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M-POLYNOMIAL METHOD FOR TOPOLOGICAL INDICES OF

3-LAYERED PROBABILISTIC NEURAL NETWORKS

M. JAVAID1, A. RAHEEM2, M. ABBAS3, J. CAO4, §

Abstract. A molecular network can be uniquely identified by a number, polynomial
or matrix. A topological index (TI) is a number that characterizes a molecular network
completely which is used to predict the physical features of the certain changes such as
bioactivities and chemical reactivities in the chemical compound. Javaid and Cao [Neural
Comput. and Applic., 30(2018), 3869-3876] studied the first Zagreb index, second Zagreb
index, general Randic index, and augmented Zagreb index for the 3-layered probabilistic
neural networks (PNN). In this paper, we prove the M-polynomial of the 3-layered PNN
and use it as a latest developed tool to compute the certain degree based TI’s. At the
end, a comparison is also shown to find the better one among all the obtained results.
Keywords: M-polynomial, Degree-based TI’s, Networks, Probabilistic neural network.

AMS Subject Classification: 05C07, 92E10

1. Motivation and Introduction

In Neurochemistry, we study the processes which occur in nerve tissue or nervous system
and a computer system model on the nerve tissue and nervous system is called a neural
network. The probabilistic neural networks are studied to solve a number of problems
in the different areas of engineering, medical, chemistry, computer and mathematics, see
[38]. In particular, for the enhancement of the email security systems and the intrusion
detection systems [39, 40], to verify the signature [2], to identify damage localization for
bridges and the effectiveness for ships [28, 30], to predict the stability number of armor
blocks of breakwaters [25], for detecting resistivity to antibiotics and diagnosing hepatitis
[6, 8], for the segmentation and quantification of brain tissues from the certain type of
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images [42], and for the characterization of genetic variations in metabolic responses [20].
These networks are also applied in the environmental sciences, see [37]. Moreover, to know
about the different properties of the probabilistic neural networks, we refer [23].

More recently, certain topological properties of 3-layered probabilistic neural networks are
studied to find the physical changes of the bioactivities and chemical reactivities in these
networks being significantly useful in the in chemical industry, particulary in pharmaceuti-
cal, see [22, 16]. In the present study, we prove M-polynomial of the 3-layered probabilistic
neural networks and apply it as a latest developed technique to find the various topological
indices (TI’s) in the continuation of the progressive study of these networks.

In 1935, Polya defined the concept of a counting polynomial with remarkable applications
in various areas of mathematics and chemistry [32]. Later on, Wiener (1947) introduced
the first topological index as a boiling point of the paraffin [41]. A topological index is
a numeric quantity that characterizes the whole structure of a molecular graph of the
chemical compound and remains invariant for the isomorphic structures. With the help of
the computed counting polynomials and the topological indices (TI’s), we study the phys-
ical features, chemical reactivities and boiling activities of the chemical compound in the
molecular graph, for example vapor pressure, surface tension, chromatographic retention
times, heat of evaporation, heat of formation, melting point and boiling point [7, 24, 35].

Moreover, the topological indices are used to predict the bioactivity of the chemical com-
pounds in the studies of quantitative structure-activity relationship (QSAR) and quan-
titative structure-property relationship (QSPR) [14]. In particular, these are used to
solve the problems related to optimisation procedure, molecular van der Waals volumes
or areas, anticancer drugs, solubility, purification, extraction, liquids densities, enthalpies
of combustion and vaporization for the acids (C2H4O2−C20H40O2) [16, 17, 27, 29, 36, 44].

In the literature, degree-based TI’s are most studied, see survey [15]. In particular, Gut-
man and Trinajsti (1972) [13] derived the first and the second Zagreb indices for the total
energy of conjugated molecules. Later on these have been used as the branching indices
[10, 9]. These are also used in the studies of the quantitative structure-activity relationship
(QSAR) and the quantitative structure-property relationship (QSPR) [14]. Milan Randic
(1975) [34] defined the TI which is called by Randic index. Bollobas and Erdos (1998) [5],
and Amic et al. (1998) [1] defined the generalized Randic index independently. In 2010,
the augmented Zagreb index is defined by Furtula et al. [12].

Many computational results of the topological indices (TI’s) are also obtained on the
various chemical structures, for example silicate network, hexagonal network, honeycomb
network, fullerenes, carbon nanotube networks, rhombus silicate network and rhombus
oxide network [3, 4, 21, 33]. For further study, we refer [9, 10, 14, 45, 26].

Moreover, Hosoya polynomial is a key polynomial in the area of distance-based TI’s. The
Wiener index can be obtained as the first derivative of the Hosoya polynomial at numeric
value 1. Similarly, the hyper-Wiener index and the Tratch-Stankevich-Zefirov can be com-
puted from the Hosoya polynomial. Recently, Deutsch and Klavzar (2015) [11] introduced
the concept of M-polynomial and showed that its role for the degree-based TI’s is parallel
to the role of the Hosoya polynomial for the distance-based TI’s. The M-polynomials of
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the polyhex nanotubes are studied in [31].

In this paper, we prove the M-polynomial of the 3-layered probabilistic neural networks.
Then, by the use of this M-polynomial, we compute the topological indices based on the
degree of vertices such as first Zagreb (M1), second Zagreb (M2), second modified Zagreb
(MM2), general Randic (Rα), reciprocal general Randic (RRα), symmetric division deg
(SDD), harmonic, inverse sum and the augmented Zagreb are computed for the 3-layered
probabilistic neural networks. At the end, a comparison is also shown between all the
obtained indices. The rest of the paper is organised as, in Section 2, we present definitions
and formulas. Section 3 include the main results for the M-polynomial and topological
indices. In Section 4, we present a comparison for all the obtained results.

2. Preliminaries

Let Γ = (V (Γ), E(Γ)) be a molecular graph with V (Γ) = {w1, w2, ..., wn} as a vertex-set
and E(Γ) as an edge-set such that the vertices (nodes) denote atoms and edges denote
bonds between that atoms of the underlying chemical structure. If there is a connection
between each pair of vertices, the graph is called a connected graph. The number of ver-
tices that are connected to v by the edges is degree of v (d(v)). In this paper, we assume
that a network is a simple (without multiple edges and loops) and finite connected graph.
For the further study of the graph theory terminologies, we refer [18, 43].

Definition 2.1. Let Γ be a molecular graph. Then, first Zagreb index (M1(Γ)), second
Zagreb index (M2(Γ)), general Randic index (Rα(Γ), whereα is a real number), symmet-
ric division deg index (SDD) harmonic index (HI(Γ)), inverse sum index (IS(Γ)), and
augmented Zagreb index (AZI(Γ)) of Γ are defined as follows.

M1(Γ) =
∑

v∈V (Γ)

[d(v)]2 =
∑

vw∈E(Γ)

[d(v)+d(w)],

M2(Γ) =
∑

vw∈E(Γ)

[d(v)×d(w)], Rα(Γ) =
∑

vw∈E(Γ)

[d(v)×d(w)]α,

SDD(Γ) =
∑

vw∈E(Γ)

[
min(d(v), d(w))

max(d(v), d(w))
+
max(d(v), d(w))

min(d(v), d(w))
],

H(Γ) =
∑

vw∈E(Γ)

2

d(v) + d(w)
, IS(Γ) =

∑
vw∈E(Γ)

d(v)× d(w)

d(v) + d(w)
and

AZI(Γ) =
∑

vw∈E(Γ)

[
d(v)× d(w)

d(v) + d(w)− 2
]3.

Definition 2.2. Let Γ be a molecular graph and Ei,j(Γ); i, j ≥ 1 be the sets which make
the partition of the edge-set of Γ such that {d(u), d(v)} = {i, j} for the edge uv. Then,
M-polynomial of Γ is defined as

M(Γ, x, y) =
∑
i≤j

[Ei,j(Γ)xixj ].
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Figure 1. PNN(4, 2, 3)

Table 1:

Indices f(x, y) Derivation from M(Γ, x, y)

M1 x+ y (Dx +Dy)(M(Γ, x, y))|x=1=y

M2 xy (DxDy)(M(Γ, x, y))|x=1=y

MM2
1
xy (SxSy)(M(Γ, x, y))|x=1=y

Rα (xy)α, α ∈ N (Dα
xD

α
y )(M(Γ, x, y))|x=1=y

RRα
1

(xy)α , α ∈ N (SαxS
α
y )(M(Γ, x, y))|x=1=y

SDD x2+y2

xy (DxSy +DySx)(M(Γ, x, y))|x=1=y

H 2
x+y 2SxJ(M(Γ, x, y))|x=1

IS xy
x+y SxQ2JDxDy(M(Γ, x, y))|x=1

AZI ( xy
x+y−2)3 S3

xJD
3
xD

3
y(M(Γ, x, y))|x=1

In Table. 1, the relations between the aforesaid TI’s and M-polynomial are defined. More-

over, MM2 is second modified Zagreb, RRα is reciprocal general Randić, Dx = ∂(f(x,y))
∂(x) ,

Dy = ∂(f(x,y))
∂(y) , Sx =

∫ x
0
f(t,y)
t dt, Sy =

∫ y
0
f(x,t)
t dt. J(f(x, y)) = f(x, x) and Qα(f(x, y)) =

xαf(x, y), where α 6= 0.

Now, we construct the 3-layered probabilistic neural network consisting on 3 layers of
vertices. Suppose that there are n vertices in the first-layer (input-layer), k classes in the
second-layer (hidden-layer) with m vertices in each class and k vertices in the third-layer
(output-layer) such that each vertex of the first-layer is linked with all the vertices of each
class of the second-layer and all the vertices of each class of the second-layer are linked to
the unique vertex lying in the third-layer. Thus a 3-layered probabilistic neural network
denoted by PNN(n, k,m) has n+ k(m+ 1) vertices and km(n+ 1) edges, where n, k and
m are integers. Figure 1 presents PNN(n, k,m) for n = 4, k = 2 and m = 3.

3. Main Results

In this section, we compute the M-polynomial of the 3-layered probabilistic neural
network. Moreover, find the mathematical expressions for the certain degree-based TI’s
with the help of the M-polynomial.
Theorem 3.1. Let Γ ∼= PNN(n, k,m) be a 3-layered probabilistic neural network, where
n ≥ 1, m, k ≥ 2, n+ 1 ≥ m and km ≥ n+ 1. Then, the M-polynomial of Γ is
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm.

Proof. From Fig. 1, we note that Γ has three types of vertices such as

V1 = {w ∈ V (Γ)|d(w) = km},
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V2 = {w ∈ V (Γ)|d(w) = n+ 1},
and V3 = { w ∈ V (Γ)|d(w) = m},

where |V1| = n, |V2| = km and |V3| = k. Consequently, |V (PNN(n, k,m))| = v =
|V1|+ |V2|+ |V3| = n+ k(m+ 1). Moreover, Γ has two types of edges such as

E1 = E{m,n+1} = {vw ∈ E(Γ)|d(v) = m, d(w) = n+ 1},
and E2 = E{n+1,km} = {vw ∈ E(Γ)|d(v) = n+ 1, d(w) = km}. Thus, we obtain the
Tables 2 and 3.

Vertex partitions V1 V2 V3

Cardinality n km k

Table.2: Vertex-partition sets.

Edge partitions E1 = E{m,n+1} E2 = E{n+1,km}
Cardinality km nkm

Table.3 Edge-Partition sets.
Now, by the use of Definition 2.2 and the Tables 2 and 3, we obtain

M(Γ, x, y) =
∑
i≤j

[Ei,j(Γ)xiyj ],

=
∑

m≤n+1

[E{m,n+1}(Γ)xmyn+1]+
∑

n+1≤km
[E{n+1,km}(Γ)xn+1ykm],

= |E1|xmyn+1+|E2|xn+1ykm,

= (km)xmyn+1+(nkm)xn+1ykm.

Theorem 3.2. Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
n+ 1 ≥ m and km ≥ n+ 1. Then, first Zagreb index (M1(Γ)) and General Randic index,
(Rα(Γ),where α ∈ N) obtained from M-polynomial are as follows.

(i)M1(Γ) = mk[m(nk+1)+(n+1)2],

(ii)Rα(Γ) = (km)(1+nkα)[m(n+1)]α.

Proof. If f(x, y) = M(Γ, x, y) then f(x, y) = (km)xmyn+1 + (nkm)xn+1ykm. Now, the
required partial derivatives are obtained as

Dx(f(x, y)) = m(km)xm−1yn+1+km(nkm)xn+1ykm−1,

Dy(f(x, y)) = (n+1)(km)xmyn+(km)(nkm)xn+1ykm−1,

Dx(Dy(f(x, y))) = m(n+1)(km)xm−1yn+(n+1)(km)(nkm)xnykm−1,

Dα
x (Dα

y (f(x, y))) = (m(n+1))α(km)xm−1yn+(km(n+1))α(nkm)xnykm−1.

Now, we obtain

Dx(f(x, y))|x=1=y = m(km)+km(nkm) = km2+nk2m2,

Dy(f(x, y))|x=1=y = (n+1)(km)+(km)(nkm) = km(n+1)+nk2m2,

Dx(Dy(f(x, y)))|x=1=y = m(n+1)(km)+(n+1)(km)(nkm),

Dα
x (Dα

y (f(x, y)))|x=1=y = (m(n+1))α(km)+(km(n+1))α(nkm).

Consequently,

(i)M1(Γ) = (Dx+Dy)(f(x, y))|x=1=yDx(f(x, y))|x=1=y+Dy(f(x, y))|x=1=y,

= (km2+nk2m2)+(km(n+1)+nk2m2),



M. JAVAID, A. RAHEEM, M. ABBAS, J. CAO: M-POLYNOMIAL METHOD FOR TOPOLOGICAL 869

= mk[m(nk+1)+(n+1)2],

(ii)Rα(Γ) = (Dα
xD

α
y )(f(x, y))|x=1=y,

= (m(n+1))α(km)+(km(n+1))α(nkm),

= (km)(1+nkα)[m(n+1)]α.

In Corollary 3.3, we obtain the second Zagreb index by replacing α = 1 in Theorem 3.2.
Corollary 3.3. Let Γ ∼= PNN(n, k,m) and M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm,
where n ≥ 1, m, k ≥ 2, n + 1 ≥ m and km ≥ n + 1. Then, second Zagreb index of Γ is
M2(Γ) = (DxDy)(f(x, y))|x=1=y = (n+ 1)(km2)(1 + nk).

Theorem 3.4. Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
n+1 ≥ m and km ≥ n+1. Then, the reciprocal General Randic, (RRα(Γ), where α ∈ N)
is obtained by the M-polynomial as follows.

RRα(Γ) = [1+
n

(k)α
]

km

[m(n+ 1)]α
.

Proof. If f(x, y) = M(Γ, x, y) then f(x, y) = (km)xmyn+1 + (nkm)xn+1ykm. Now, the
required integrals are obtained as

Sx(f(x, y)) = (
km

m
)xmyn+1 + (

nkm

n+ 1
)xn+1ykm,

Sy(f(x, y)) = (
km

n+ 1
)xmyn+1 + (

nkm

km
)xn+1ykm,

SxSy(f(x, y)) = (
km

m(n+ 1)
)xmyn+1 + (

nkm

km(n+ 1)
)xn+1ykm,

SαxS
α
y (f(x, y)) = (

km

(m(n+ 1))α
)xmyn+1 + (

nkm

(km(n+ 1))α
)xn+1ykm.

Now, we obtain

SαxS
α
y (f(x, y))|x=1=y =

km

(m(n+ 1))α
+

nkm

(km(n+ 1))α
.

Consequently,

(v)RRα(Γ) = (SαxS
α
y )(f(x, y))|x=1=y,

= [1+
n

(k)α
]

km

[m(n+ 1)]α
.

The second modified Zagreb index (MM2(Γ)) can be obtain using α = 1 in Theorem 3.4
as stated in Corollary 3.5.
Corollary 3.5. Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
n+ 1 ≥ m and km ≥ n+ 1. Then, the second modified Zagreb is
MM2(Γ) = (SxSy)(f(x, y))|x=1=y = Sx(Sy(f(x, y)))|x=1=y = k

n+1 [1 + n
k ].

Theorem 3.6. Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
n + 1 ≥ m and km ≥ n + 1. Then, the symmetric division degree index (SDD(Γ)) is
obtained by the M-polynomial as follows.

SDD(Γ) =
1

n+ 1
[(n+1)2(n+k)+km2(1+nk)].
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Proof. If f(x, y) = M(Γ, x, y) then f(x, y) = (km)xmyn+1 + (nkm)xn+1ykm. Now, the
required expressions are

Sx(f(x, y)) = (k)xmyn+1+(
nkm

n+ 1
)xn+1ykm,

Sy(f(x, y)) = (
km

n+ 1
)xmyn+1+(n)xn+1ykm,

DySx(f(x, y)) = (n+1)(k)xmyn+n(
k2m2

n+ 1
)xn+1ykm−1,

DxSy(f(x, y)) = (
km2

n+ 1
)xm−1yn+1+n(n+1)xnykm.

Now, we obtain

DySx(f(x, y))|x=1=y = (n+1)(k)+n(
k2m2

n+ 1
),

DxSy(f(x, y))|x=1=y = (
km2

n+ 1
)+n(n+1).

Consequently,

SDD(Γ) = (DxSy+DySx)(f(x, y)) = (DxSy)(f(x, y))+(DySx)(f(x, y)),

= Dx(Sy(f(x, y)))+Dy(Sx(f(x, y))),

= [(n+1)(k)+n(
k2m2

n+ 1
)]+[(

km2

n+ 1
)+n(n+1)],

= (n+1)(n+k)+(
km2

n+ 1
)(1+nk) =

1

n+ 1
[(n+1)2(n+k)+km2(1+nk)].

Theorem 3.7.Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
n + 1 ≥ m and km ≥ n + 1. Then, harmonic index (H(Γ)) obtained from M-polynomial
is as follows.

H(Γ) = 2km[
m(k + n) + (n+ 1)2

(km+ n+ 1)(m+ n+ 1)
].

Proof. If f(x, y) = M(Γ, x, y) then f(x, y) = (km)xmyn+1 + (nkm)xn+1ykm. Now, the
required expressions are obtained as

J(f(x, y)) = (km)xm+n+1 + (nkm)xkm+n+1,

Sx(Jf(x, y)) = ( km
m+n+1)xm+n+1 + ( nkm

km+n+1)xkm+n+1.

Now, we obtain

Sx(Jf(x, y))|x=1=y =
km

m+ n+ 1
+

nkm

km+ n+ 1
.

Consequently,

H(Γ) = 2Sx(Jf(x, y))|x=1=y,

= 2km[
m(k + n) + (n+ 1)2

(km+ n+ 1)(m+ n+ 1)
].

Theorem 3.8. Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
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n+1 ≥ m and km ≥ n+1. Then, inverse sum index (IS(Γ)) obtained from M-polynomial
is

IS(Γ) =
km2(n+ 1)2[k(m+ n) + 1]

(m+ n+ 1)(km+ n+ 1)
,

Proof. If f(x, y) = M(Γ, x, y) then f(x, y) = (km)xmyn+1 + (nkm)xn+1ykm. Now, the
required expressions are obtained as

J(Dx(Dy(f(x, y)))) = m(n+ 1)(km)xm+n−1 + (n+ 1)(km)(nkm)xKm+n−1,

Q2J(Dx(Dy(f(x, y)))) = m(n+ 1)(km)xm+n+1 + (n+ 1)(km)(nkm)xKm+n+1,

SxQ2J(Dx(Dy(f(x, y)))) = m(n+1)(km)
m+n+1 xm+n+1 + (n+1)(km)(nkm)

km+n+1 xKm+n+1.

Consequently,

IS(Γ) = SxQ2J(Dx(Dy(f(x, y))))|x=1=y

=
km2(n+ 1)2[k(m+ n) + 1]

(m+ n+ 1)(km+ n+ 1)
.

Theorem 3.9. Let Γ ∼= PNN(n, k,m) be the 3-layered probabilistic neural network and
M(Γ, x, y) = (km)xmyn+1 + (nkm)xn+1ykm be its M-polynomial, where n ≥ 1, m, k ≥ 2,
n + 1 ≥ m and km ≥ n + 1. Then, augmented Zagreb index (AZI(Γ)) obtained from
M-polynomial is

AZI(Γ) = [(km+n−1)3+nk3(m+n−1)3]
(km)[m(n+ 1)]3

(m+ n− 1)3(km+ n− 1)3
.

Proof. Let f(x, y) = M(Γ, x, y) be the M-polynomial of the 3-layered probabilistic neural
network. Then f(x, y) = (km)xmyn+1 + (nkm)xn+1ykm. Now, the required expressions
are obtained as

(D3
x(D3

y(f(x, y)))) = (m(n+1))3(km)xm−1yn+(km(n+1))3(nkm)xnykm−1,

J(D3
x(D3

y(f(x, y)))) = (m(n+1))3(km)xm+n−1+(km(n+1))3(nkm)xkm+n−1,

SxJ(D3
x(D3

y(f(x, y))))

= (km)
(m(n+ 1))3

m+ n− 1
xm+n−1+(nkm)

(km(n+ 1))3

km+ n− 1
xkm+n−1,

S3
xJ(D3

x(D3
y(f(x, y)))),

= (km)
(m(n+ 1))3

(m+ n− 1)3
xm+n−1 + (nkm)

(km(n+ 1))3

(km+ n− 1)3
xkm+n−1.

Now, we obtain

S3
xJ(D3

x(D3
y(f(x, y))))|x=1=y = (km)

(m(n+ 1))3

(m+ n− 1)3
+(nkm)

(km(n+ 1))3

(km+ n− 1)3
.

Consequently,

AZI(Γ) = S3
xJ(D3

x(D3
y(f(x, y))))|x=1=y,

= [(km+n−1)3+nk3(m+n−1)3]
(km)[m(n+ 1)]3

(m+ n− 1)3(km+ n− 1)3
.
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Figure 2. Comparison of degree-based TI’s of PNN(n, n+ 1, 1)

4. Conclusion

To make an easy comparison of the computed results, we take PNN(n, n + 1, 1) with
v = 3n + 2. In Figure 2, we take the values of v and the obtained topological indices of
PNN(n, n+ 1, 1) along the horizontal and vertical line respectively. It is easy to observe
that all the topological indices M1, M2, MM2, SDD, H and IS coincide with a constant
rate such that IS remains dominant. Moreover, AZI is better one which increases with
increasing v.

Now, we close our discussion stating the significant determination of these results. In this
paper, the M-polynomial of the 3-layered Probabilistic neural network is proved and ap-
plied to study the the certain degree-based topological indices that will help to understand
the physical changes of this network. These results also have remarkable applications in
the pharmaceutical industry [19, 15]. In particular these are used for the preparation of
the anticancer drugs, see [16, 17].

5. Acknowledgement

The authors would like to express their sincere gratitude to the anonymous referees for
their insightful comments and valuable suggestions, which led to a number of improve-
ments in the earlier version of this manuscript. For this work, the author Jinde Cao
is jointly supported by the National Natural Science Foundation of China under grant
nos. 61573096 and 61272530, and The Jiangsu Provincial Key Laboratory of Networked
Collective Intelligence of China under grant no. BM2017002.

6. Conflict of Interest

The authors have no conflict of interest.

References

[1] Amic, D., Beslo, D., Lucic, B., Nikolic, S., and Trinajstic, N.,(1998), The vertex-connectivity index
revisited, J. Chem. Inf. Comput. Sci., 38, pp. 819-822.



M. JAVAID, A. RAHEEM, M. ABBAS, J. CAO: M-POLYNOMIAL METHOD FOR TOPOLOGICAL 873

[2] Araghi, L.F., Khaloozade, H., Arvan, M.R., (2009), Ship identification using probabilistic neural
networks. In: Proceedings of the international multiconference of engineers and computer scientists,
2, pp. 18-20.

[3] Baca, M., Horvathova, J., Mokrisova, M., Suhanyiova, A., (2015), On topological indices of fullerenes,
Applied Mathematics and Computation, 251, pp. 154-161.

[4] Baca, M., Horvathova, J., Mokrisova, M., Andrea Semanicova-Fenovckova, Suhanyiova, A., (2015),
On topological indices of a carbon nanotube network, Can. J. Chem. 93, pp. 1157-1160.

[5] Bollobas, B., Erdos, P., (1998), Graphs of extremal weights, Ars Combin., 50, pp. 225-233.
[6] Budak, F., Beyli, E.D.U, (2011), Detection of resistivity for antibiotics by probabilistic neural net-

works, J. Med. Syst., 35, pp. 87-91.
[7] Bruckler, F.M., Doslic, T., Graovac, A., Gutman, I., (2011), On a class of distance-based molecular

structure descriptors. Chem. Phys. Lett., 503, pp. 336–338.
[8] Bascil, M.S., Oztekin, H., (2012), A study on hepatitis disease diagnosis using probabilistic neural

network, J. Med. Syst., 36, pp. 1603-1606.
[9] Devillers, J., Balaban, A.T., (1999), Topological Indices and Related Descriptors in QSAR and QSPR,

Gordon Breach, Amsterdam.
[10] Diudea M.V., (2001), QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York.
[11] Deutsch, and Klavzar, S.,(2015), M-polynomial and degree-based topological indices. Iranian Journal

of Mathematical Chemistry, 6(2), pp. 93-102.
[12] Furtula, B., Graovac, A., Vukicevic, D., (2010), Augmented Zagreb index, J. Math. Chem., 48, pp.

370-380.
[13] Gutman, I., Trinajsti, N., (1972), Graph theory and molecular orbitals. III. Total electron energy of

alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535-538.
[14] Gutman, I., Polansky, O., (1986), Mathematical Concepts in Organic Chemistry, Springer-Verlag,

Berlin.
[15] Gutman, I., (2013), Degree-based topological indices. Croat. Chem. Acta, 86, pp. 351-361.
[16] Gonzalez-Diaz, H., Vilar, S., Santana, L., and Uriarte, E., (2007) Medicinal Chemistry and Bioin-

formatics - Current Trends in Drugs Discovery with Networks Topological Indices, Current Topics in
Medicinal Chemistry, 7 (10), pp. 1015-1029.

[17] Gao, W., Wang, W., and Farahani, M.R., (2016), Topological indices study of molecular structure in
anticancer drugs, Journal of Chemistry, Doi:10.1155/2016/3216327.

[18] Harary, F., (1969) Graph Theory, Addison-Wesley.
[19] Hall, L.H. and Kier, L.B.,(1976) Molecular Connectivity in Chemistry and Drug Research; Academic

Press: Boston,239 MA, USA.
[20] Holmes, E., Nicholson, J.K., Tranter, G., (2001), Metabonomic characterization of genetic variations

in toxicological and metabolic responses using probabilistic neural networks, Chemical Research in
Toxicology, 14(2), pp. 182-191.

[21] Javaid, M., Rehman, M.U., Cao, J., (2017), Topological indices of rhombus type silicate and oxide
networks, Can. J. Chem. 95(2), pp. 134-143.

[22] Javaid, M. Cao, J., (2017), Computing topological indices of probabilistic neural network, Neural
Comput. and Applic., 30(2018), 3869-3876.

[23] Kowalski, P.A., Kulczycki, P., Interval probabilistic neural network, Neural Comput. Applic. DOI
10.1007/s00521− 015− 2109− 3.

[24] Klavzar, S., Gutman, I., (1996), A Comparison of the Schultz molecular topological index with the
Wiener index, J. Chem. Inf. Comput. Sci., 36, pp. 1001–1003.

[25] Kim, D., Kim, D.H., Chang, S., (2008), Application of probabilistic neural network to design break-
water armor blocks, Ocean Engineering, 35, pp. 294-300.

[26] Kulli, V., Stone, B., Wang, S., Wei, B., (2017) Generalized multiplicative indices of polycyclic aromatic
hydrocarbons and benzenoid systems, Zeitschrift für Naturforschung A, 72(6)a, pp. 573–576.

[27] Labanowski,J.K., Motoc I., and Dammkoehler, R.A., (1991), The physical meaning of topological
indices, Computers Chem., 1(15), pp. 47-53.

[28] Lee, J.-J., Yun, C.-B., (2007), Damage localization for bridges using probabilistic neural networks,
KSCE Journal of Civil Engineering 11(2), pp. 111-120.

[29] Matamala A. R., and Estrada, E., (2005), Generalised topological indices: Optimisation methodology
and physico-chemical interpretation, Chemical Physics Letters, 410, pp. 343-347.

[30] Meshoul, S., and Batouche, M., (2010), A novel approach for online signature verification using
fisher based probabilistic neural network, In: Proceedings of IEEE symposium on computers and
communications, pp. 314-319.



874 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

[31] Munir, M., Nazeer, W., Shahzadi, Z., Kang, S.M., (2016), M-polynomial and degree-based topological
indices of polyhex nanotubes, Symmetry ,8, pp. 149-159.

[32] Polya, G., Kombinatorische Anzahlbestimmungen fur Gruppen, (1936), Graphen und chemische
Verbindungen, Acta Math., 68, pp. 145-253.

[33] Rajan, B., William, A., Grigorious, C., and Stephen, S., (2012) On certain topological indices of
silicate, honeycomb and hexagonal networks, J. Comp. Math. Sci., 5, pp. 530-535.

[34] Randic, M., (1975), On characterization of molecular branching, J. Am. Chem. Soc., 97, pp. 6609-6615.
[35] Rucker, G., Rucker, C., (1999), On topological indices, boiling points, and cycloalkanes. J. Chem. Inf.

Comput. Sci., 39, pp. 788-802.
[36] Shafiei, F., (2015), Relationship between topological indices and thermodynamic properties and of the

monocarboxylic acids applications in QSPR, Iranian Journal of Mathematical Chemistry, 1(6), pp.
15-28.

[37] Standal, I.B., Rainuzzo, J., Axelson, D.E., Valdersnes, S., Julshamn, K., Aursand, M., (2012), Clas-
sification of geographical origin by PNN analysis of fatty acid data and level of contaminants in oils
from Peruvian anchovy, J. Am. Oil Chem. Soc., 89(7), pp. 1173-1182.

[38] Specht, D.F., (1990), Probabilistic neural networks, Neural Netw., 3, pp. 109-118.
[39] Tran, T., Nguyen, T., Tsai, P., Kong, X., (2011) BSPNN: boosted subspace probabilistic neural

network for email security. Artif. Intell. Rev., 35, pp. 369-382.
[40] Tran, T.P., Cao, L., Tran, D., Nguyen, C.D., Novel intrusion detection using probabilistic neural

network and adaptive boosting, Int. J. Comput. Sci. Inf. Secur, 6, pp. 83-91.
[41] Wiener, H.J., (1947), Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69,

pp. 17-20.
[42] Wang, Y., Adali, T., Kung, S. Y., Szabo, Z., (1998) Quantification and segmentation of brain tissues

from MR images: a probabilistic neural network approach, Ieee Transactions on Image Processing,
7(8), 1165-1181.

[43] West, D.B, 1996, Introduction to Graph Theory, USA Printce Hall.
[44] Yan, F., Shang, Q., Xia, S., Wang, Q., and Ma, P., (2015), Application of topological index in

predicting ionic liquids densities by the quantitative structure property relationship method, J. Chem.
Eng. Data, 60, pp. 734-739.

[45] Wang, C., Liu, J., Wang, S., (2017) Sharp upper bounds for multiplicative Zagreb indices of bipartite
graphs with given diameter, Discrete Applied Mathematics, 227, pp. 156-165,

Muhammad Javaid completed his Ph.D in Mathematics from National University
of Computer and Emerging Sciences, Lahore, Pakistan in 2014 and Post Doctorate
Mathematics from School of Mathematical Sciences, University of Science and Tech-
nology of China, Hefei, China in 2017. He is currently an Assistant Professor of
Mathematics at UMT, Lahore, Pakistan. He has published more than 50 research
articles in different well reputed international journals. His research interests include
Graph Theory and Combinatorics. He is also a Reviewer of Mathematical Reviews.

Abdul Raheem received his Ph.D. in 2016 from the Department of Mathematics,
COMSATS Institute of Information Technology, Islamabad, Pakistan. Presently, he
is working as Postdoctoral researcher in the Department of Mathematics, National
University of Singapore, Singapore. His research interests are Graph labeling, Metric
graph theory and Chemical graph theory.



M. JAVAID, A. RAHEEM, M. ABBAS, J. CAO: M-POLYNOMIAL METHOD FOR TOPOLOGICAL 875

Mujhaid Abbas: He is a Professor of Mathematics in the Department of Mathe-
matics, Government College University Lahore, Pakistan, extraordinary Professor in
Department of Mathematics and Applied Mathematics, University of Pretoria, South
Africa and Distinguished Professor (Adjunct): in the Department of Mathematics,
King Abdulaziz University Saudi Arabia. He is a National Research Foundation
(South Africa) rated mathematician. He is also Thomson Reuters highly cited re-
searcher 2015, 2016 and 2017.

Jinde Cao: completed Ph.D. Mathematics from Sichuan University, Chengdu, China
in 1998. He was a Postdoctoral Research Fellow at the Department of Automation
and Computer-Aided Engineering, Chinese University of Hong Kong, Hong Kong
in 2002. He is a Distinguished Professor, the Dean of School of Mathematics and
the Director of the Research Center for Complex Systems and Network Sciences at
Southeast University, China. He is a Fellow of IEEE, a Member of the Academy of
Europe, and a Foreign Fellow of Pakistan Academy of Sciences. He has been named
as Highly-Cited Researcher by Thomson Reuters/Clarivate Analytics.


