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NUMERICAL SOLUTION OF NON-CONSERVATIVE LINEAR

TRANSPORT PROBLEMS

A.KORKMAZ1, H. K. AKMAZ2, §

Abstract. In this study, trigonometric cubic B-spline differential quadrature method
is developed for a linear transport problems constructed on the advection-diffusion equa-
tion. The weighting coefficients used in the derivative approximations are determined
by using the proposed algorithm. Following the space discretization of the advection-
diffusion equation, the resultant ODE system is integrated in time by using Rosenbrock
implicit method of order four. The accuracy and validity of the proposed method are
indicated by solving some initial boundary value problems (IBVPs) representing fade out
of an initial positive pulse. The error between the analytical and the numerical solutions
is measured by using the discrete maximum norm.
Keywords: Advection-diffusion equation, trigonometric cubic B-spline, differential quad-
rature method, transport.
AMS Subject Classification(2000): 65M70, 35Q99, 35Q80

1. Introduction

Advection-diffusion (AD) equation of the form

∂u(x, t)

∂t
+ α

∂u(x, t)

∂x
− β∂

2u(x, t)

∂x2
= 0 (1)

is widely used for various transport phenomena in various fields. In the equation, u =
u(x, t), α and β are the substance concentration, flow velocity, and diffusion coefficient,
respectively. The AD equation appeared to explain the unsteady heat transfer within the
film by reducing the number of independent variables from three to two by a similarity
transformation [1]. The same equation is used to express the transport for the solute
based on the mass conservation for a particular choice of the sink term as a function of
solute concentration [2].According to Chatwin and Allen [3], the AD equation (1) with
constant β [4] holds when the velocity field is statistically steady, the cross-sectional area
is independent of x and t, and the elapsed time is sufficiently large compared with the
time taken for thorough mixing of the contaminant over the cross-section area [5].
Having some analytical solutions in some cases, the AD equation attracts many researchers
studying on the numerical methods field to check the accuracy and the validity of the new
methods. A problem with steady state solution is numerically solved by two uncondi-
tionally stable fourth order compact implicit difference methods [6]. Several problems
constructed on a one-dimensional form with constant coefficients of the AD equation are

1Çankırı Karatekin University, Department of Mathematics, 18200, Çankırı, Turkey.
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of Mathematics, 2018; all rights reserved.

167



168 TWMS J. APP. ENG.MATH. V.8, N.1A, 2018

considered in the study of Dehghan [7]. The solutions of some initial-boundary value prob-
lems are obtained by various finite difference techniques covering second-order, third-order
and fourth-order upwind explicit, the weighted two-level explicit methods in that study.
Some various explicit methods containing the upwind explicit, the Lax-Wendroff and the
upwind, the Crank-Nicolson, the modified Siemieniuch-Gladwell type implicit algorithms
are constructed for the solution of a particular problem [8]. The equation is integrated in
time with the Crank-Nicolson implicit method. Karahan’s numerical approach determined
the solutions of some initial-boundary value problems by implicit spreadsheet simulations
with BTCS, upwind and Crank-Nicolson techniques [9]. A third order upwind spreadsheet
simulation scheme is designed for the solutions of the AD equation modeling environment
contamination [10]. Some unconditionally stable Saulyev explicit finite difference meth-
ods are also implemented for the solutions of some problems for the AD equation [11]. A
sixth-order compact finite difference method combined with Runge-Kutta time integration
technique is applied for three initial-boundary value problems modeling various transport
phenomena [15]. Some high order finite difference schemes are also implemented for the
numerical solutions of some problems for the AD equation[16].
Three problems covering pure advection case for the AD equation are numerically solved
by the Galerkin-finite element methods in the study [12]. In another comperative study,
Thongmoon and McKibbin[13] simulated transport problems by using natural cubic spline
method and some standart finite difference methods. The weighted residual least squares
method based on cubic B-splines is proposed with its error analysis for solute transport
processes problems governed by the AD equation [14]. Dag et al. [17] set up a finite
elements technique based on least square approach to solve the AD equation numerically.
In the algorithm, the authors used both linear and quadratic B-spline shape functions.
A high accurate algorithm based on classical and extended polynomial cubic B-spline
collocation method derived for the AD equation by Irk et al. [18]. The problems in that
study contains pure advective conservative substance transport and advective-diffusive
transport.
Kaya [19] integrated the one-dimensional AD equation by using the differential quadra-
ture approach based on polynomials and solved two initial boundary value problems as
example. He also compared his results with the explicit and the implicit finite difference
methods to check the performance of his technique. Kaya and Gharehbaghi’ s experimen-
tal study compared various methods from three different method classes, finite volume,
differential quadrature and finite difference schemes [20]. Korkmaz and Dag developed two
differential quadrature approaches based on polynomial type cubic B-spline functions for
the solutions of some initial boundary value problems for the AD equation [21]. In a re-
cent study, two variations of the differential quadrature method using quartic and quintic
B-spline functions as basis are combined with some Runge-Kutta methods of higher or-
ders to determine the solutions of some transport problems set up with AD equation [22].
A detailed eigenvalue based stability analysis of the proposed methods is also reported.
Korkmaz and Akmaz [23] developed a new differential quadrature technique based on
the non-polynomial exponential type B-splines to solve conservative and non-conservative
transport problems modeled by the AD equation. Nazir et al. [24] has developed a collo-
cation method based on trigonometric cubic B-spline functions to solve various IBVPs for
the AD equation.
Some of the methods to solve the AD equation are summarized above. In the present study,
we derive a new technique in the class of differential quadrature methods to solve two IB-
VPs for the AD equation. Since Bellman et al. [25] suggested, various forms of differential
quadrature method have been developed and implemented for various problems arising in
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different fields[26, 27, 28, 29, 30]. Some of these variations are based on polynomial cubic,
quartic and quintic B-splines or exponential B-splines [21, 22, 23, 31, 32, 33, 34, 35, 36].
Different from these variations, we determine the weighting coefficients required for the
derivative approximations by a new basis function set, trigonometric cubic B-spline func-
tions. We solve a Dirichlet type initial-boundary value problem for the AD equation with-
out ignoring the diffusion term. The space discretization of the governing equation will be
carried out by the trigonometric cubic B-spline differential quadrature method(T3BSDQ).
Using the differential quadrature approximations for the space derivatives of the dependent
variable the AD equation is reduced to an ordinary differential equation system of order
one in time variable. Then, the resultant system will be integrated in time by using im-
plicit Rosenbrock third-fourth order Runge-Kutta method with degree three interpolant.
The initial boundary value problem for the AD equation is chosen of the form

∂u(x, t)

∂t
+ α

∂u(x, t)

∂x
− β∂

2u(x, t)

∂x2
= 0, a ≤ x ≤ b, (2)

subject to the initial condition

u(x, 0) = f(x), a ≤ x ≤ b, (3)

and boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), (4)

where α and β are real constants.

2. Trigonometric cubic B-spline differential quadrature method(T3BSDQ)

Let us consider a uniform grid distribution P of the finite real domain [a, b] defined as
P : a = x1 < x2 < . . . < xN = b, h = xi − xi−1, i = 2, 3, ..., N . In differential quadrature
method, the rth order derivative of the function u(x, t) with respect to x at the distinct
point xi is approximated by the weighted functional values at each grid in the whole
domain. The mathematical notation of the approximation is

∂u(r)(x, t)

∂x(r)

∣∣∣∣∣
x=xi

=
N∑
j=1

w
(r)
ij u(xj , t), i = 1, 2, . . . , N, (5)

where w
(r)
ij are weighting coefficients of rth order derivative approximation for fixed t [25].

In this study, we choose the test functions as the trigonometric cubic B-splines given in
[37] as

Ci(x) =
1

θ


ω3(xi−2) , [xi−2, xi−1]
ω(xi−2)(ω(xi−2)φ(xi) + ω(xi−1)φ(xi+1)) + φ(xi+2)ω

2(xi−1) , [xi−1, xi]
ω(xi−2)φ

2(xi+1) + φ(xi+2)(ω(xi−1)φ(xi+1) + ω(xi)φ(xi+2)) , [xi, xi+1]
φ3(xi+2) , [xi+1, xi+2]
0 , otherwise

(6)
where

ω(xi) = sin
x− xi

2
,

φ(xi) = sin
xi − x

2
,

θ = sin
h

2
sinh sin

3h

2.
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Like other cubic B-splines[18, 38, 39], the trigonometric cubic B-spline set {C0(x), C1(x), ..., CN+1(x)}
forms a basis for the functions defined over the domain [a, b] [40].

2.1. Weighting coefficients of the first order derivative approximations. In order

to determine the weighting coefficients w
(1)
ij of the first order derivative approximation, each

trigonometric cubic B-spline function is substituted into the derivative approximation (5)
resulting the following linear equation system:

w
(1)
i,−1C0(x−1) + w

(1)
i,0C0(x0) + w

(1)
i,1C0(x1) = C

′
0(xi)

w
(1)
i,0C1(x0) + w

(1)
i,1C1(x1) + w

(1)
i,2C1(x2) = C

′
1(xi)

...

w
(1)
i,m−1Cm(xm−1) + w

(1)
i,mCm(xm) + w

(1)
i,m+1Cm(xm+1) = C

′
m(xi)

...

w
(1)
i,NCN+1(xN ) + w

(1)
i,N+1CN+1(xN+1) + w

(1)
i,N+2CN+1(xN+2) = C

′
N+1(xi)

This system contains N + 2 equations and N + 4 unknowns. It should be noted that
even though the grid points x−1, x0, xN+1, xN+2 are not in the problem domain, the nodal
values of B-splines at those points are used to determine the weighting coefficients. Adding
two more equations

w
(1)
i,−1C

′
0(x−1) + w

(1)
i,0C

′
0(x0) + w

(1)
i,1C

′
0(x1) = C

′′
0 (xi)

w
(1)
i,NC

′
N+1(xN ) + w

(1)
i,N+1C

′
N+1(xN+1) + w

(1)
i,N+2C

′
N+1(xN+2) = C

′′
N+1(xi)

to the system, the number of equations and unknowns becomes equal. In the matrix form,
the resulting linear equation system can be written as

C
′
0(x−1) C

′
0(x0) C

′
0(x1)

C0(x−1) C0(x0) C0(x1)
C1(x0) C1(x1) C1(x2)

C2(x1) C2(x2) C2(x3)

. . .
. . .

. . .

CN (xN−1) CN (xN ) CN (xN+1)
CN+1(xN ) CN+1(xN+1) CN+1(xN+2)

C
′
N+1(xN ) C

′
N+1(xN+1) C

′
N+1(xN+2)




w
(1)
i,−1

w
(1)
i,0

.

.

.

w
(1)
i,N+1

w
(1)
i,N+2

 =


C
′′
0 (xi)

C
′
0(xi)

C
′
1(xi)

.

.

.

C
′
N+1(xi)

C
′′
N+1(xi)


Solving the linear equation system above for each i, i = 1, 2, ..., N the weighting coefficients

of the first order derivative approximation w
(1)
ij are determined.

2.2. Weighting coefficients of the second order derivative approximations. In a

similar way, the weighting coefficients w
(2)
ij of the second order derivative approximation

can be determined. Substituting all trigonometric cubic B-spline functions into differential
quadrature approximation equation (5) gives a linear equation system with N+2 equations
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and N + 4 unknowns,

w
(2)
i,−1C0(x−1) + w

(2)
i,0C0(x0) + w

(2)
i,1C0(x1) = C

′′
0 (xi)

w
(2)
i,0C1(x0) + w

(2)
i,1C1(x1) + w

(2)
i,2C1(x2) = C

′′
1 (xi)

...

w
(2)
i,m−1Cm(xm−1) + w

(2)
i,mCm(xm) + w

(2)
i,m+1Cm(xm+1) = C

′′
m(xi)

...

w
(2)
i,NCN+1(xN ) + w

(2)
i,N+1CN+1(xN+1) + w

(2)
i,N+2CN+1(xN+2) = C

′′
N+1(xi)

In this case, we choose two parameters as w
(2)
i,−1 = w

(2)
i,N+2 = 0 for the convenience and

calculate the remaining weighting coefficients by solving the linear equation system
C0(x−1) C0(x0) C0(x1)

C1(x0) C1(x1) C1(x2)
C2(x1) C2(x2) C2(x3)

. . .
. . .

. . .

CN (xN−1) CN (xN ) CN (xN+1)
CN+1(xN ) CN+1(xN+1) CN+1(xN+2)


 w

(2)
i,0

.

.

.

w
(2)
i,N+1

 =

 C
′′
0 (xi)

C
′′
1 (xi)

.

.

.

C
′′
N+1(xi)


3. Discretization and Application of Boundary Conditions

When the differential quadrature approximates are substituted in to the AD equation (2)

instead of the terms ∂u(x,t)
∂x and ∂2u(x,t)

∂x2 , it reduces (in the nodal functional value form) to

∂u(x, t)

∂t

∣∣∣∣
x=xi

= −α
N∑
j=1

w
(1)
ij u(xj , t) + β

N∑
j=1

w
(2)
ij u(xj , t) (7)

where 1 ≤ i ≤ N and the time variable t is assumed to be fixed. Application of the
boundary condition given in (4) gives the ordinary differential equation system

∂u(x, t)

∂t

∣∣∣∣
x=xi

= −α
N−1∑
j=2

w
(1)
ij u(xj , t) + β

N−1∑
j=2

w
(2)
ij u(xj , t)

+ (−αw(1)
i1 + βw

(2)
i1 )g1(t) + (−αw(1)

iN + βw
(2)
iN )g2(t)

(8)

Now, the ordinary differential equation system of the unknowns u2(t) = u(x2, t), u3(t) =
u(x3, t), . . ., uN−1(t) = u(xN−1, t) can be integrated in time by using any algorithm. Due
to its large stability region we prefer Rosenbrock’ s implicit third-fourth order algorithm[41].

4. Test Problem 1

The initial boundary value problem demonstrating the fade out of an initial pulse is
constructed with the initial condition

u(x, 0) = exp

(
−(x− x0)2

β

)
(9)

and the homogeneous Dirichlet boundary conditions

u(0, t) = 0

u(9, t) = 0
(10)
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Figure 1. Fade out of an initial pulse simulation

at both ends of the problem interval [0, 9]. This problem models fade out of an initial pulse
of unit height and centered at x = x0 initially. The analytical solution of this problem is
given by [42] as:

u(x, t) =
1√

4t+ 1
exp

(
−(x− x0 − αt)2

β(4t+ 1)

)
(11)

The initial pulse moves along the horizontal axis with the velocity α. Due to effects of
both advective and diffusive terms, the initial pulse fades out as it travels. In order to
accomplish the simulation, the diffusion coefficient β, the velocity α and the initial peak
position x0 are fixed as 0.005, 0.8 and 1, respectively. The solution algorithm for the
simulation of the motion is run till the terminating time t = 5. The simulation is plotted
for ∆t = 0.25 and h = 0.05 in Fig 1. The pulse travels to the right along the axis as
its height decreases. The peak reaches to x = 5 at the end of the simulation as expected
because of the constant speed α = 0.8. In Fig 2, the maximum errors during the simulation
is sketched. When examined, it can be concluded that the maximum error is decreasing
as time goes owing to the fade out. This situation will keep till the pulse crashes to the
right end of the domain. In order to see the effect of the choice of space step length in the
method, we have tested the same algorithm for various values of h with a fixed time step
length ∆t. The maximum errors at the terminating time t = 5 are tabulated in Table 1
for various space step lengths. Even though, to reduce the space step length from 0.2 to
0.1 improves the accuracy of the results in decimal digits, the reduction of it to 0.05 does
not provide such an improvement in results.

5. Test Problem 2

Another fade out problem for the AD equation is constructed with the initial condition

u(x, 0) = exp(−(x− x0)2

2δ20
) (12)
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Figure 2. Maximum error-time graph for Problem 1

Table 1. Maximum errors

h N ∆t Maximum error

0.2 46 0.25 2.576× 10−2

0.1 91 0.25 7.841× 10−3

0.05 181 0.25 7.401× 10−3

where x0 is the initial peak position. The homogeneous Dirichlet boundary data at both
ends are used due to being compatible with the property u(x, t) → 0 as |x| → 0 of the
analytical solution. This solution also represents a non-conservative fade out of an initial
pulse of unit height as propagating to the right along the horizontal axis, Fig 3. The
analytical solution of this problem is

u(x, t) =

(
δ0

δ20 + 2βt

)
exp

(
−(x− x0 − αt)2

2δ2

)
(13)

where δ2 = δ20 + 2βt[43]. The numerical solution of this problem is achieved by using the
discretization parameters h = 0.02 and ∆t = 0.1 in the finite problem interval [0, 2]. In
order to reduce the boundary effect, the simulation is ended at the time t = 1.0. The
numerical simulation of the problem is observed in a good accordance with the analytical
solution and the results of the previous study [43]. The maximum error norm values
are depicted in Fig 4. Parallel to the fade out of the initial pulse the error between the
numerical solution and the analytical solution also decreases as time proceeds.

The effect of the number of the points used in the space discretization is also studied,
Table 2. The number of points is chosen as 26 in the first experiment. Then, the maximum
error is measured in three decimal digits. When the space step size is decreased half, the
maximum error is determined in ten decimal digits at the simulation ending time. The
increase of the number of points to 101 does not improve the results in decimal digits.
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Figure 3. Fade out of an initial pulse of unit height

Figure 4. Maximum error-time graph for Problem 2

6. Conclusion

In the study, we derive a new differential quadrature technique to calculate the weighting
coefficients in a semi-explicit form. Substituting trigonometric cubic B-spline into the
fundamental differential quadrature approximation for each distinct point in the problem
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Table 2. Maximum errors at various time for the Problem 2 at t = 1

h N ∆t Maximum error

0.08 26 0.1 2.872× 10−3

0.04 51 0.1 4.064× 10−10

0.02 101 0.1 4.905× 10−10

interval leads linear systems of equations with three-banded coefficient matrix. Solving this
system, we determine the weighting coefficients of the derivative approximations at nodes.
Substituting the space derivative approximations obtained by the differential quadrature
method into the AD equation, we construct a system of ordinary differential equation of
order one in time variable. Then, we integrate this system with respect to time variable
by implicit third-fourth order Rosenbrock method due to its strong stability properties.
In order to see the validity of the suggested algorithm, we solve some IBVPs for the AD
equation. The simulation plots of the numerical results show that the results are in a
good agreement with the analytical results. The plots indicating the maximum errors
agree that the errors decrease as time goes due to accuracy, validity and stability of the
method and the natures of the models. The implementation of the suggested algorithm
can be extended to the other problems for the nonlinear equations and systems.
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