
TWMS J. App. Eng. Math. V.9, N.4, 2019, pp. 838-850

AN APPROXIMATE ANALYTICAL SOLUTION OF

ONE-DIMENSIONAL GROUNDWATER RECHARGE BY SPREADING

M. A. PATEL1, N. B. DESAI2, §

Abstract. The present paper discusses the problem of one dimensional groundwater
recharge in the vertical direction. The groundwater is recharged by spreading of water
in vertical direction and the moisture content of soil increases. On the basis of linear and
nonlinear conductivity and diffusivity functions, three cases are considered for Brooks-
Corey model. The governing nonlinear partial differential equations has been solved by
homotopy analysis method. The proper value of convergence control parameter for con-
vergent solution has been chosen from c0-curve. The numerical and graphical solutions
are presented.
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1. Introduction

One dimensional groundwater recharge problem is related to hydrology, environment
engineering, soil mechanics, water resource engineering etc. The flow of water in unsat-
urated soil has been considered with some specific assumptions. The saturated zone, in
which relatively all pores and fractures are saturated with water. In the unsaturated zone,
the pore space is partly filled by air and partly by water. The unsaturated zone is the part
of the subsurface between the ground surface and the groundwater table (see figure 1).
Moisture content is the quantity of water contained in a soil. Moisture content is used in a
wide range of scientific and technical areas. In the dry soil there is no moisture, so its value
0 and is 1 when the medium is fully saturated by water. So the range of moisture content
is 0 (completely dry) to 1 (fully saturated by water). The water flow in the unsaturated
zone is complicated by the fact that the soil’s permeability to water depends on its water
saturation [1]. The water flow through soil is unsteady and slightly saturated because the
moisture content is time dependent function and all pores are not completely filled with
water.

The Richard’s equation is one of the most well-known equations to describe the behavior
of unsaturated zones in soil. One dimensional groundwater recharge has great importance
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in many branches of science and engineering. The problem of groundwater flow has been
discussed by many researchers with different aspects, like as Klute [10] reduced diffusion
equation to an ordinary differential equation and applied a forward integration and iter-
ation method, Verma [27] obtained solution of a one dimensional groundwater recharge
for constant diffusivity and linear conductivity by laplace transform, Mehta [15] obtained
singular perturbation solution of one dimensional flow in unsaturated porous media with
small diffusivity coefficient, Prasad et al. [24] developed numerical model to simulate mois-
ture flow through unsaturated zones using the finite element method, Desai [6] obtained
composite expansion solution for groundwater recharge in vertical direction, Mehta and
Patel [16] obtained solution of Burger’s equation for one dimensional groundwater recharge
by spreading in porous media, Joshi et al. [8] obtained solution of one dimensional vertical
groundwater recharge by group theoretical approach, Nasseri et al. [17] studied solution
of advection-diffusion equation on the basis of the simplified Brooks-Corey model for soil
conductivity and diffusivity.

Figure 1. The hydrological cycle [3].

The main goal of the present work is to obtained solution of one dimensional groundwa-
ter recharge by spreading. It is assumed that the groundwater recharge takes place over
the large basin of such geological location that the sides are bounded by rigid boundaries
while the bottom by a thick layer of water table for investigated flow problem. Here the
flow takes place downward direction through unsaturated porous medium up to depth L
(L is length of basin). On the basis of linear and nonlinear conductivity and diffusivity
functions, three cases are considered for Brooks-Corey model. The mathematical formu-
lation leads to one dimensional nonlinear partial differential equation which is solved by
homotopy analysis method. The solution expresses in series form and it gives moisture
content of soil.

2. Mathematical Formulation

The equation of continuity for water flow through unsaturated porous medium is gov-
erned by

∂

∂t
(ρΘ) = −∇ ·M (1)
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where ρ is the fluid density, Θ is the moisture content and M is a mass flux of moisture.
Darcy’s law for the motion of water in unsaturated porous medium is expressed as [2]

v = −κ∇Φ (2)

where v is the volume flux of moisture, κ is the hydraulic conductivity, ∇Φ is the gradient
of the whole moisture potential. The mass flux of moisture M is the product of fluid
density ρ and volume flux of moisture v, i.e. M = ρv. Thus (1) and (2) gives us

∂

∂t
(ρΘ) = ∇(ρκ∇Φ). (3)

Consider the relation Φ = ψ − z for the system in which flow takes place in the vertical
direction only where ψ is the pressure potential. The vertical downward direction is
considered as the positive direction of z-axis. Considering only the one dimensional vertical
flow for incompressible fluid, (3) becomes

∂Θ

∂t
=

∂

∂z

(
κ
∂ψ

∂z

)
− ∂κ

∂z
. (4)

Considering Θ and ψ to be related by single valued function and assume that D = κ ∂ψ∂Θ is
the soil water diffusivity. Thus (4) reduces to

∂Θ

∂t
=

∂

∂z

(
D
∂Θ

∂z

)
− ∂κ

∂z
. (5)

This equation is known as Richard’s equation [1, 10, 17, 25] which is one of the most
important equations expressing water content in unsaturated porous medium with broad
applications in hydrology, engineering, and soil sciences.

3. Discussions

We consider three nonlinear forms of Richard’s equation (5) for linear and nonlinear
conductivity and diffusivity coefficients. We will focus on Brooks-Corey model, with con-
ductivity and diffusivity assumed to be of the form κ = κ0Θk and D = D0Θn with
k ≥ 1, n ≥ 0 [4, 17, 28]. We used Brooks-Corey model [4, 17, 28] for the three cases as (i)
Linear diffusivity and nonlinear conductivity (ii) Linear diffusivity and linear conductivity
(iii) Nonlinear diffusivity and linear conductivity.

3.1. Linear diffusivity and nonlinear conductivity. For the case, consider D is the
constant as D = D0 and the nonlinear conductivity represented as κ = κ0Θ2, κ0 = D0

2L
[15]. Then (5) results

∂Θ

∂t
= D0

∂2Θ

∂z2
− D0

L
Θ
∂Θ

∂z
. (6)

Using dimensionless variables,

Z =
z

L
and T =

tD0

L2

(6) reduces to the governing equation

∂Θ

∂T
=
∂2Θ

∂Z2
−Θ

∂Θ

∂Z
. (7)
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3.2. Linear diffusivity and linear conductivity. Assume that the linear diffusivity D
as D = D0Θ and the linear conductivity represented as κ = κ0Θ, κ0 = D0

2L [15]. Then (5)
becomes

∂Θ

∂t
= D0Θ

∂2Θ

∂z2
+D0

{
∂Θ

∂z

}2

− D0

2L

∂Θ

∂z
. (8)

Using dimensionless variables,

Z =
z

L
and T =

tD0

L2

(8) gives us

∂Θ

∂T
= Θ

∂2Θ

∂Z2
+

{
∂Θ

∂Z

}2

− 1

2

∂Θ

∂Z
. (9)

3.3. Nonlinear diffusivity and linear conductivity. Consider D is nonlinear function
of Θ as D = D0Θ2 and assuming the hydraulic conductivity as κ = κ0Θ, κ0 = D0

2L [15].
Then (5) reduces to

∂Θ

∂t
= D0Θ2∂

2Θ

∂z2
+ 2D0Θ

{
∂Θ

∂z

}2

− D0

2L

∂Θ

∂z
. (10)

Using dimensionless variables,

Z =
z

L
and T =

tD0

L2

(10) becomes

∂Θ

∂T
= Θ2∂

2Θ

∂Z2
+ 2Θ

{
∂Θ

∂Z

}2

− 1

2

∂Θ

∂Z
. (11)

The equations (7), (9) and (11) are solved with boundary conditions by homotopy
analysis method. The solutions of these equations represent moisture content of soil at
a depth Z and time T . For definiteness of the physical problem, the water will flow in
vertical downward direction and hence set of boundary conditions are given by:

Θ(0, T ) = 0.01 and Θ(1, T ) = 1. (12)

4. Homotopy Analysis Method

Homotopy analysis method was first proposed by Liao [11] in his Ph.D. thesis. This
method is used to solve the nonlinear differential equations. Many researchers have suc-
cessfully employed this technique to solve different types of nonlinear ODEs as well as
nonlinear PDEs [5, 7, 9, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 26]. Liao [11, 12, 13, 14]
has discussed homotopy analysis solutions of nonlinear ordinary and partial differential
equations, Darvishi and Khani [5] have discussed homotopy series solution of the foam
drainage equation, Ghotbi et al. [7] have discussed an analytical approach of infiltration
in unsaturated soils by HAM, Kheiri et al. [9] have obtained approximation of modified
Burgers-Korteweg-de Vries equation and the Newell -Whitehead equation by using HAM,
Vajravelu and Van Gorder [26] have discussed solutions of nonlinear ordinary and partial
differential equations by HAM, Patel and Desai [19, 20, 21, 22, 23] have discussed con-
vergent solution of one dimensional nonlinear partial differential equation arising in fluid
flow through porous media by HAM with the help of c0-curve.

Let N [φ(Z, T ; q)] = 0 denote a nonlinear partial differential equation, φ(Z, T ; q) be an
unknown function which represents Θ at depth Z for a given time T for 0 ≤ q ≤ 1.
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We use the auxiliary linear operator L[φ(Z, T ; q)] = ∂2φ(Z,T ;q)
∂Z2 and the initial approxima-

tion of Θ(Z, T ) is Θ0(Z, T ) = (1 +T )Z+ 0.01(1−Z2)−TZ3 which satisfy both boundary
conditions.

The zeroth-order deformation equation [11] is constructed as

(1− q)L[φ(Z, T ; q)−Θ0(Z, T )] = c0qH(Z, T )N [φ(Z, T ; q)] (13)

where q ∈ [0, 1] the embedding-parameter, c0 nonzero convergence control parameter,
H(Z, T ) nonzero auxiliary function.

When q = 0 and q = 1, (13) gives us

φ(Z, T ; 0) = Θ0(Z, T ) and φ(Z, T ; 1) = Θ(Z, T ). (14)

According to (14) as q increases from 0 to 1, φ(Z, T ; q) continuously varies from Θ0(Z, T )
to Θ(Z, T ). The solution is considered as

φ(Z, T ; q) = Θ0(Z, T ) +
∞∑
m=1

Θm(Z, T )qm (15)

where

Θm(Z, T ) =
1

m!

∂mφ(Z, T ; q)

∂qm

∣∣∣∣∣
q=0

. (16)

The auxiliary linear operator, the initial approximation, the convergence control pa-
rameter and the auxiliary function are assume in such a way that the series of φ(Z, T ; q)
with respect to q at q = 1

Θ(Z, T ) = Θ0(Z, T ) +

∞∑
m=1

Θm(Z, T ) (17)

converges.

Define
−→
Θn = {Θ0(Z, T ),Θ1(Z, T ), . . . ,Θn(Z, T )}. Differentiating the zeroth order de-

formation equation (13) m times with respect to q and putting q = 0 and then finally
dividing them by m!, we have the mth-order deformation equation

L[Θm(Z, T )− χmΘm−1(Z, T )] = c0H(Z, T )Rm(
−−−→
Θm−1) (18)

subject to the boundary conditions

Θm(0, T ) = 0 and Θm(1, T ) = 0, m ≥ 1 (19)

where

Rm(
−−−→
Θm−1) =

1

(m− 1)!

∂m−1N [φ(Z, T ; q)]

∂qm−1

∣∣∣∣∣
q=0

,m ≥ 1 (20)

and

χm =

{
0 if m ≤ 1,

1 if m > 1.
(21)

For simplicity, we assume that H(Z, T ) = 1. Thus the solution of the mth-order defor-
mation equation (18) is

Θm(Z, T ) = χmΘm−1(Z, T ) + c0L−1[Rm(
−−−→
Θm−1)] + C1Z + C2 (22)
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where C1 and C2 are constants or functions of T . Hence the homotopy analysis solution
is as

Θ(Z, T ) = Θ0(Z, T ) + Θ1(Z, T ) + Θ2(Z, T ) + · · · . (23)

As discussed by many researchers [5, 7, 9, 12, 14, 18, 19, 20, 21, 22, 23, 26] the convergence
of homotopy series solution is strongly depends on convergence control parameter c0 which
occurs in solution (23). The proper value of c0 is chosen with the help of c0-curve which
is suggested by Liao [12].

4.1. Solution of equation (7). According to (7), we define a nonlinear operator N as

N [φ(Z, T ; q)] =
∂2φ(Z, T ; q)

∂Z2
− φ(Z, T ; q)

∂φ(Z, T ; q)

∂Z
− ∂φ(Z, T ; q)

∂T
. (24)

Apply homotopy analysis method to (20) with above mentioned linear operator and initial
approximation, we get

Rm(
−−−→
Θm−1) =

∂2Θm−1

∂Z2
−
m−1∑
i=0

Θi
∂Θm−1−i

∂Z
− ∂Θm−1

∂T
,m ≥ 1 (25)

and the solution (23) is of the form

Θ(Z, T ) = (1 + T )Z + 0.01(1− Z2)− TZ3 + c0

{
0.29581Z − 0.015Z2 − 0.3333Z3

+ 0.0025Z4 + 0.04999Z5 + 1.135TZ − 0.005TZ2 − 4TZ3

3
+ 0.005TZ4

+
TZ5

5
− 0.005TZ6

3
+

4T 2Z

105
− T 2Z3

6
+
T 2Z5

5
− T 2Z7

14

}
+ · · · . (26)

Here the c0-curves of ΘZ(0.5, 0.5) and ΘZ(1, 0) are used to choose proper value of c0.
Figure 2 represents the c0-curves of ΘZ(0.5, 0.5) (DotDashed) and ΘZ(1, 0) (Thick) for
10th order approximation which is plotted using Mathematica BVPh package [13]. The
line segment almost parallel to horizontal axis gives valid interval of c0 [12]. We chosen
c0 = −0.5 from valid range of c0 (see figure 2).

-2.0 -1.5 -1.0 -0.5
c0

0.5

1.0

1.5

8QZ H0.5, 0.5L, QZ H1, 0L<

Figure 2. The c0-curves of ΘZ(0.5, 0.5) (DotDashed) and ΘZ(1, 0) (Thick).

The approximate analytical solution of (7) is expressed in the series form which repre-
sents the moisture content Θ(Z, T ) of soil at depth Z for a given time T . The numerical
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Table 1. Numerical values of the moisture content Θ.

T Z = 0.0 Z = 0.1 Z = 0.2 Z = 0.3 Z = 0.4 Z = 0.5 Z = 0.6 Z = 0.7 Z = 0.8 Z = 0.9 Z = 1.0

0.1 0.01000 0.09433 0.17946 0.26614 0.35517 0.44743 0.54394 0.64587 0.75463 0.87196 1.00000
0.2 0.01000 0.09433 0.17946 0.26614 0.35517 0.44744 0.54395 0.64589 0.75465 0.87197 1.00000
0.3 0.01000 0.09433 0.17946 0.26614 0.35518 0.44745 0.54397 0.64590 0.75467 0.87199 1.00000
0.4 0.01000 0.09433 0.17947 0.26615 0.35519 0.44747 0.54399 0.64592 0.75469 0.87200 1.00000

0.5 0.01000 0.09434 0.17948 0.26617 0.35521 0.44749 0.54400 0.64594 0.75470 0.87201 1.00000
0.6 0.01000 0.09434 0.17949 0.26619 0.35523 0.44751 0.54403 0.64596 0.75472 0.87202 1.00000
0.7 0.01000 0.09435 0.17951 0.26621 0.35526 0.44753 0.54405 0.64598 0.75473 0.87203 1.00000

0.8 0.01000 0.09436 0.17953 0.26623 0.35529 0.44756 0.54407 0.64600 0.75474 0.87204 1.00000
0.9 0.01000 0.09438 0.17955 0.26626 0.35532 0.44759 0.54410 0.64601 0.75475 0.87205 1.00000
1.0 0.01000 0.09439 0.17958 0.26630 0.35536 0.44763 0.54413 0.64603 0.75476 0.87205 1.00000

representation of the solution is obtained using Mathematica coding [13]. Table 1 indicates
the numerical values of Θ(Z, T ).

The graphical representation of solution (26) is also obtained using Mathematica coding
[13]. Figure 2 represents the graph of Θ(Z, T ) versus depth Z for fixed time T = 0.2, 0.4,
0.6, 0.8, 1 and figure 3 represents the graph of Θ(Z, T ) versus depth Z and time T .

0.2 0.4 0.6 0.8 1.0
Z

0.2

0.4

0.6

0.8

1.0

QHZ, TL

Figure 3. The graph of Θ(Z, T ) v/s Z for fixed T = 0.2, 0.4, 0.6, 0.8, 1.

4.2. Solution of equation (9). Apply homotopy analysis method to nonlinear partial
differential equation (9) with nonlinear operator N [φ(Z, T ; q)] as

N [φ(Z, T ; q)] = φ(Z, T ; q)
∂2φ(Z, T ; q)

∂Z2
+

{
∂φ(Z, T ; q)

∂Z

}2

− 1

2

∂φ(Z, T ; q)

∂Z
− ∂φ(Z, T ; q)

∂T
.

(27)

Now (20) becomes

Rm(
−−−→
Θm−1) =

m−1∑
i=0

Θi
∂2Θm−1−i

∂Z2
−
m−1∑
i=0

∂Θi

∂Z

∂Θm−1−i
∂Z

− 1

2

∂Θm−1

∂Z
− ∂Θm−1

∂T
,m ≥ 1 (28)
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QHZ, T L

0.0

0.5

1.0

Depth Z

0.0

0.5

1.0

T Time

0.0

0.5

1.0

Figure 4. The graph of Θ(Z, T ) v/s Z and T .

and the homotopy analysis solution of (9) is

Θ(Z, T ) = (1 + T )Z + 0.01(1− Z2)− TZ3 + c0

{
− 0.12495Z + 0.2499Z2 − 0.175Z3

+ 0.00005Z4 + 0.05Z5 + 0.135TZ + 0.75TZ2 − 0.02TZ3 − 0.875TZ4

+ 0.01TZ5 + 0.5T 2Z2 − T 2Z4 + 0.5T 2Z6

}
+ · · · (29)

which gives the moisture content at depth Z for time T .
Using Mathematica, we plotted the c0-curves of ΘZ(0.5, 0.5) (DotDashed) and ΘZ(1, 0)

(Thick) (see figure 5) and the proper value of c0 = −0.5 is chosen from this c0-curve.

-2.0 -1.5 -1.0 -0.5 0.0
c0

0.5

1.0

1.5

2.0

2.5

3.0
8QZ H0.5, 0.5L, QZ H1, 0L<

Figure 5. The c0-curves of ΘZ(0.5, 0.5) (DotDashed) and ΘZ(1, 0) (Thick).

The numerical values of solution are given in table 2 and graphical interpretations are
obtained (see figures 6-7). Figure 6 represents the graph of Θ(Z, T ) v/s Z for a fixed time
T = 0.2, 0.4, ..., 1 and figure 7 presents the graph of Θ(Z, T ) v/s depth Z and time T .
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Table 2. Numerical values of the moisture content Θ.

T Z = 0.0 Z = 0.1 Z = 0.2 Z = 0.3 Z = 0.4 Z = 0.5 Z = 0.6 Z = 0.7 Z = 0.8 Z = 0.9 Z = 1.0

0.1 0.01000 0.17640 0.30690 0.41732 0.51574 0.60640 0.69164 0.77285 0.85093 0.92650 1.00000
0.2 0.01000 0.18033 0.31083 0.42024 0.51767 0.60760 0.69238 0.77331 0.85122 0.92665 1.00000
0.3 0.01000 0.18412 0.31459 0.42315 0.51974 0.60903 0.69333 0.77392 0.85158 0.92681 1.00000
0.4 0.01000 0.18778 0.31822 0.42605 0.52194 0.61065 0.69448 0.77468 0.85201 0.92700 1.00000

0.5 0.01000 0.19133 0.32174 0.42896 0.52426 0.61244 0.69578 0.77555 0.85252 0.92720 1.00000
0.6 0.01000 0.19477 0.32516 0.43188 0.52668 0.61437 0.69724 0.77654 0.85308 0.92742 1.00000
0.7 0.01000 0.19811 0.32850 0.43481 0.52919 0.61643 0.69882 0.77763 0.85371 0.92767 1.00000

0.8 0.01000 0.20135 0.33176 0.43775 0.53177 0.61861 0.70052 0.77882 0.85439 0.92792 1.00000
0.9 0.01000 0.20451 0.33496 0.44071 0.53443 0.62088 0.70232 0.78009 0.85512 0.92820 1.00000
1.0 0.01000 0.20758 0.33811 0.44368 0.53715 0.62324 0.70421 0.78143 0.85590 0.92849 1.00000

0.2 0.4 0.6 0.8 1.0
Z

0.2

0.4

0.6

0.8

1.0

QHZ, TL

Figure 6. The graph of Θ(Z, T ) v/s Z for fixed T =
0.2(lowermost graph), 0.4, 0.6, 0.8, 1(uppermost graph).

QHZ, T L

0.0

0.5

1.0

Depth Z

0.0

0.5

1.0

T Time

0.0

0.5

1.0

Figure 7. The graph of Θ(Z, T ) v/s Z and T .

4.3. Solution of equation (11). Let us consider the nonlinear operator N [φ(Z, T ; q)]
from (11) as

N [φ(Z, T ; q)] = φ(Z, T ; q)2∂
2φ(Z, T ; q)

∂Z2
+ 2φ(Z, T ; q)

{
∂φ(Z, T ; q)

∂Z

}2

− 1

2

∂φ(Z, T ; q)

∂Z

− ∂φ(Z, T ; q)

∂T
. (30)
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Using (30) in (20), we get

Rm(
−−−→
Θm−1) =

m−1∑
j=0

Θj

m−1−j∑
i=0

Θi
∂2Θm−1−j−i

∂Z2
− 2

m−1∑
j=0

Θj

m−1−j∑
i=0

∂Θi

∂Z

∂Θm−1−j−i
∂Z

− 1

2

∂Θm−1

∂Z
− ∂Θm−1

∂T
,m ≥ 1 (31)

and (23) gives us the homotopy analysis solution of (11) as

Θ(Z, T ) = (1 + T )Z + 0.01(1− Z2)− TZ3 + c0

{
0.031767Z − 0.240001Z2

+
0.5044Z3

3
− 0.009999Z4 + 0.0501Z5 − 0.000001Z6

3
+ 0.1251TZ

− 0.23TZ2 + 0.9997TZ3 + 0.085TZ4 − 0.9997TZ5 + 0.02TZ6

− 0.0001TZ7 + 0.01T 2Z2 + T 2Z3 − 0.03T 2Z4 − 2T 2Z5 + 0.03T 2Z6

+ T 2Z7 − 0.01T 2Z8 +
T 3Z3

3
− T 3Z5 + T 3Z7 − T 3Z9

3

}
+ · · · . (32)

The convergent homotopy analysis solution is obtained using the proper value of c0. We
plotted the c0-curves of ΘZ(0.5, 0.5) (DotDashed) and ΘZ(1, 0) (Thick) in figure 8. The
proper value of c0 = −0.5 is chosen for numerical and graphical representations of solution.

-2.0 -1.5 -1.0 -0.5
c0

-0.5

0.5

1.0

1.5

2.0

2.5

3.0
8QZ H0.5, 0.5L, QZ H1, 0L<

Figure 8. The c0-curves of ΘZ(0.5, 0.5) (DotDashed) and ΘZ(1, 0) (Thick).

The numerical values of the moisture content are given in table 3. The graph of Θ(Z, T )
v/s depth Z for a fixed time T is given in figure 9. In the figure 10, the graph of Θ(Z, T )
v/s depth Z and time T is presented.

5. Conclusions

We discussed the one dimensional groundwater recharge by spreading through unsatu-
rated porous medium. The homotopy analysis method is adopted to solve the governing
equations. The series solutions are obtained for the equations which presented on the basis
of linear and nonlinear conductivity and diffusivity functions. The solutions are satisfy
both boundary conditions. The numerical and graphical representations of solutions are
given. Moisture content of soil is increase when depth increases for a given time.
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Table 3. Numerical values of the moisture content Θ.

T Z = 0.0 Z = 0.1 Z = 0.2 Z = 0.3 Z = 0.4 Z = 0.5 Z = 0.6 Z = 0.7 Z = 0.8 Z = 0.9 Z = 1.0

0.1 0.01000 0.12580 0.25712 0.39116 0.51643 0.62666 0.72116 0.80265 0.87461 0.93981 1.00000
0.2 0.01000 0.13388 0.27120 0.40647 0.52880 0.63465 0.72559 0.80498 0.87586 0.94040 1.00000
0.3 0.01000 0.14194 0.28480 0.42071 0.54007 0.64204 0.72996 0.80745 0.87720 0.94098 1.00000
0.4 0.01000 0.14994 0.29789 0.43396 0.55038 0.64899 0.73431 0.81004 0.87860 0.94157 1.00000

0.5 0.01000 0.15788 0.31047 0.44628 0.55990 0.65558 0.73864 0.81272 0.88007 0.94216 1.00000
0.6 0.01000 0.16575 0.32253 0.45775 0.56877 0.66191 0.74297 0.81547 0.88159 0.94277 1.00000
0.7 0.01000 0.17355 0.33408 0.46845 0.57709 0.66803 0.74728 0.81829 0.88316 0.94338 1.00000

0.8 0.01000 0.18125 0.34513 0.47848 0.58496 0.67398 0.75159 0.82115 0.88478 0.94400 1.00000
0.9 0.01000 0.18886 0.35568 0.48790 0.59245 0.67978 0.75588 0.82406 0.88643 0.94463 1.00000
1.0 0.01000 0.19637 0.36576 0.49678 0.59963 0.68546 0.76016 0.82699 0.88812 0.94527 1.00000

0.2 0.4 0.6 0.8 1.0
Z

0.2

0.4

0.6

0.8

1.0

QHZ, TL

Figure 9. The graph of Θ(Z, T ) v/s Z for fixed T =
0.2(lowermost graph), 0.4, 0.6, 0.8, 1(uppermost graph).

QHZ, T L

0.0

0.5

1.0

Depth Z

0.0

0.5

1.0

T Time

0.0

0.5

1.0

Figure 10. The graph of Θ(Z, T ) v/s Z and T .
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