un−2 and un−1 be adjacent and un be not adjacent with un−2 and un−1 then G
is trivially extendable if and only if |(N(un−1) ∪N(un)) ∩ S| (or) |(N(un−2) ∪N(un)) ∩ S|
is equal to 3.
(b). Let the remaining un−2, un−1 and un form P3 with un adjacent with un−2 and un−1.
Then G is trivially extendable if and only if either |N(un) ∩ S| = 2 (or)
|(N(un−2) ∪N(un−1)) ∩ S| = 3.
(c). Let the remaining un−2, un−1 and un form K3. Then G is trivially extendable if and
only if at least |N(un) ∩ S|, |N(un−1) ∩ S|, |N(un−2) ∩ S| is equal to 2.

Remark 2.7. Let G be a simple graph of order n ≥ 7 with β0(G) = (n − 3). Let S =
{u1, u2, . . . , un−3} be a β0-set of G, V −S be independent. G is trivially extendable if and
only if G is P3 ∪ 2K2 ∪ (n− 7)K1.

Remark 2.8. Let G be a simple graph of order n ≥ 6 with β0(G) = (n − 3). Let S =
{u1, u2, . . . , un−3} be a β0-set of G, V − S = {un−2, un−1, un} Let 〈V − S〉 = K2 ∪ K1.
Then G is trivially extendable if and only if G is K3 ∪P3 ∪ (n− 6)K1 (or) P6 ∪ (n− 6)K1

(or) G is any one of the following graph

r rr rr r
r rr rr rp pp pp pp pp pr r

�
��

r ru1 u1u2 u2u3 u3u4 u4un−3
un−3

un−2
un−2un−1

un−1un un
(or) (or)�

��

�
��

s s s
s s s p p p p p ssu1 u2 u3 u4 un−3

un−2 un−1 un
�
�

��

Proof: Since β0(G) = (n− 3). Each of un−2, un−1, un has at least one neighbour in S. G
is trivially extendable if and only if |(N(un−1) ∪N(un)) ∩ S| = 3 (or)
|(N(un−2) ∪N(un)) ∩ S| = 3. Therefore either un−1 and un−2 have exactly one neighbour
each in S and un has 2 neighbour in S (or) un−1 and un have one neighbour each in S and
un−2 has 2 neighbours in S (or) un−2 and un have one neighbour each in S and un−1 has
2 neighbours in S. Suppose un−1 and un−2 have distinct neighbours in S. Then un has
one of the neighbours coincident with the neighbour of un−1 (or) the neighbour of un−2.
In this case G = P6 ∪ (n− 6)K1. Suppose un−1 and un−2 have the same neighbour in S.
Then un has 2 neighbours in S which are distinct from the neighbour of un−1. In this case
G = K3 ∪ P3 ∪ (n − 6)K1. Suppose un−1 has 2 neighbours in S. Then either un has a
neighbour distinct from the 2 neighbour of un−1 in S (or) un has a neighbour in S which
is also a neighbour of un−1. In the former case, either the neighbour of un−2 is coincident
with a neighbour of un−1 (or) coincident with the neighbour of un in S. Therefore G is
one of the following graph
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s sr rr r
r rr rs sp pp pp pp pp pr r

�
�
�

r ru1
u1u2

u2u3
u3u4

u4un−3
un−3

un−2
un−2un−1

un−1un
un

(or) �
�
�

�
�
�

In the latter case, un−2 has a neighbour distinct from the neighbour of un−1. Therefore G
is

t t t
t t t p q p p p ttu1 u2 u3 u4 un−3

un−2 un−1 un

�
�
�
�

Remark 2.9. Let G be a simple graph of order n ≥ 6 with β0(G) = (n − 3). Let S =
{u1, u2, . . . , un−3} be a β0-set of G, V − S = {un−2, un−1, un}. Let un−2, un, un−1 form a
P3 with un being adjacent to both un−1 and un−2. Then G is trivially extendable if and
only if G is one of the following graphs

t tt tt t
t tt tt tp pq qp pp pp pt t

�
�
�
�

t tu1 u2 u3 u4un−3
un−3

un−2

tu1 u2 u3 u4 u5

un−2 un−1un
un un−1

(i)
(ii)

t tt tt t
t tt tt tp pq qp pp pp pt tt tu1 u2 u3 u4un−3

un−3

un−2

tu1 u2 u3 u4 u5

un−2 un−1un
un un−1

(iii), (iv),

t tt tt t
t tt tt tp pq qp pp pp pt tt tu1 u2 u3 u4un−3

un−3

un−2

tu1 u2 u3 u4 u5

un−2 un−1un
un un−1

�
�

�
�

�
�
�
�

(v) (vi)

t t t
t t t p q p p p tt un−3tu1 u2 u3 u4 u5

un−2 un−1un

(vii)

Proof follows from the fact that G is trivially extendable if and only if
|N(un) ∩ S| = 2 (or) |(N(un−1) ∪N(un−2)) ∩ S| = 3 and un−2, un−1, un has at least one
neighbour in S.

Remark 2.10. Let G be a simple graph of order n ≥ 6 with β0(G) = (n − 3). Let S =
{u1, u2, . . . , un−3} be a β0-set of G, V − S = {un−2, un−1, un}. Let un−2, un, un−1 form a
K3. Then G is trivially extendable if and only if G is one of the following graphs
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r rr rs sp pp pp pp pp pr rr ru1 u2 u3 u4un−3
un−3ru1 u2 u3 u4 u5

s ss
un−2

un−1

un
s sr

un−2 un

un−1

(i) (ii)

r rr rs sp pp pp pp pp pr rr ru1 u2 u3 u4un−3
un−3ru1 u2 u3 u4 u5

s ss
un−1

un
s sr

un−2 un

un−1

(iii) (iv)

un−2
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