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VULNERABILITY IN NETWORKS

V.AYTAÇ1, §

Abstract. Recently defined exponential domination number is reported as a new mea-
sure to graph vulnerability. It is a methodology, emerged in graph theory, for vulner-
ability analysis of networks. Also, it gives more sensitive results than other available
measures. Exponential domination number has great significance both theoretically and
practically for designing and optimizing networks. In this paper, it is studied how some
of the graph types perform when they suffer a vertex failure. When its vertices are
corrupted, the vulnerability of a graph can be calculated by the exponential domination
number which gives more information about the characterization of the network.

Keywords: Graph vulnerability, network design and communication, domination, expo-
nential domination number, robustness, thorn graphs.
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1. Introduction

Networks surround us. In the real world, networks with non-trivial topology have a
broad variety of utilizations. These real-world utilizations can be exemplified as: The In-
ternet, world trade Web, metabolic networks, electricity networks, supply chain networks,
road networks, etc. With the introduction of small-world networks and complex networks’
scale-free properties in the literature, trying to understand the principles of organization
of complex networks has attracted considerable interest within half a decade. Complex
networks have a multidisciplinary research and application domain. Within this domain,
there are also branches of different sciences such as social sciences and information as
well as basic sciences. The staple topic that is used to get the measure of stability and
robustness of complex networks is that of vulnerability. The total resistance of a network’s
underlying graph can be defined as the vulnerability of that network. While obtaining an
underlying graph of a network, main components are the nodes and the links. The links
connect two nodes that mutually send information. Both the node and link vulnerability
of complex networks can be examined; that is, it is possible to discuss how the network is
affected by removing any combination of nodes and links from the network.
Various methods have been introduced to characterize vulnerability of networks. Assume
that G = (V (G), E(G)) is a graph which has these characteristics : non-directional, simple
and connected. Generally, a network is modeled as a non-directional and simple graph.
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In this model, while processors are taken as vertices, connections between the processors
are taken as edges. As the most powerful mathematical tool, graph theory plays an im-
portant role to analyze and understand the architecture of a network. When the network
requirements are stated within theoretical graph parameters, the analyzing and designing
problem of networks turns into obtaining a graph G that meets some particularized re-
quirements.
In the literature, several metrics have been given to determine the robustness value of
nets. Moreover, to calculate the reliability of nets some parameters which belong to graph
theory have been used. For instance, connectivity, toughness, integrity, domination, scat-
tering [3, 13, 16]
In this study, the non-directional, finite and simple graph is within our care. Also, it does
not have loops and multiple edges. Let’s take a graph G = (V (G), E(G)) by assuming
V is a set of vertices and E is a set of edges. Wherein V (G) 6= ∅ and E(G) is a subset
of V (G) × V (G). Let’s remember some common definitions that we will encounter and
use in this study. The complement G of a graph G has V (G) as its vertex sets, but two
vertex are adjacent in G if only if they are not adjacent in G. That is, to generate the
complement of a graph, one fills in all the missing edges required to form a complete
graph, and removes all the edges that were previously there. The open neighborhood set
of any vertex v in V (G) is formed by the vertices u ∈ V (G) which are neighbors of the
vertex v and this set is represented as NG(v). Besides, the closed neighborhood set of any
vertex v ∈ V (G) can be obtained from by adding v to its open neighborhood set. The
closed neighborhood set represented by NG[v]. The cardinality of an open neighborhood
set of a vertex v gives us the degree of v and it is represented by deg(v). Consider the
path with the minimum length connecting any two u1 and u2 vertices of G, the length of
this path is denoted by d(u1, u2). This is indicated by d(u1, u2) = ∞ if there is no path
connecting u1 and u2 vertices. It is also indicated by d(u1, u2) = 0 if u1 and u2 are the
same. The maximum value of the minimum paths between each pair of (u1, u2) vertices
in G, is defined as diameter. It is denoted by diam(G)[8-9].
Let S is a subset of the vertices set of G. If the elements of S are subtracted from the
vertex set V (G), we get difference set. If all vertices of the set we have is connected to at
least one vertex in the set S, the set we have obtained by subtracting is a dominating set.
Within G’s all dominating sets, the size of the dominating set which has the minimum
cardinality is named as the domination number of graph G and it is indicated by γ(G).
The definition given immediately above is a rapidly growing and significant research topic
that has attracted interest in the graph theory in recent years. This rapid growth can be
explained by the variety of its applicability to real-world problems as well as to theory.
For instance, facility location problems are modeled naturally as dominating sets in graph
theory. The number of domination is foremost significant vulnerability parameters for
nets. There are several domination parameters in the literature [2, 4-5, 12].
In real life applications, we can encounter that a vertex can affect both its neighborhood
vertices and all vertices within a given distance. Distance domination is a kind of this
situation. There has been no framework yet in which the effect of a vertex broadens over
its neighbors while decreasing by distance. Exponential domination can be a model for
the reliability of a spreading information or a hearsay [6]. In this model, distance expo-
nentially reduces the dominating strategy of any vertex of a graph G, by the factor 1/2.
Therefore, it is possible that a vertex v is suppressed by one of its neighbors or by some
vertices that are closer to v. It is assumed that hearsay gathered straight from a source
is completely trustworthy, whereas passed one from person to person misses its reliability
by the factor 1/2 in each person. The exponential domination number can be found by
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calculating the smallest quantity of origins required so that each person gets fully reliable
information.
This study deals with the exponential domination number of graphs which is a new char-
acteristic for graph vulnerability introduced by Dankelmann [6]. This new parameter is
closely in relation with a distance of each pair of vertices. Let G as a graph and S ⊆ V (G).
When G is induced by the S vertices subset, we get a subgraph of the original graph G.
This subgraph is indicated by 〈S〉. ∀u1 ∈ S and ∀u2 ∈ V (G)−S, if there is a path between
u1 and u2 vertices, d(u1, u2) = d(u2, u1) defined as the shortest path length in 〈V (G)−
(S − {u1})〉, otherwise d(u1, u2) =∞. Let v ∈ V (G). The definition is

ws(v) =

{ ∑
u∈S 1/2d(u,v)−1, if v 6∈ S

2, otherwise

We refer to ws(v) as the weight of S at v. If ws(v) ≥ 1, ∀v ∈ V (G) then S can be
an exponential dominating set. Within all exponential dominating set of G, the size of
the exponential dominating set with the smallest cardinality is named as the exponential
domination number of graph G and it is indicated by γe(G). Also, minimum exponential
dominating set of G denoted by γe –set. Let u1 ∈ S and u2 ∈ V (G)− S, u1 exponentially

dominates u2, if
1

2d(u1′u2)−1
> 0[1, 6-7, 11].

The study continues as follow. Section 2 gives the theoretical background and an overview
of results on the exponential domination number. Main results for the exponential domi-
nation number of particular types of graphs and regular caterpillars are provided in Section
3 while giving an insight of how to evaluate the parameter and derive formula on path
type networks.

2. Basic results

In this part of the study, some known basic results related to exponential domination
number in the literature are given.

Theorem 2.1. [6] The exponential domination number of

(a) the path graph Pn of order n ≥ 2 is γe(Pn) = dn+ 1

4
e.

(b) the cycle graph Cn of order n ≥ 4 is γe(Cn) =

{
2, if n = 4
dn4 e, if n 6= 4

Theorem 2.2. [6] For every graph G, γe(G) ≤ γ(G), and also γe(G) = 1 if and only if
γ(G) = 1.

Theorem 2.3. [1] If G is connected graph, |V (G)| = n and there is a vertex of G with a
degree of n− 1. Then, γe(G) = 1.

Theorem 2.4. [1] If G is a connected graph, |V (G)| = n, diam (G) = 2 and there isn’t
any vertex such that deg(v) = n− 1. Then, γe(G) = 2.

Theorem 2.5. [6] If G is a connected graph of diameter d, then γe(G) = dd+ 2

4
e.

Theorem 2.6. [6] If G is a connected graph and |V (G)| = n then γe(G) ≤ 2

5
(n+ 2).

Theorem 2.7. [6] If G is a connected graph, |V (G)| = n and T is G’s spanning tree.
Then γe(G) ≤ γe(T ).



V.AYTAÇ: VULNERABILITY IN NETWORKS 369

Theorem 2.8. If the diameter of G is at least 3, then γe(G) = 2.

Proof. Assume that u and v are two vertices such that dG(u, v) = 3. Since dG(u, v) = 3,
N(u)∩N(v) = ∅. Assume that S is a minimum exponential dominating set in G. Firstly,
we assume that S consists of the vertex u, that is S = {u}. For x ∈ V (G)− S, two cases
arise.
Case 1. Let x 6∈ NG(u).
In this case, u is connected to x in G. Therefore, S in G is exponentially dominates the
vertex x.
Case 2. Let x ∈ NG(u).

In this case, dG(u, x) = 2. The vertex u contributes
1

2
to ws(x). Thus we must add new

one vertex to S. When this new vertex is added to S, at least one vertex of S should not
be connected to the vertex x in G. This requires that v, because dG(u, v) = 3. Hence, we
get S = {u, v} and |S| = 2.
By Case 1 and Case 2, the exponential domination number of G is γe(G) = 2. �

In graph theory, complement graphs discussed in the previous theorem have a great
importance. Because, there are lots of theoretical graph concepts which contains com-
plement graph concept. Therefore, the information we obtain about the complement of
a graph will allow us to make comments for other related graph concepts as well. For
example, a graph without edges is the complement of a complement graph. Also, regular
graphs play an important role in determining isomorphic structures due to their specific
properties.

Theorem 2.9. Let G be a r–regular graph with order n. Then, γe(G) = d2(n+ 1)

3r + 2
e.

Proof. If u and v are vertices in G then [u, v] will denote the G’s all vertices set that
lie on at least one u − v geodesic. Let S be a minimum exponentially dominating set
of G. It is obvious that each vertex of G − S is exponentially dominated by at most
two vertices of S. Let u ∈ S and v ∈ S, on G such that [u, v] ∩ S = {u, v} and u =
u0, u1, . . . , u r

2
, u r

2
+1, ur, ur+1, . . . , u 3r

2
+1 = v the u−v path in G. The vertex u contributes

1

2
to ws(u r

2
+1), so v must contribute at least

1

2
to ws(u r

2
+1). This implies that d(u, v) ≤ 4.

Since ∀v ∈ V (G), deg(v) = r, the number of the vertices in [u, v] is at most
3r + 2

2
. This

leads to n ≤ (
3r + 2

2
)γe(G)− 1.

To see that γe(G) = d2(n+ 1)

3r + 2
e, we note that easy to construct exponential dominating

set with |S| = d2(n+ 1)

3r + 2
e �

3. The exponential domination number of some thorn networks

In this section, we give a definition of thorn network. Then, we calculate the exponential
domination number of some thorn networks.

Definition 3.1. [10] Let pi be in the set Z∗ = {0} ∪ Z+, V (G) be the vertices of graph G
and ui ∈ V (G) for i with 1 ≤ i ≤ n. If we attach pi new vertices with the degree one to
the each vertex ui ∈ V (G) respectively then we get the thorn graph of the graph G with
parameters pi. We denote uij the thorn which come from the vertex ui, for all i and j
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with 1 ≤ i ≤ n and 1 ≤ j ≤ pi. The representation of the thorn graph of the graph G is in
the form G∗ or G∗(p1, p2, . . . , pn).

P ∗6 (1, 2, 3, 2, 1, 4)

Figure 1. A thorn graph of P6

Theorem 3.1. Let P ∗n be thorn graph of Pn with pj ≥ 1, i ∈ {1, 2, . . . , n}. Then γe(P
∗
n) =

bn+ 2

2
c.

Proof. Label the vertices of Pn by u1, u2, . . . , un and let the new vertex attached to the
vertex ui of the graph be uij , j ∈ {1, 2, . . . , pi}. It is obvious that deg(uij) = 1 and

deg(ui) ≥ 2. Let S = {u2i+1|i ∈ {0, 1, . . . , b
diam

2
c}}. Any vertex u in S dominates all

adjacent vertices. Consider the vertices x ∈ (V (P ∗n) −
∑
u∈S

N [u]). The vertices x are the

thorns of vertices in V (Pn)−S. These vertices are at distance 2 to exactly two vertices in
S. This implies wS(v) ≥ 1 for ∀v ∈ V (P ∗n). So, the elements of S set dominate either all
vertices of V (P ∗n) or some vertices of V (P ∗n) remain undominated and then we have

γe(P
∗
n) ≥ |S| = 1 + bdiam

2
c.

Let S∗ be a minimum exponential dominating set of P ∗n and S∗ contains all vertices of S.
Depending on the value of n, two cases arise.
Case 1. Let n ≡ 0 (mod 2).
In this case, S∗ = {u1, u2, . . . , un−1}. Then, the set S∗ contributes 1/2 to wS∗(unj). For
the vertex unj , ws∗(unj) ≥ 1 does not satisfied. So, one vertex which is either any vertex
unj or the vertex un must be added to S∗. Then we have

γe(P
∗
n) ≥ |S∗| = 1 + 1 +

diam− 1

2
=
diam+ 3

2
.

Case 2. Lets n ≡ 1 (mod 2).
If S∗ contains all vertices of S and only them, all vertices of V (P ∗n) are exponentially
dominated by S∗. Thus, |S∗| = |S| for this case. Hence, we get

γe(P
∗
n) ≥ |S∗| = |S| = 1 +

diam

2
=
diam+ 2

2

It is easy to say that from Case1, the set {u1, u2} is γe − set of P ∗2 and γe(P
∗
2 ) = 2. But,

S = {u1} for P ∗2 according to the definition of S given above. S∗−{u1} is γe−set of P ∗n−2.
That is {u1, u2} − {u1} = {u2} must be removed from S∗. By an inductive argument, we
obtain

γe(P
∗
n) ≤ γe(P ∗2 ) + γe(P

∗
n−2)− 1
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We examine all cases using diam = n− 1 and inductive argument. Thus, we obtain from
Case1,

n− 1 + 3

2
=
n+ 2

2
≤ γe(P ∗n) ≤ 2 +

(n− 3) + 3

2
− 1 =

n+ 2

2
.

Hence, we get γe(P
∗
n) =

n+ 2

2
.

Similarly, we have from Case2,

n− 1 + 2

2
=
n+ 1

2
≤ γe(P ∗n) ≤ 2 +

(n− 3) + 2

2
− 1 =

n+ 1

2

Thus, we have γe(P
∗
n) =

n+ 1

2
.

It is obvious that
n+ 1

2
= bn+ 2

2
c and

n+ 2

2
= bn+ 2

2
c. As a result, γe(P

∗
n) = bn+ 2

2
c

is obtained.
�

Theorem 3.2. Let C∗n be thorn graph of Cn with pi ≥ 1, i ∈ {1, 2, . . . , n}. Then γe(C∗n) =

bn+ 1

2
c.

Proof. The proof can be made like the proof of Theorem 3.1. �

Theorem 3.3. Let K∗m,n be thorn graph of Km,n with m ≥ n and pi ≥ 1, i ∈ {1, 2, . . . , n}.
Then γe(K

∗
m,n) is 2.

Proof. Let (K∗m,n) = V1 ∪ V2 ∪ V ′1 ∪ V ′2 , where
V1 = {u1, u2, . . . , um},
V2 = {u1, u2, . . . , um+n},
V ′1 = {uij |1 ≤ i ≤ m and 1 ≤ j ≤ pi}. Let uij be the thorn the vertices of V1.
V ′2 = {urs|m + 1 ≤ r ≤ m + n and 1 ≤ s ≤ pr}. Let urs be the thorn the vertices of V2.
The distance between the vertices of these vertices sets is as follows:
Let uij and uxy be distinct vertices in V ′1 .

d(uij , uxy) =

{
2, if i = x
4, if i 6= x

This value is also some for any two distinct vertices of V ′2 .
The distance between any two vertices, one in V ′1 and the other V ′2 , is 3.
The distance between any two vertices, one in V ′1 and the other V2 or one in V ′2 and the
other V1 or one in V1 and the other V1 or one in V2 and the other V2, is 2.

Let S∗ be a minimum exponential domination set K∗m,n. According to the distance
examined above, S∗ must contain exactly two vertices of V1 or V2. Hence, |S∗| = 2 and all
vertices of K∗m,n are exponentially dominated. Consequently, the exponential domination
number of K∗m,n is 2. �

Theorem 3.4. Let K∗1,n−1 be thorn graph of K1,n−1 with pi ≥ 1, i ∈ {1, 2, . . . , n} and

n ≥ 5. Then γe(K
∗
1,n−1) = 4.

Proof. Let S∗ be a minimum exponential domination set K∗1,n−1. As might be seen that S∗

must not contain the central vertex c in K1,n−1. If S∗consists of all vertices in (V (K1,n−1)−
{c}), all vertices in K∗1,n−1are exponentially dominated. But, in this case S∗ must not be
minimum exponential domination set. Therefore, S∗ should be consist of some vertices
in (V (K1,n−1) − {c}). The distance between the thorn vertex u and the vertex v ∈
(V (K1,n−1)− {c}) is
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d(u, v) =

{
1, if v ∈ N(u)
3, otherwise.

We assume that S∗ contains only one vertex v ∈ (V (K1,n−1) − {c}). We must find
minimum number of vertices of S∗ that provides

wS∗(v) =
∑
u∈S∗

(
1

2
)d(u,v)−1 ≥ 1

where v is thorn vertex of K∗1,n−1. Since d(u, v) = 3,

|S∗\{u}| = 2d(u,v)−1 − 1

= 22 − 1 = 3.

Hence, |S∗| = 4. Then, all vertices in K∗1,n−1 are exponentially dominated by S∗.
Consequently, the exponential domination number of K∗1,n−1with n ≥ 5 is

γe(K
∗
1,n−1) = 4.

�

Theorem 3.5. Let W ∗1,n−1 be thorn graph of W1,n−1 with pi ≥ 1, i ∈ {1, 2, . . . , n} and

n ≥ 5. Then γe(W
∗
1,n−1) = 4.

Proof. The proof can be made like the proof of Theorem 3.4. �

The concept of thorn graphs proposed recently by Ivan Gutman to study of chemical
graphs [10]. Danail Bonchev and Douglas J Klein extended this idea to a more general
concept of thorny graph. Since it represents the structural formula of aliphatic hydro-
carbons and aromatic hydrocarbons, this graphs’ class has great significance in spectral
theory.

Calculation of exponential domination number for some thorn graph types is impor-
tant. Because when more complex networks are fragmented into smaller networks, for an
optimization problem, the solutions on small networks can be unified as a solution on a
large network, in some circumstances.

4. Conclusion

Exponential domination can be a model for the reliability of a spreading information
or a hearsay. In this model, distance exponentially reduces the dominating strategy of
any vertex of a graph G, by the factor 1/2. By using exponential domination number,
the vertices within a network can be identified which are more important than others
and responsible for the fast communication flow. The vertices that give the number of
exponential dominating of a graph are fast in distributing information over the network.
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