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NUMERICAL SOLUTION OF A 2D- DIFFUSION REACTION

PROBLEM MODELLING THE DENSITY OF DI-VACANCIES AND

VACANCIES IN A METAL

SERDAL PAMUK1, §

Abstract. A decomposition solution of a diffusion reaction problem, which models the
density of di-vacancies and vacancies in a metal is presented. The results are compared
with the numerical solutions. Zero - diffusion solutions are obtained numerically and
some figures are illustrated.
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1. Introduction

Diffusion is the process by which atoms move in a material. Many reactions in solids
and liquids are diffusion dependent. Structural control in a solid to achieve the optimum
properties is also dependent on the rate of diffusion. Diffusion can be defined as the mass
flow process in which atoms change their positions relative to neighbors in a given phase
under the influence of thermal and a gradient [9]. The gradient can be a compositional
gradient, an electric or magnetic gradient, or stress gradient. Metals and metal oxides
are important materials especially for being electrodes in most electrochemical systems.
Numerous investigations on the structure, chemical composition, their optical and elec-
trical properties of these materials have revealed that some defects such as presence of
a vacancy in the structure can strongly affect surface morphology, which is crucial for
their electrical and optical properties [6]. In general, such a defect formation, especially
in metals, changes the intermolecular forces and mass transfer process. Only the atoms
adjacent to vacancies can change their lattice position any given moment, thus the dif-
fusion is effectively dependent on the vacancy formation energy. The magnitude of this
energy is directly proportional to the vacancy concentration which is one of the important
parameters for diffusion process in such a metals. In accordance to all these, there are
some mathematical model studies which are aimed to explain how these defects affects
the diffusivity. Sterne et al. [18] studied the electronic structure calculations of vacancies
and their influence on the materials properties, using aluminum and plutonium. They
concluded that diffusion and migration in aluminum are strongly dependent on the vacan-
cies, and calculations show an increase in migration resistance and slow diffusion process.
Meanwhile, Malik et al. [12] studied the effect of particle size on both conductivity and
diffusion and show that for materials with one-dimensional atomic migration channels,
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the diffusion depends on the particle size. Diffusion of vacancies and adatoms on stepped
crystalline surfaces was studied by Hare et al. [7].

Diffusional processes can be either steady-state or non-steady-state. These two types of
diffusion processes are distinguished by use of a parameter called flux. It is defined as net
number of atoms crossing a unit area perpendicular to a given direction per unit time. For
steady-state diffusion, flux is constant with time, whereas for non-steady-state diffusion,
flux varies with time [3,5,9,17].

Thus under steady-state flow, the flux, Jx is independent of time and remains the same
at any cross-sectional plane along the diffusion direction. For the one-dimensional case,
Ficks first law is given by

Jx = −D dc

dx
=

1

A

dn

dt
, (1)

where D is the diffusion constant, dc
dx is the gradient of the concentration c, dn

dt is the
number atoms crossing per unit time a cross-sectional plane of area A. The minus sign in
the equation means that diffusion occurs down the concentration gradient [3,5,9,17].

Most interesting cases of diffusion are non-steady-state processes since the concentration
at a given position changes with time, and thus the flux changes with time. This is the case
when the diffusion flux depends on time, which means that a type of atoms accumulates
in a region or depleted from a region (which may cause them to accumulate in another
region). Ficks second law characterizes these processes, which is expressed as:

dc

dt
= −dJx

dx
=

d

dx

(
D
dc

dx

)
, (2)

where dc
dt is the time rate of change of concentration at a particular position, x. If D is

assumed to be a constant, then [3,5,9,17]

dc

dt
= D

d2c

dx2
. (3)

In order to understand the role of these vacancies, in the present paper we study the
following mathematical model numerically, which is originally presented in [8,16]. This,
in fact, models the density of di-vacancies u and vacancies v in a metal, if two vacancies
unite to form a di-vacancy with frequency proportional to v2 and a di-vacancy breaks up
to form two vacancies with frequency proportional to u,

ut = Du(uxx + uyy) + v2 − 3u, 0 < x < 1, 0 < y < 1, 0 < t ≤ T0,

vt = Dv(vxx + vyy) − 2v2 + 6u, 0 < x < 1, 0 < y < 1, 0 < t ≤ T0. (4)

Here Du and Dv are diffusion coefficients of di-vacancies u and vacancies v, respectively,
and T0 is some positive number.

We assume the following boundary conditions on the unit square:

u(0, y, t) = v(0, y, t) = 1, u(1, y, t) = v(1, y, t) = 1,

u(x, 0, t) = v(x, 0, t) = 1, uy(x, 1, t) = vy(x, 1, t) = 0, (5)

and the initial conditions

u(x, y, 0) = v(x, y, 0) = 1. (6)
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2. Adomian Decomposition Method

For numerical purposes we take Du = 1 and Dv = 4, and consider the system (4) in the
form

ut = uxx + uyy + f(v) − 3u,

vt = 4vxx + 4vyy − 2f(v) + 6u, (7)

with the initial and boundary data given by Eqs. (5) and (6). Here f(v) = v2. The
decomposition method consists of approximating the solutions (u, v) of the above system
as an infinite series

u =

∞∑
n=0

un, v =

∞∑
n=0

vn, (8)

and decomposing f as [1]

f(v) =
∞∑
n=0

An, (9)

where An
′s are the Adomian polynomials defined by

An =
1

n!

dn

dλn

[
f

( ∞∑
n=0

λnvn

)]
λ=0

, n = 0, 1, 2 · · · . (10)

Applying the decomposition method, the system (7) can be written as

Ltu = Lxu+ Lyu+ f(v) − 3u,

Ltv = 4Lxv + 4Lxv − 2f(v) + 6u, (11)

where the notations Lt = ∂
∂t , Lx = ∂2

∂x2
, Ly = ∂2

∂y2
symbolize the linear differential op-

erators. We assume that the integration inverse operators Lt
−1, Lx

−1 and Ly
−1 exist,

and they are defined as Lt
−1 =

∫ t
0 (.)ds, Lx

−1 =
∫ x
0

∫ x
0 (.)dsds and Ly

−1 =
∫ y
0

∫ y
0 (.)dsds,

respectively. Therefore, applying on both sides of the equations of the system (11) with
the inverse operator Lt

−1 yield [10,11,13-15]

u(x, y, t) = u(x, y, 0) + Lt
−1(Lxu(x, y, t) + Lyu(x, y, t)) + Lt

−1(f(v) − 3u(x, y, t)),

v(x, y, t) = v(x, y, 0) + 4Lt
−1(Lxv(x, y, t) + Lyv(x, y, t))

− Lt
−1(2f(v) − 6u(x, y, t)). (12)

Using Eqs.(8) and (9) it follows that
∞∑
n=0

un = u(x, y, 0) + Lt
−1(Lx

∞∑
n=0

un + Ly

∞∑
n=0

un) + Lt
−1(

∞∑
n=0

An − 3

∞∑
n=0

un),

∞∑
n=0

vn = v(x, y, 0) + 4Lt
−1(Lx

∞∑
n=0

vn + Ly

∞∑
n=0

vn) − Lt
−1(2

∞∑
n=0

An − 6

∞∑
n=0

un). (13)

Therefore, one determines the iterates in the following recursive way:

u0 = u(x, y, 0),

un+1 = Lt
−1(Lxun + Lyun) + Lt

−1An − 3Lt
−1un, n = 0, 1, 2 · · · , (14)

and

v0 = v(x, y, 0),

vn+1 = 4Lt
−1(Lxvn + Lyun) − 2Lt

−1An + 6Lt
−1vn, n = 0, 1, 2 · · · . (15)
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We then define the solutions of the system (7) as

(u, v) =

(
lim
n→∞

n∑
k=0

uk, lim
n→∞

n∑
k=0

vk

)
. (16)

We now compute un, vn and An’s as follows:

f(v) = v2 =
∞∑
n=0

An = (v0 + v1 + v2 + ...)2

= (v20) + (2v0v1) + (2v0v2 + v21) + (2v0v3 + 2v1v2)

+ (2v0v4 + 2v1v3 + v22) + (2v0v5 + 2v1v4 + 2v2v3) + · · · . (17)

Therefore, we get the following Adomian polynomials [13-15]:

A0 = v20,

A1 = 2v0v1,

A2 = 2v0v2 + v21,

A3 = 2v0v3 + 2v1v2,

A4 = 2v0v4 + 2v1v3 + v22,

A5 = 2v0v5 + 2v1v4 + 2v2v3,
... (18)

3. Another Approach for Solving IBVP’s

Since our problem is an initial-boundary value problem on a finite domain, we use a
new successive initial solutions u?n and v?n at every iteration for (4)-(6) by applying a new
technique [2]

u?n(x, y, t) = un(x, y, t) + (1 − x)[1 − un(0, y, t)] + x[1 − un(1, y, t)] + (1 − y)[1 − un(x, 0, t)]

− yuny(x, 1, t). (19)

v?n(x, y, t) = vn(x, y, t) + (1 − x)[1 − vn(0, y, t)] + x[1 − vn(1, y, t)] + (1 − y)[1 − vn(x, 0, t)]

− yvny(x, 1, t). (20)

This method is also applicable for higher dimensional initial-boundary value problems by
mixed initial and boundary conditions [2]. By choosing initial approximations u0(x, y, t) =
1 + 10x(x − 1)y(y − 1)4t and v0(x, y, t) = 1 − 10x(x − 1)y(y − 1)4t, we obtain from (19)
and (20) that u?0(x, y, t) = u0(x, y, t) and v?0(x, y, t) = v0(x, y, t).

According to the Adomian decomposition method [1], we have an operator form for Eq.
(7) as

Ltu =
∂2u

∂x2
+
∂2u

∂y2
+ v2 − 3u,

Ltv = 4
∂2v

∂x2
+ 4

∂2v

∂y2
− 2v2 + 6u, (21)

where the differential operator is Lt = ∂
∂t , so that L−1t is integral operator Lt

−1 =
∫ t
0 (.)ds.

By operating with Lt
−1 on both sides of Eq. (21) and using a new technique of initial
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solutions u?n and v?n we have the following iteration formula [2]

u?n+1(x, y, t) =

∫ t

0

[
∂2u?n(x, y, s)

∂x2
+
∂2u?n(x, y, s)

∂y2
+ v?

2

n (x, y, s) − 3u?n(x, y, s)

]
ds,

v?n+1(x, y, t) =

∫ t

0

[
4
∂2v?n(x, y, s)

∂x2
+ 4

∂2v?n(x, y, s)

∂y2
− 2v?

2

n (x, y, s) + 6u?n(x, y, s)

]
ds.

(22)

For n = 0, we use the initial approximations u?0 and v?0 to get the first iteration

u?1(x, y, t) = 10y(y − 1)4t2 + 20x(x− 1)(y − 1)2(5y − 2)t2 − 2x(x− 1)y(y − 1)2t

− 25x(x− 1)y(y − 1)4t2 + 100x2(x− 1)2y2(y − 1)8t3/3,

v?1(x, y, t) = −40y(y − 1)4t2 − 80x(x− 1)(y − 1)2(5y − 2)t2 + 4x(x− 1)y(y − 1)2t

+ 40x(x− 1)y(y − 1)4t2 − 200x2(x− 1)2y2(y − 1)8t3/3. (23)

As a result, the two - term decomposition series solutions of the system become as follows

u(x, y, t) = 1 + 10x(x− 1)y(y − 1)4t+ 10y(y − 1)4t2 + 20x(x− 1)(y − 1)2(5y − 2)t2

− 2x(x− 1)y(y − 1)2t− 25x(x− 1)y(y − 1)4t2 + 100x2(x− 1)2y2(y − 1)8t3/3 · · · ,
v(x, y, t) = 1 − 10x(x− 1)y(y − 1)4t− 40y(y − 1)4t2 − 80x(x− 1)(y − 1)2(5y − 2)t2

+ 4x(x− 1)y(y − 1)2t+ 40x(x− 1)y(y − 1)4t2 − 200x2(x− 1)2y2(y − 1)8t3/3 · · · .
(24)
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Figure 1. Two term - decomposition series solutions (u, v) with Du = 1
and Dv = 4.
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Figure 2. Numerical solution of (4)-(6) with Du = Dv = 0 showing the
densities of di- vacancies (u) and vacancies (v).
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Figure 3. Numerical solution of (4)-(6) with Du = 1 and Dv = 4 showing
the densities of di- vacancies (u) and vacancies (v).
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4. Conclusion and results

In this paper, we have solved numerically a two dimensional diffusion reaction problem
modelling the density of di-vacancies and vacancies in a metal. To do this, in the first we
have used a decomposition method to get the series solution of the model. Further, we
have obtained the numerical solution by the method of lines (MOL). MOL is a technique
for solving partial differential equations in which all but one dimension is discretized.
MOL most often refers to the construction or analysis of numerical methods for partial
differential equations that proceeds by first discretizing the spatial derivatives only and
leaving the time variable continuous. This leads to a system of ordinary differential equa-
tions to which a numerical method for initial value ordinary equations can be applied. In
[8,16] the initial boundary value problem (4)-(6) has been solved by explicit and implicit
methods, and stability and convergence of the problem were discussed there. However,
we know that the explicit method is conditionally stable and the implicit method is time
consuming.

Figure 1 shows the two-term series solution of the model obtained by Adomians polyno-
mial whereas Figure 3 shows the numerical solutions obtained by MOL. We have achieved
a very good approximation to the numerical solutions until approximately t = 0.05, which
shows that the speed of convergence of decomposition method is very fast [4]. Also, one
gets a very close approximation until t = 0.5 by adding new terms to the series (24), which
is tedious, so that the overall errors can be made pretty small. Therefore, the constant T0
must be chosen small for convergence purposes.

In Figure 2, we present the numerical solutions of the model with zero diffusions to
see the behaviour of the densities of di-vacancies and vacancies compared to the nonzero
diffusions case (drawn in Figure 3). Apparently these two figures look similar until t = 0.05.
After that time, the solutions tend to constant solutions in the nonzero diffusions case while
the solutions separate in the zero diffusions case.

In conclusion, Adomians decomposition method provides very accurate numerical solu-
tions for nonlinear problems in comparison with other methods [4]. It also does not require
large computer memory and discretization of the variables and avoids linearization and
physically unrealistic assumptions.
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