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AN APPROXIMATE WAVE SOLUTION FOR PERTURBED KDV AND

DISSIPATIVE NLS EQUATIONS: WEIGHTED RESIDUAL METHOD

H. DEMIRAY, §

Abstract. In the present work, we modified the conventional ”weighted residual method”
to some nonlinear evolution equations and tried to obtain the approximate progressive
wave solutions for these evolution equations. For the illustration of the method we stud-
ied the approximate progressive wave solutions for the perturbed KdV and the dissipative
NLS equations. The results obtained here are in complete agreement with the solutions
of inverse scattering method. The present solutions are even valid when the dissipative
effects are considerably large. The results obtained are encouraging and the method can
be used to study the cylindrical and spherical evolution equations.
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1. Introduction

Quite often the exact solution of many nonlinear partial differential equations encoun-
tered in physics and engineering cannot be found by direct approaches. However, if the
mathematical models described by these nonlinear differential equations allow us to in-
troduce a smallness parameter, these differential equations may be approximated by some
differential equation of which the explicit solution may be obtained. For instance, when
the nature of the problem supports the long wave assumption and the linearized wave
is dispersive, from the balance of nonlinearity and dispersion, the nonlinear differential
equation under investigation may reduce to the Korteweg-deVries(KdV) equation, which
is integrable. Similarly, if the waves whose wavelengths are close to each other are super-
posed, the resulting modulated harmonic waves lead to the nonlinear Schrödinger(NLS)
equation, which is also integrable. However, in addition to the nonlinearity and dispersion,
if the medium has dissipative effects, in such a case the resulting equations will be the
perturbed KdV or dissipative NLS equations, which are not integrable. To obtain some
approximate progressive wave solutions to these latter type of evolution equations some
methods had been presented in the existing literature( most notably the inverse scattering
methods[1-3]). These solutions are valid for small dissipative effects.
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In the present work, we modified the conventional ”weighted residual method” and try
to obtain approximate progressive wave solutions to some nonlinear evolution equations.
Motivated with the solutions of conventional KdV and the nonlinear Schrödinger equa-
tions, for the illustration of the method, we studied the approximate progressive wave
solutions for the perturbed KdV and the dissipative NLS equations. The results obtained
here are in complete agreement with the solutions of inverse scattering method [1-3] and
the solutions given in[4-6]. This method can be used in the analysis of the cylindrical and
spherical evolution equations of KdV or NLS type.

2. Weighted residual method and some applications

Weighted residual method is a generic class of methods developed to obtain approximate
solutions to the differential equation of the form

L(φ) + f = 0, in D, (1)

where φ(x) is the unknown dependent variable, f(x) is a known function and L denotes
the differential operator involving the spatial derivatives. For convenience, the boundary
conditions are assumed to be homogeneous.

Weighted residual method involves two major steps. In the first step, based on the
general behavior of the dependent variable, an approximate solution is assumed. The as-
sumed solution is often selected as the linear combination of some set of functions each of
which satisfies the given boundary conditions, but not the differential equation. When this
solution is substituted into the differential equation, in general, it does not satisfy the dif-
ferential equation and the resulting error is called the residual. This residual is then made
to vanish in some average sense over the domain of definition, which produces a system
of algebraic equations. From the solution of these algebraic equations the approximate
solution is completely determined.

If we have an evolution equation of the form

∂φ

∂t
+ L(φ) + f = 0 in D, (2)

where t is the time parameter, the variables φ and f are functions of x and t and the
differential operator L involves the spatial derivatives. The same approach can be applied
to such evolutionary problems and the resulting system of algebraic equations will be a
system of ordinary differential equations in terms of the parameter t. The solution of these
differential equations give the time evolution of the approximate solution.

As some applications, in what follows we shall study the approximate progressive wave
solutions for two evolution equations which are not completely integrable. The solution
of these evolution equations had been given before through the use tangent hyperbolic
method [4, 6].

2.1. Perturbed Korteweg-deVries equation: In this sub-section, as an application of
the modified weighted residual method we shall try to present an approximate progressive
wave solution for the perturbed KdV equation given by

∂φ

∂t
+ γ1φ

∂φ

∂x
+ γ2

∂3φ

∂x3
+ γ3φ = 0, (3)

where the coefficients γ1, γ2 and γ3 describes the nonlinearity, dispersion and dissipation
of the medium, respectively. When the dissipative term vanishes the equation (3) reduces
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to the following conventional KdV equation

∂φ0
∂t

+ γ1φ0
∂φ0
∂x

+ γ2
∂3φ0
∂x3

= 0. (4)

This equation admits the localized travelling wave solution of the form

φ0 = a0 sech2ζ0, ζ0 = α0(x− c0t), c0 =
γ1a0

3
, α0 = (

γ1a0
12γ2

)1/2, (5)

where a0 is the constant wave amplitude. Motivated with the solution given in (5) we
shall propose a progressive wave solution to the equation (3) of the form

φ = a(τ) V (ζ), ζ = α(t)[x− c(t)], (6)

where a(t), α(t), c(t) and V (ζ) are some unknown functions of their arguments. Introduc-
ing (6) into (3) we obtain

[
a′(t)

a(t)
+ γ3]V (ζ) +

α′(t)

α(t)
ζV ′ + α(t)

[
− c′(t)V + γ1a(t)V V ′ + γ2α

2(t)V ′′′
]

= 0, (7)

where a prime denotes the differentiation of the corresponding quantity with respect to
its argument. The part of equation (7) in the big bracket assumes the localized travelling
wave solution of the form

V (ζ) = sech2ζ, α(t) = [
γ1a(t)

12γ2
]1/2, c′(t) =

γ1
3
a(t). (8)

This solution is formally the same with that of given in (5), except that a(t) is an unknown
function. To determine a(t) we need an evolution equation for this variable.

When the solution given in (8) is inserted into the equation (7) the residual term
R(t, ζ) 6= 0 becomes

R(t, ζ) = [
a′(t)

a(t)
+ γ3]V (ζ) +

α′(t)

α(t)
ζV ′. (9)

According to the requirement of the weighted residual method, when the equation (9) is
multiplied by a suitable weighing function and integrated over ζ, from ζ = −∞ to ζ =∞,
the result should vanish. For the present work we shall select the function V (ζ) as the
weighing function. Multiplying (9) by V (ζ) and integrating the result from ζ = −∞ to
ζ = ∞ and utilizing the localization conditions, i. e., V (ζ) and its derivatives vanish as
ζ → ±∞, we obtain

[
a′(t)

a(t)
− α′(t)

2α(t)
+ γ3] < V >2= 0, < V >2=

∫ ∞
|∞

V 2(ζ)dζ. (10)

Here, it is to noted that, in this problem the interval is selected to be (−∞,∞) and the
boundary conditions as the localization conditions at ±∞.

Since V (ζ) is square integrable and < V >6= 0, from (10) one obtains

a′(t)

a(t)
− α′(t)

2α(t)
+ γ3 = 0. (11)

Eliminating α(t) between the equations (8) and (11), the follwing differential equation is
obtained

3

4

a′(t)

a(t)
+ γ3 = 0. (12)

The solution of the equation (12) gives

a(t) = a0 exp(−4

3
γ3t), (13)



H. DEMIRAY: AN APPROXIMATE WAVE SOLUTION FOR PERTURBED KDV ... 789

where a0 is the initial value of the amplitude. Inserting (13) into (8) the other unknown
quantities are given by

α(t) =
(γ1a0

12γ2

)1/2
exp(−2

3
γ3t), c(t) =

γ1a0
4γ3

[1− exp(−4

3
γ3t)]. (14)

Thus, the general approximate solution for the perturbed KdV equation (3) may be given
by

φ = a0 exp(−4

3
γ3t)sech2ζ,

ζ = (
γ1a0
12γ2

)1/2 exp(−2

3
γ3t){x−

γ1a0
4γ3

[1− exp(−4

3
γ3t)]}. (15)

This solution is exactly the same with that of presented in [2,3] who employed the per-
turbed inverse scattering method and the one given in [1]. In the limiting case as γ3 → 0
the solution reduces to the solution of the conventional KdV equation given in (5).

2.2. Dissipative nonlinear Schrödinger equation. As a second example, in this sub-
section we shall try to apply the weighted residual method for the progressive wave solution
to the dissipative nonlinear Schrödinger equation given by

i
∂φ

∂t
+ µ1

∂2φ

∂x2
+ µ2|φ|2φ+ iµ3φ = 0 (16)

Here the coefficient µ3 characterizes the dissipation. Now, we shall introduce the following
transformation

φ = U(x, t) exp(−µ3t) (17)

Inserting (17) into (16) we obtain the following conventional nonlinear Schrödinger equa-
tion with variable coefficient

i
∂U

∂t
+ µ1

∂2U

∂x2
+ µ2 exp(−2µ3t)|U |2U = 0. (18)

It is well understood that the conventional nonlinear Schrödinger equation with constant
coefficient(µ3 = 0) has the following solitary wave solution

U0(x, t) = a0 sech ζ0 × exp{i[Ωt−Kx]}, (19)

where a0 is the constant wave amplitude, Ω is the frequency, K is the wave number of the
carrier wave and the other quantities are defined by

ζ0 = ω0(x+ 2µ1Kt), ω0 = (
µ2
2µ1

)1/2a0, Ω =
µ2
2
a20 − µ1K2. (20)

Motivated with the solution given in (19) and (20), we shall propose a solution to the
equation (18) of the form

U = a(t) V (ζ)× exp{i[Ω(t)−Kx]}, ζ = α(t)[x+ 2µ1Kt+ x0], (21)

where V (ζ), α(t),Ω(t) are some unknown real functions of their arguments , and x0 is the
initial phase. Introducing (21) into (18) and setting the real and imaginary parts equal to
zero we obtain

−(Ω′ + µ1K
2)V + µ1ω

2V ′′ + µ2a
2 exp(−2µ3t)V

3 = 0, (22)

R(t, ζ) =
a′

a
V +

ω′

ω
ζV ′ = 0, (23)

where a prime denotes the differentiation of the corresponding quantity with respect to
its argument.
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The solution of the equation (22) is given by

V (ζ) = sechζ, (24)

with

α(t) = (
µ2
2µ1

)1/2 exp(−2µ3t)a(t),

Ω′(t) = −µ1K2 +
µ2
2

exp(−2µ3t)a
2(t). (25)

In order to complete the solution we need an additional equation between the unknowns
a(t), α(t) and Ω(t). For that purpose we shall use the equation (23) and treat it as the
residue of the problem. Multiplying the equation (23) by V (ζ) and integrating the result
from ζ = −∞ to ζ =∞ and utilizing the localization condition for V (ζ), we obtain

[
a′(t)

a(t)
− α′(t)

2α(t)
] < V >2= 0, < V >2=

∫ ∞
−∞

V 2dζ. (26)

Since V (ζ) is square integrable and < V >6= 0, from equation (26) we obtain

a′(t)

a(t)
− α′(t)

2α(t)
= 0. (27)

Combining the equations (25) and (27) the solutions for a(t), α(t) and Ω(t) are given by

a(t) = a0 exp(−µ3t), α(t) = (
µ2
2µ1

)1/2a0 exp(−2µ3t),

Ω(t) = Ω0 − µ1K2t+
µ2
8µ3

a20[1− exp(−4µ3t)], (28)

where a0 is the initial value of the amplitude of the carrier wave and Ω0 is the initial phase
of the harmonic wave. Thus, the general solution of the dissipative nonlinear Schrödinger
equation (16) is given by

φ = a0 exp(−2µ3t)sech[(
µ2
2µ1

)1/2a0 exp(−2µ3t)(x+ 2µ1Kt)]

× exp{i[Ω0 − µ1K2t+
µ2
8µ3

a20

(
1− exp(−4µ3t)

)
−Kx]}. (29)

Setting x0 = 0, Ω0 = π/2, a0 = 2φ0, µ1 = P, µ2 = Q, µ3 = Γ, K =
√

Q
2P c the equation

(29) reduces to

φ = 2iφ0 exp(−2Γt)sech[

√
Q

2P
(ξ +

√
2PQ ct]

× exp{−i
√

Q

2P
[cx+ c2

√
PQ

2
t− φ20

Γ

√
PQ

2

(
exp(−4Γt)− 1

)
]}. (30)

This result is exactly the same with that of found by Xue [5], who employed the result of
inverse scattering method [1]. In the equation (29), if one sets Ω0 = 0, the solution will
be reduced to the one given in [6], in which the hyperbolic tangent method is employed.
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3. Conclusion

In the present work, by slightly modifying the conventional ” weighted residual method ”
to some nonlinear evolution equations, which are not integrable, we obtained approximate
progressive wave solutions. Particularly, we applied this method to give progressive wave
solutions for the perturbed KdV and the dissipative nonlinear Schrödinger equations.
The obtained results show that they are in quite good agreement with the results of
perturbed inverse scattering method [1-3]. It is hoped that this method can be applied to
obtain approximate analytical solutions for the progressive waves in the cylindrical and
the spherical KdV and NLS equations, which are not integrable.
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