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1. Introduction

The class of co Kähler, Sasakian and Kenmotsu manifolds are precisely the three classes
which occur in a classification theorem of connected almost Hermitian manifolds M2m+1

for the automorphism group have maximum dimension (m+ 1)2 [3]. Tanno [16] classified
connected almost contact metric manifold whose automorphism group possess the maxi-
mum dimension. The sectional curvature of plane sections containing ξ is constant, say c,
in such a manifold. He also proved that it can be divided into three classes:
(i) homogeneous normal contact Riemannian manifolds with c > 0,
(ii) global Riemannian products of a line or a circle with a Kähler manifold of constant
holomorphic sectional curvature, if c = 0 and
(iii) a wrapped product space R×f C, if c < 0.
It is well known that the manifold of class (i) is characterized by admitting a Sasakian
structure. The manifold of class (ii) is characterized by a tensorial relation admitting a
cosymplectic structure. In [18], Kenmotsu characterized the differential geometric prop-
erties of the manifolds of class (iii); the structure so obtained is now called a Kenmotsu
structure. These structure are not Sasakian [18] in general. In the Grey Hervella classifica-
tion of almost Hermitian manifolds [17], there appears a class, W4 of Hermitian manifolds,
which are closely related to locally conformal Kaehler manifolds [5]. An almost contact
metric structure on a manifold is called a trans Sasakian structure [19] if the product man-
ifold M × R belongs to the class W4. In [22], the class C6

⊗
C5 coincides with the class

of trans Sasakian structure of type (α, β). A trans Sasakian manifold of type (0, 0), (0, β)
and (α, 0) are known as cosymplectic [1], β−Kenmotsu and α−Sasakian manifolds [4]
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respectively. The different geometrical properties of trans Sasakian manifolds have stud-
ied by De and Tripathi [23], Bagewadi and Venkatesha [24], Bagewadi and Girish [25], De
and Sarkar [21], China and Gonzales [20], Kim, Prasad and Tripathi [26] and many others.

In this paper, author studies the properties of trans Sasakian manifolds and establish
some geometrical properties in the form of theorems and lemma.

2. Preliminaries

If on an n−dimensional differentiable manifold Mn, (n = 2m + 1), of differentiability
class Cr+1, there exists a vector valued real linear function φ, a 1−form η, the associated
vector field ξ and the Riemannian metric g satisfying

(a) φ2X = −X + η(X)ξ, (b) η(φX) = 0, (1)

and
g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2)

for arbitrary vector fields X and Y , then (Mn, g) is said to be an almost contact metric
manifold and the structure {φ, η, ξ, g} is called an almost contact metric structure to Mn

[1].
In view of (1) (a), (1) (b) and (2), we conclude

η(ξ) = 1, g(X, ξ) = η(X), φ(ξ) = 0 (3)

and
g(X,φY ) + g(φX, Y ) = 0. (4)

An almost contact metric manifold (Mn, φ, ξ, η, g) is called a trans Sasakian structure
[19] if (Mn

⊗
R, J,G) belongs to the class W4 of the Gray Hervella classification of almost

Hermitian manifolds [17], where J is the complex structure and G be the Hermitian metric
on (Mn

⊗
R). This leads to the following expression

(DXφ)(Y ) = α{g(X,Y )ξ − η(Y )X}+ β{g(φX, Y )ξ − η(Y )φX}, (5)

for smooth functions α and β on Mn, and we say that the trans Sasakian structure of type
(α, β) [14]. In particular, if α = 0 and β = 0, then (5) gives

(DXφ)(Y ) = 0,

which is characterized by cosymplectic structure [1]. Also if α = 0 and β = 1; α = 1 and
β = 0, then (5) becomes

(DXφ)(Y ) = g(φX, Y )ξ − η(Y )φX;

(DXφ)(Y ) = g(X,Y )ξ − η(Y )X,

which are characterized by Kenmotsu and Sasakian structures [14] respectively. From (5),
it follows that

DXξ = −αφX + β(X − η(X)ξ). (6)

Also the following relations hold in a trans Sasakian manifold

(DXη)(Y ) = −αg(φX, Y ) + β(φX, φY ), (7)

R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ) + 2αβ(η(Y )φX − η(X)φY )

+(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y, (8)

R(ξ,X)ξ = (α2 − β2 − ξβ)(η(X)ξ −X), (9)

η(R(X,Y )Z) = (α2 − β2){η(X)g(Y, Z)− η(Y )g(X,Z)}ξ, (10)
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2αβ + ξα = 0, (11)

S(X, ξ) = (2m(α2 − β2)− ξβ)η(X)− (2m− 1)Xβ − (φX)α, (12)

Qξ = (2m(α2 − β2)− ξβ)ξ − (2m− 1)gradβ + φ(gradα), (13)

for arbitrary vector fields X, Y and Z. If

(2m− 1)gradβ = φ(gradα), (14)

then (12) and (13) become

S(X, ξ) = 2m(α2 − β2)η(X), (15)

Qξ = 2m(α2 − β2)ξ. (16)

A Riemannian manifold Mn is said to be η−Einstein if its Ricci tensor S assume the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (17)

for arbitrary vector fields X and Y , where a and b are smooth functions on (Mn, g) [1].
In 1971, Pokhariyal and Mishra [9] defined a tensor W ∗ of type (1, 3) on a Riemannian
manifold as

W ∗(X,Y )Z = R(X,Y )Z − 1

4m
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ] (18)

so that ′W ∗(X,Y, Z, U)
def
= g(W ∗(X,Y )Z,U) =′ W ∗(Z,U,X, Y ) and ′W ∗ijklw

ijwkl = ′Wijklw
ijwkl,

where ′W ∗ijkl and ′Wijkl are components of ′W ∗ and ′W , wkl is a skew-symmetric tensor

[7], [15], Q is the Ricci operator, defined by S(X,Y )
def
= g(QX,Y ) and S is the Ricci tensor

for arbitrary vector fields X, Y , Z. Such a tensor field W ∗ is known as m−projective
curvature tensor. Ojha [7], [8] studied the properties of m−projective curvature tensor in
Sasakian and Kähler manifolds. He has also shown that it bridges the gap between confor-
mal curvature tensor, conharmonic curvature tensor and concircular curvature tensor on
one side and H−projective curvature tensor on the other. The properties of m−projective
curvature tensor studied by Chaubey and Ojha [10], Chaubey, Prakash and Nivas [12],
Taleshian and Asghari [29], De and Mallick [28], Chaubey ([11]; [13]; [35]; [36]), Prakash
[37] and other geometers.

3. m−projectively flat trans Sasakian manifold

In view of W ∗ = 0, (18) becomes

R(X,Y )Z =
1

4m
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ]. (19)

Replacing Z by ξ in (19) and then using (3), (8) and (15), we obtain

(α2 − β2)(η(Y )X − η(X)Y ) + 2αβ(η(Y )φX − η(X)Y ) + (Y α)φX − (Xα)φY

+(Y β)φ2X − (Xβ)φ2Y =
1

4m
[2m(α2 − β2){η(Y )X − η(X)Y }+ η(Y )QX − η(X)QY ].

Again substituting ξ in place of X in the above relation and using (1), (3), (11) and (16),
we have

QY = 2m[(α2 − β2)− 2ξβ]Y + 4m(ξβ)η(Y )ξ, (20)

which gives

S(Y,Z) = ag(Y,Z) + bη(Y )η(Z), (21)

where

a = 2m(α2 − β2 − 2ξβ), b = 4m(ξβ). (22)
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Contracting (20) with respect to Y and using (3), we get

r = (2m+ 1)(2m(α2 − β2)− (m+ 1)ξβ). (23)

Hence we can state the following:

Theorem 3.1. If an m−projectively flat trans-Sasakian manifold of type (α, β) and of di-
mension (2m+1), satisfies φ(gradα) = (2m−1)gradβ, then the manifold is an η−Einstein
manifold and the scalar curvature is given by (23).

In consequence of (3), (20), (21) and (22), (19) becomes

′R(X,Y, Z, U) = a1{g(Y, Z)g(X,U)− g(X,Z)g(Y, U)}+ b1{η(Y )η(Z)g(X,U)

−η(X)η(Z)g(Y,U) + η(X)η(U)g(Y,Z)− η(Y )η(U)g(X,Z)}, (24)

where a1 = a
2m , b1 = b

4m and ′R(X,Y, Z, U) = g(R(X,Y )Z,U). As a generalization of
constant curvature, the notion of the manifold of quasi-constant curvature arose during the
study of conformally flat hyper surfaces by Chen and Yano [6]. A Riemannian manifold
(Mn, g), n > 3, is said to be the manifold of quasi-constant curvature [6] if it is conformally
flat and its curvature tensor ′R of type (0, 4) is of the form

′R(X,Y, Z, U) = a1{g(Y,Z)g(X,U)− g(X,Z)g(Y,U)}+ a2{T (Y )T (Z)g(X,U)

−T (X)T (Z)g(Y, U) + T (X)T (U)g(Y,Z)− T (Y )T (U)g(X,Z)}, (25)

where T is nowhere vanishing 1 − form, i.e., g(X,λ) = T (X) for unit vector field λ and
a1, a2 are scalars of which a2 6= 0. It can be easily seen that the manifold is conformally
flat if the curvature tensor ′R takes the form (25). Mocanu [34] pointed that the manifolds
introduced by Chen and Yano and Vranceanu are same. Thus, a Riemannian manifold is
said to be the manifold of quasi-constant curvature if the curvature tensor ′R satisfies the
relation (25). Hence, by virtue of (25), it follows from (24) that an m−projectively flat
trans-Sasakian manifold is a manifold of quasi-constant curvature. Hence we state:

Theorem 3.2. Every m−projectively flat trans-Sasakian manifold of type (α, β) and of
dimension (2m+1), satisfies φ(gradeα) = (2m−1)gradβ, is a manifold of quasi-constant
curvature.

4. m−projectively flat trans-Sasakian manifold satisfying R(X.Y ).S = 0.

By taking R(X,Y ).S = 0, we can easily find S(R(X,Y )Z,U) + S(Z,R(X,Y )U) = 0
which gives

g(Y,Z)S(QX,U)− g(X,Z)S(QY,U) + g(Y,U)S(Z,QX)− g(X,U)S(Z,QY ) = 0, (26)

after consideration of (19). Substituting Y = Z = ξ in (26) and then using (3), (4), (15)
and (16), we get

S(QX,U)−4m2(α2−β2)2η(X)η(U)+2m(α2−β2)η(U)η(QX)−4m2(α2−β2)2g(X,U) = 0.
(27)

Let λ be an eigen value of the endomorphism Q corresponding to an eigen vector X, then
QX = λX and hence the equation (27) becomes

(λ2 − 4m2(α2 − β2)2)g(X,U) + {2mλ(α2 − β2)− 4m2(α2 − β2)2}η(X)η(U) = 0. (28)

Putting U = ξ in (28) and then using (3), we obtain

{λ2 + 2mλ(α2 − β2)− 8m2(α2 − β2)2}η(X) = 0. (29)



S. K. CHAUBEY: TRANS-SASAKIAN MANIFOLDS SATISFYING CERTAIN CONDITIONS 309

Since the vector field X can not be perpendicular to the characteristic vector field ξ,
therefore (29) gives

λ2 + 2mλ(α2 − β2)− 8m2(α2 − β2)2 = 0, (30)

which follows that the symmetric endomorphism Q of the tangent space corresponding to
S has two different non-zero eigen values namely 2m(α2 − β2) and −4m(α2 − β2). Thus
we can state:

Theorem 4.1. In a trans-Sasakian manifold of type (α, β) and dimension (2m+1) satisfy-
ing φ(gradα) = (2m−1)gradβ, which is m−projectively flat together with R(X,Y ).S = 0,
the symmetric endomorphism Q of the tangent space corresponding to S has two different
non-zero eigen values namely 2m(α2 − β2) and −4m(α2 − β2).

Let λ1 and λ2 be the eigen values corresponding to the Ricci operator Q and multiplicity
of λ1 be p, then multiplicity of λ2 is 2m+ 1− p. Since the scalar curvature is the trace of
the Ricci operator Q, therefore

r = pλ1 + (2m+ 1− p)λ2 (31)

and

λ1 = −4m(α2 − β2); λ2 = 2m(α2 − β2). (32)

From equation (19), we have

4mg(R(X,Y )Z,U) = g(Y, Z)g(QX,U)−g(X,Z)g(QY,U)−S(X,Z)g(Y,U)+S(Y, Z)g(X,U).
(33)

Let us put X = U = ei, where {ei}, i = 1, 2, ...(2m+ 1), is the set of orthonormal basis of
the tangent space at each of Mn and then summing for i = 1, 2, ...(2m+ 1), we get

S(Y,Z) =
r

2m+ 1
g(Y,Z). (34)

Again replacing Y and Z by ξ in (34) and using (3) and (15), we find

r = 2m(2m+ 1)(α2 − β2). (35)

By virtue of equations (31), (32) and (35), we get p = 0, which shows that the dimension
of the manifold remains unaltered. Again, if V1 and V2 denote the eigen subspaces cor-
responding to the eigen values λ1 and λ2 respectively of the manifold, then the sectional
curvature on V1 and V2 for the vector fields X and Y are λ1

2m and λ2
2m respectively. Since

λ1 = −4m(α2 − β2) 6= 0, (α 6= β), therefore we state the following:

Theorem 4.2. If an m−projectively flat trans-Sasakian manifold of type (α, β) and di-
mension (2m + 1) satisfying φ(gradα) = (2m − 1)gradβ and R(X,Y ).S = 0, then the
manifold has no flat points.

In consequence of (3) and (15), (27) becomes

S2(X,U) = 4m2(α2 − β2)2g(X,U), (36)

where S2(X,U)
def
=S(QX,U). It is well known that

Lemma 4.1. If θ = g∧̄A be the Kulkarni-Nomizu product of g and A, where g being
Riemannian metric and A be a symmetric tensor of type (0, 2) at point x of a semi-
Riemannian manifold (Mn, g). Then the relation θ.θ = αQ(g, θ), α ∈ R, is satisfied at x
if and only if the condition A2 = αA+ λg, λ ∈ R holds at x [32].

In consequence of (36) and lemma (4.1), we state the following theorem:
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Theorem 4.3. If an m− projectively flat trans-Sasakian manifold of type (α, β) and
dimension (2m + 1) satisfying φ(gradα) = (2m − 1)gradβ and R(X,Y ).S = 0, then
θ.θ = 0, where θ = g∧̄A and α = 0.

5. Trans-Sasakian manifold satisfying R(X,Y ).W ∗ = 0.

In consequence of (3) and (10), (18) becomes

η(W ∗(X,Y )Z) = (α2 − β2){η(X)g(Y,Z)− η(Y )g(X,Z)}

− 1

4m
{η(X)S(Y, Z)− η(Y )S(X,Z) + g(Y,Z)η(QX)− g(X,Z)η(QY ). (37)

Replacing Z by ξ in (37) and using (1), (3) and (15), we obtain

η(W ∗(X,Y )ξ) = 0. (38)

Again substituting X = ξ in (37) and using (3), (15) and (16), we find

η(W ∗(ξ, Y )Z) =
1

2
(α2 − β2)g(Y,Z)− 1

4m
S(Y, Z). (39)

We have,

(R(X,Y ).W ∗)(Z,U)V = R(X,Y )W ∗(Z,U)V −W ∗(R(X,Y )Z,U)V

−W ∗(Z,R(X,Y )U)V −W ∗(Z,U)R(X,Y )V.

After considering R(X,Y ).W ∗ = 0 in above, we can easily find that

R(X,Y )W ∗(Z,U)V−W ∗(R(X,Y )Z,U)V−W ∗(Z,R(X,Y )U)V−W ∗(Z,U)R(X,Y )V = 0.

Taking inner product of above equation with ξ, we obtain

g(R(X,Y )W ∗(Z,U)V, ξ)− g(W ∗(R(X,Y )Z,U)V, ξ)

−g(W ∗(Z,R(X,Y )U)V, ξ)− g(W ∗(Z,U)R(X,Y )V, ξ) = 0.

Putting X by ξ in the above equation and using (3), (8), (10) and (37), we obtain

−′W ∗(Z,U, V, Y ) + η(Y )η(W ∗(Z,U)V )− η(Z)η(W ∗(Y, U)V )− η(U)η(W ∗(Z, Y )V )

+g(Y,Z)η(W ∗(ξ, U)V ) + g(Y,U)η(W ∗(Z, ξ)V )− η(V )η(W ∗(Z,U)Y ) = 0. (40)

Substituting Y = Z = ei in (40) and using (38) and (39), where {ei, i = 1, 2, 3, ..., (2m+1)}
be an orthonormal basis of the tangent space at any point and then taking the sum for i,
1 ≤ i ≤ (2m+ 1), we obtain

S(U, V ) = 4m[{ r
4m
−m(α2 − β2)}g(U, V ) + { r

4m
− 2m+ 1

2
(α2 − β2)}η(U)η(V )], (41)

which gives

QU = 4m[{ r
4m
−m(α2 − β2)}U + { r

4m
− 2m+ 1

2
(α2 − β2)}η(U)ξ], (42)

and

r = 2m(2m+ 1)(α2 − β2). (43)

Theorem 5.1. A trans-Sasakian manifold of type (α, β) and dimension (2m+1) satisfying
R(X,Y ).W ∗ = 0 is an η−Einstein manifold and it is a manifold of constant curvature
2m(2m+ 1)(α2 − β2).
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6. On special weakly Ricci-symmetric trans-Sasakian manifold

An n−dimensional trans-Sasakian manifold (Mn, g) is called a special weakly Ricci-
symmetric manifold (SWRS)n if

(DXS)(Y,Z) = 2π(X)S(Y,Z) + π(Y )S(X,Z) + π(Z)S(X,Y ), (44)

where π is a 1−form and is defined by π(X) = g(X, ρ) for associated vector field ρ
([30];[31]). Taking Z = ξ in (44) and using (3) and (15), we get

(DXS)(Y,Z) = 2m(α2 − β2){2π(X)η(Y ) + π(Y )η(X)}+ π(ξ)S(X,Y ). (45)

We also know that,

(DXS)(Y, ξ) = DXS(Y, ξ)− S(DXY, ξ)− S(Y,DXξ). (46)

In consequence of (6) and (15), (46) becomes

(DXS)(Y, Z) = DX{2m(α2 − β2)η(Y )} − 2m(α2 − β2)η(DXY )

−S(Y,−αφX + β(X − η(X)ξ)). (47)

Equation (47) with equations (3), (7), (15), (45) and X = ξ becomes

6m(α2 − β2)η(Y )π(ξ) + 2m(α2 − β2)π(Y ) = 0. (48)

Finally taking Y = ξ in (48) and using (3), we get

8m(α2 − β2)π(ξ) = 0, (49)

which implies
π(ξ) = 0. (50)

In view of (50), (48) gives
π(Y ) = 0,

which is inadmissible. Thus, we state the following theorem:

Theorem 6.1. A trans-Sasakian manifold (Mn, g) of type (α, β) and dimension n satis-
fying φ(gradeα) = (2m − 1)gradβ can not be a special weakly Ricci-symmetric manifold
(SWRS)n.

Now taking cyclic sum of (44), we get

(DXS)(Y,Z) + (DY S)(Z,X) + (DZS)(X,Y )

= 4[π(X)S(Y,Z) + π(Y )S(Z,X) + π(Z)S(X,Y )]. (51)

If (Mn, g) admits a cyclic Ricci tensor, i. e. (DXS)(Y, Z)+(DY S)(Z,X)+(DZS)(X,Y ) =
0, then (51) reduces to

π(X)S(Y,Z) + π(Y )S(Z,X) + π(Z)S(X,Y ) = 0. (52)

Taking Z = ξ in (52) and using (15), we get

2m(α2 − β2){π(X)η(Y ) + π(Y )η(X)}+ π(ξ)S(X,Y ) = 0. (53)

Again replacing X by ξ in (53) and using (3) and (15), we obtain

2m(α2 − β2){2π(ξ)η(Y ) + π(Y )} = 0. (54)

Also taking Y = ξ in (54) and using (3), we have

π(ξ) = 0. (55)

In consequence of (55), (54) gives π(Y ) = 0, which is a contradiction. Thus we state the
following:
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Theorem 6.2. If a trans-Sasakian manifold (Mn, g) of type (α, β) and dimension n sat-
isfying φ(gradα) = (2m − 1)gradβ with a cyclic Ricci tensor, then (Mn, g) can not be a
special weakly Ricci-symmetric manifold (SWRS)n.

7. Generalized Ricci-recurrent trans-Sasakian manifold

A non-flat Riemannian manifold Mn of dimension greater than two is called a general-
ized Ricci-recurrent manifold [27] if its Ricci tensor S satisfies the condition

(DXS)(Y,Z) = A(X)S(Y,Z) +B(X)S(Y,Z), (56)

where D is the Riemannian connection of the Riemannian metric g and A, B are 1−forms
associated with the vector fields P1, P2 respectively on M , i.e.

A(X) = g(X,P1);B(X) = g(X,P2), (57)

for arbitrary vector fields X, Y and Z. If the 1−form B vanishes identically, the manifold
Mn reduces to the well know Ricci-recurrent manifold [2].

Let Mn be a generalized Ricci-recurrent trans-Sasakian manifold. It is known that

(DXS)(Y,Z) = XS(Y, Z)− S(DXY,Z)− S(Y,DXZ) (58)

for arbitrary vector fields X, Y and Z. From equations (56) and (58), we get

A(X)S(Y,Z) +B(X)S(Y, Z) = XS(Y,Z)− S(DXY,Z)− S(Y,DXZ).

Replacing Z by ξ in above equation and using (1), (3), (6) and (15), we find

{2m(α2 − β2)A(X) +B(X)}η(Y )

= 2m(α2 − β2)(DXη)(Y ) + αS(Y, φX) + βS(Y, φ2X). (59)

In consequence of (7), (59) becomes

{2m(α2 − β2)A(X) +B(X)}η(Y )− βS(Y, φ2X)

= −2m(α2 − β2){αg(φX, Y ) + βg(Y, φ2X)}+ αS(Y, φX). (60)

Putting Y = ξ in (60) and using (3), we obtain

2m(α2 − β2)A(X) +B(X) = 0. (61)

Hence we can state the following theorem:

Theorem 7.1. If a generalized Ricci-recurrent trans-Sasakian manifold of type (α, β) and
dimension (2m+ 1), satisfies φ(gradα) = (2m− 1)gradβ, then the associated vector fields
of the 1−forms A and B are in the opposite direction.

Let us consider that a generalized Ricci-recurrent trans-Sasakian manifold Mn admits
a cyclic Ricci tensor S, i. e.,

(DXS)(Y,Z) + (DY S)(Z,X) + (DZS)(X,Y ) = 0, (62)

for arbitrary vector fields X, Y and Z. In view of (56), (62) follows that

A(X)S(Y, Z) +B(X)g(Y,Z) +A(Y )S(Z,X)

+B(Y )g(Z,X) +A(Z)S(X,Y ) +B(Z)g(X,Y ) = 0. (63)

Replacing Z by ξ in (63) and using (2) and (16), we find

{2m(α2 − β2)A(X) +B(X)}η(Y ) +A(ξ)S(X,Y )

= {2m(α2 − β2)A(Y ) +B(Y )}η(X) +B(ξ)g(X,Y ). (64)



S. K. CHAUBEY: TRANS-SASAKIAN MANIFOLDS SATISFYING CERTAIN CONDITIONS 313

In view of (61), (64) gives

A(ξ)S(X,Y ) = −B(ξ)g(X,Y ), (65)

where B(ξ) = −2m(α2 − β2)A(ξ). Thus we state:

Theorem 7.2. If a generalized Ricci-recurrent trans-Sasakian manifold of type (α, β) and
dimension (2m + 1), admits a cyclic Ricci tensor and φ(gradeα) = (2m − 1)gradβ, then
manifold is an Einstein manifold, provided A(ξ) 6= 0.
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