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FUZZY SOFT QUASI SEPARATION AXIOMS

TUGBA HAN DIZMAN(SIMSEKLER)1, NAIME DEMIRTAS (TOZLU)2, SAZIYE YUKSEL3, §

Abstract. In this work, we focus on fuzzy soft quasi separation axioms and give some
new results about the concept of quasi coincidence with fuzzy soft sets defined in [17].
Further, we give relations between fuzzy soft quasi Ti−(i = 0, 1, 2) spaces and fuzzy quasi
Ti−(i = 0, 1, 2) spaces.
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1. Introduction

The set theory, which was initiated by George Cantor, has an important role for several
branches of mathematics. In this theory, the sets are crisp and defined precisely by its
elements and thus, it is clear if an element belongs to a set or not. However, if we aim to
model a concept in real life by using the mathematical properties of Cantor‘s set theory,
then we might run into various difficulties due to vagueness which exists in problems
related to economics, engineering, medicine, etc. To fulfill this lack, many theories are
developed such as fuzzy set theory [19], rough set theory [14], soft set theory [11] and
recently the hybrid models [10].
The most popular theory for vagueness is undoubtedly the fuzzy set theory, which was
first defined by Zadeh [19]. Fuzzy sets are specified by the membership function which
identifies the belonging of an element to a set up to a degree. The rough set theory, which
is defined by Pawlak [14], is another method to take the vagueness into account. It is based
on the indiscernibility relations of elements of the finite universe and boundary region of
a set. Moreover, Molodtsov [11] defined the soft set theory as a different approach to the
doubtfulness and the theory has been used in the various branches of mathematics. He
also showed that, the soft set theory is free from the parametrization inadequacy syndrome
of the other theories developed for vagueness like fuzzy set theory, rough set theory and
etc. The soft set theory has been studied by several researchers [2, 16]. As a further
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improvement, researchers combined the vague sets and these new hybrid sets are used in
many studies [5, 10]. For instance, Maji et al. [10] defined fuzzy soft sets, which are a
combination of fuzzy and soft sets. Many researchers have contributed to the theory of
these hybrid models, see for example [1, 4, 7, 8, 9].
After the introduction of vague sets, it was natural to construct topological structures on
those sets. For this purpose, Tanay and Kandemir [18] defined the fuzzy soft topology and
obtained several results. Also, Roy and Samanta [15] worked on the topological structure
on a fuzzy soft set. In another paper, we [17] defined the fuzzy soft topology over a fuzzy
soft set with fixed parameter set and investigated the topological concepts as neighborhood
systems, fuzzy soft interior and fuzzy soft closure points, quasi coincidence for fuzzy soft
sets and etc. Furthermore, Atmaca and Zorlutuna [3] investigated the notions as fuzzy soft
closure of a soft set, fuzzy soft base and fuzzy soft continuity in the fuzzy soft topological
spaces.
In the present work, we first recall the well known definitions and results of fuzzy soft
topology given in [3, 13, 15, 17, 18], we also, introduce fuzzy soft subspace and obtain
some new results about fuzzy soft quasi coincidence points. Then, we define fuzzy soft
quasi separation axioms and prove the properties of them. Further, we give relations
between fuzzy soft quasi Ti−(i = 0, 1, 2) spaces and fuzzy quasi Ti−(i = 0, 1, 2) spaces.

2. Preliminaries

In this section, we present several preliminary definitions which are necessary in the
process of defining our main results. For the sake of consistency, the following notations
are used throughout the whole paper:

U : the initial universe,
E : the possible parameters for U ,
P (U) : the power set of U ,
IU : the set of all fuzzy subsets of U ,
(U,E) : the universal set U and the parameter set E.

Definition 2.1. [19] A fuzzy set A in U is a set of ordered pairs: A = {(x, µA(x)) : x ∈
U},where µA : U −→ [0, 1] = I is a mapping and µA(x) (or A(x)) states the grade of
belonging of x in A.

Definition 2.2. [11] Let F be a mapping given by F : A → P (U) and A ⊆ E. Then,
(F,A) is said to be soft set over U .

Aktas and Cagman [2] showed that every fuzzy set is a soft set. That is, fuzzy sets are
a special class of soft sets.

Definition 2.3. [15] Let A ⊆ E. (fA, E) is defined to be a fuzzy soft set (briefly; fs-set)
on (U,E) if fA:E → IU is a mapping defined by fA(e) = µefA where µefA = Ō if e ∈ E −A
and µefA 6= Ō if e ∈ A, where Ō(u) = 0 for each u ∈ U.

Definition 2.4. [15] The complement of a fs-set (fA, E) is a fs-set (f cA, E) on (U,E)
which is denoted by (fA, E)c and f cA : E → IU is defined by µefcA

= 1 − µefA if e ∈ A and

µefcA
= 1̄ if e ∈ E\A, where 1̄(u) = 1 for each u ∈ U.

Definition 2.5. [15] The fs-set (fΦ, E) on (U,E) is called null fs-set and is shown by Φ.
fΦ(e) = Ō for every e ∈ E.
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Definition 2.6. [15] The fs-set (fE , E) on (U,E) is defined to be absolute fs-set and is
shown by U∼

E . U(e) = fE(e) = 1̄ for every e ∈ E.

Definition 2.7. [15] Let (fA, E) and (gB, E) be two fs-sets on (U,E). (fA, E) is called
fs-subset of (gB, E) if µefA ⊆ µeg

B
for all e ∈ E, i.e., µefA(u) ≤ µeg

B
(u) for all u ∈ U and

for all e ∈ E and is denoted by (fA, E) v (gB, E).

Definition 2.8. [15] Let (fA, E) and (gB, E) be two fs-sets on (U,E). The union of these
two fs-sets is a fs-set (hC , E), defined by hC(e) = µeh

C
= µefA ∪ µ

e
g
B

for all e ∈ E where

C = A ∪B and is denoted by (hC , E) = (fA, E) t(gB, E).

Definition 2.9. [15] Let (fA, E) and (gB, E) be two fs-sets on (U,E). The intersection
of these two fs-sets is a fs-set (hC , E), defined by hC(e) = µeh

C
= µefA ∩ µ

e
g
B

for all e ∈ E
and where C = A ∩B and is denoted by (hC , E) = (fA, E) u(gB, E).

3. Fuzzy Soft Topology

Throughout this work U, E denote the universe and the parameter set, respectively and
(fA, E) is considered as a fs-set on (U,E).

Definition 3.1. [18, 15] Let τf be the collection of fs-subsets of U∼
E . τf is said to be a

fuzzy soft topology (briefly; fs-topology) if

(1) Φ, U∼
E ∈ τf ,

(2) If (fiA , E) ∈ τf , then ti(fiA , E) ∈ τf ,
(3) If (gA, E), (hA, E) ∈ τf , then (gA, E) u (hA, E) ∈ τf .

The pair (U∼
E , τf ) is said a fuzzy soft topological space (briefly; fst-space) over U∼

E . Every
member of τf is called the fuzzy soft open set (briefly; fs-open set). A fs-subset of U∼

E is
called the fuzzy soft closed set (briefly; fs-closed set) if its complement is a member of τf .

Theorem 3.1. [17] Let (U∼
E , τf ) be a fst-space and κf denotes the collection of all fs-closed

sets. Then,

(1) Φ, U∼
E are fs-closed sets,

(2) The arbitrary intersection of fs-closed sets are fs-closed,
(3) The union of two fs-closed sets is a fs-closed set.

Theorem 3.2. [12] If (U∼
E , τf1) and (U∼

E , τf2) are two fst-spaces then, (U∼
E , τf1 ∩ τf2) is a

fst-space.

Remark 3.1. [12] The union of two fs-topologies may not be a fs-topology as seen in the
following example.

Example 3.1. Let U = {x, y, z} be the universe set, E = {e1, e2, e3} be the parame-
ter set, A = {e1, e2} and τf1 = {Φ, U∼

E , (f1A , E), (f2A , E), (f3A , E), (f4A , E)} and τf2 =
{Φ, U∼

E , (g1A , E), (g2A , E)} be the fs-topologies on U∼
E where,

(f1A , E) = {e1 = {x0.2, y0.4, z0.7}, e2 = {x0.1, y0.5, z0.2}},
(f2A , E) = {e1 = {x0.5, y0.3, z0.5}, e2 = {x0.4, y0.8, z0.6}},
(f3A , E) = {e1 = {x0.2, y0.3, z0.5}, e2 = {x0.1, y0.5, z0.2}},
(f4A , E) = {e1 = {x0.5, y0.4, z0.7}, e2 = {x0.4, y0.8, z0.6}},
(g1A , E) = {e1 = {x0.4, y0.6, z0.5}, e2 = {x0.3, y0.6, z0.2}},
(g2A , E) = {e1 = {x0.3, y0.4, z0.3}, e2 = {x0.1, y0.3, z0.2}}.
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It is easily seen that, τf1 , τf2 are fs-topologies on U∼
E but τf1 ∪ τf2 is not a fs-topology since

(f1A , E) t (g1A , E) is not a member of τf1 ∪ τf2 .

Definition 3.2. [15] Let P λx be a fuzzy point in IU . Then, (P λx , E) is a fs-set on (U,E)
where P λx (e) = µe

Pλx
, µe

Pλx
(u) = λ, if u = x and µe

Pλx
(u) = 0 if u 6= x for every e ∈ E and

every u ∈ U.

Definition 3.3. [15] Let P λx (x ∈ U, λ ∈ (0, 1]) be a fuzzy point in IU . If λ ≤ µefA(x), for

every e ∈ A, then, P λx belongs to (fA, E) and it is denoted by P λx ∈∼ (fA, E).

Definition 3.4. [15] Let (U∼
E , τf ) be a fst-space, (gA, E) be a fs-subset of U∼

E . The inter-
section of all fs-closed sets containing (gA, E) is called the fuzzy soft closure of (gA, E).
(gA , E)− = u{(hA, E) : (gA , E) v (hA, E) and (hA, E) is fs-closed}

Theorem 3.3. [13] Let (U∼
E , τf ) be a fst-space. Then, the collection

τfe = {gA(e) : (gA, E) ∈ τf}
for each e ∈ E defines a fuzzy topology over U(e).

Example 3.2. The converse inclusion of Theorem 3.3., does not hold generally.
Let U = {x, y, z} , E = {e1, e2}.

f1A(e1) = {x0.3, y0.5, z0.8} , f1A(e2) = {x0.1, y0.6, z0.3}
f2A(e1) = {x0.2, y0.8, z0.5} , f2A(e2) = {x0.2, y0.4, z0.5}
f3A(e1) = {x0.3, y0.8, z0.8} , f3A(e2) = {x0.1, y0.4, z0.3}
f4A(e1) = {x0.2, y0.5, z0.5} , f4A(e2) = {x0.2, y0.6, z0.5}

Then, τf = {Φ, U∼
E , (f1A , E), (f2A , E), (f3A , E), (f4A , E)} is not a fs-topology since (f1A , E)t

(f2A , E) is not a member of τf . But τfe1 and τfe2 are fuzzy topologies over the fuzzy sets

U(e1) and U(e2), respectively.

Definition 3.5. Let V be a subset of U . Then, the sub fs-set of (fA, E) over (V,E) is
denoted by (V fA, E) and is defined as follows:

(V fA, E) = V ∼
E u (fA, E)

where the symbol V ∼
E denotes the absolute fs-set on (V,E).

Definition 3.6. Let (U∼
E , τf ) be a fst-space and V ⊆ U . Then

τfV =
{

(V fA, E) : (fA, E) ∈ τf
}

is said to be soft relative topology on V U∼
E and (V U∼

E , τfV ) is called a fs-subspace of
(U∼

E , τf ).

Definition 3.7. [3] Let P λx be a fuzzy point in IU . P λx is said to be quasi-coincident (briefly;
q-coincident) with (fA, E), denoted by P λx q(fA, E) if λ+ µefA(x) > 1 for any e ∈ A.

Definition 3.8. [3] Let (fA, E) and (gA, E) be two fs-sets on (U,E). (fA, E) is said to
be q-coincident with (gA, E), denoted by (fA, E)q(gA, E), if there exists u ∈ U such that
µefA(u) + µegA(u) > 1, for any e ∈ A. If this is true, we can say that (fA, E) and (gA, E) is
q-coincident at u.

Theorem 3.4. [3] Let (gA, E), (hA, E) be two fs-sets. If (gA, E)u(hA, E) = Φ then (gA, E)
is not q-coincident with (hA, E).
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Theorem 3.5. Let (gA, E), (hA, E) be two fs-sets on (U,E). If (gA, E)cq(hA, E) at u
then, (gA, E) is not q-coincident with (hA, E)c at u.

Proof. Let (gA, E)cq(hA, E) at u. Then, (1− µegA(u)) + µehA(u) > 1 for any e ∈ A. Hence,

1 > (1− µehA(u)) + µegA(u). Thus, (gA, E) is not q-coincident with (hA, E)c at u. �

4. Fuzzy Soft Quasi Separation Axioms

Definition 4.1. Let (U∼
E , τf ) be a fst-space. If, for any fuzzy points P λx , P

µ
y (x, y ∈ U, x 6=

y) in IU there exists (gA, E) ∈ τf such that P λx q(gA, E) v (Pµy , A)c or Pµy q(gA, E) v
(P λx , A)c then, (U∼

E , τf ) is called fuzzy soft quasi T0− space (briefly; fsq-T0− space).

Lemma 4.1. If, P λx q(fA, E) then P λx /∈∼ (fA, E)c.

Proof. Let P λx q(fA, E). Then, for any e ∈ A, λ + µefA(x) > 1 and hence ,λ > 1 − µefA(x)

and λ > µefcA
(x). Therefore, P λx /∈∼ (fA, E)c. �

Theorem 4.1. If (U∼
E , τf ) is a fsq-T0− space then, for any pair of fuzzy points P λx , P

µ
y

(x, y ∈ U, x 6= y) in IU P λx /∈ (Pµy , A)− or Pµy /∈ (P λx , A)−.

Proof. Let P λx , P
µ
y (x, y ∈ U, x 6= y) be a pair of fuzzy points in IU . Since (U∼

E , τf ) is a

fsq-T0− space, there exists (gA, E) ∈ τf such that P λx q(gA, E) v (Pµy , A)c or Pµy q(gA, E) v
(P λx , A)c. We consider the first state. By Lemma 4.1., P λx /∈∼ (gA, E)c and (Pµy , A) v
(gA, E)c. Since (gA, E)c is a fs-closed set, (Pµy , A)− v (gA, E)c. Therefore we get that
P λx /∈ (Pµy , A)−. The proof can be done for Pµy similarly. �

Definition 4.2. [6] A fuzzy topological space (X, τ) is said to be fuzzy quasi T0 (briefly;
fq-T0) iff for every pair of fuzzy points P λx , P

µ
y ∈ X such that x 6= y there exists U ∈ τ

such that P λx qU ≤ (Pµy )c or Pµy qU ≤ (P λx )c.

Theorem 4.2. If (U∼
E , τf ) is a fsq-T0− space then, for any e ∈ E, (U(e), τfe) is fq-T0.

Proof. Let P λx , P
µ
y (x, y ∈ U, x 6= y) be two fuzzy points in IU . Then, there exists (gA, E) ∈

τf such that P λx q(gA, E) v (Pµy , A)c or Pµy q(gA, E) v (P λx , A)c. Since (U∼
E , τf ) is a fsq-T0−

space, then P λx q(gA, E) v (Pµy , A)c or Pµy q(gA, E) v (P λx , A)c. Hence, P λx qgA(e) ≤ (Pµy )c

or Pµy qgA(e) ≤ (P λx )c for any e ∈ E . This shows that (fA(e), τfe) is fq-T0. �

Theorem 4.3. If (U∼
E , τf ) is a fsq-T0− space then, (V U∼

E , τfV ) is fsq-T0.

Proof. Let (U∼
E , τf ) be a fsq-T0− space and P λx , P

µ
y (x, y ∈ V, x 6= y) be two fuzzy points.

Then, there exists a fs-open set (gA, E) such that P λx q(gA, E) v (Pµy , A)c or Pµy q(gA, E) v
(P λx , A)c. We consider the first state. Since x ∈ V, we obtain that P λx q(V

∼
E u (gA, E)) v

(Pµy , A)c. The proof for the second case can be done in a similar way. �

Definition 4.3. Let (U∼
E , τf ) be a fst-space. If for any fuzzy points P λx , P

µ
y (x, y ∈ U, x 6=

y) of IU there exist fs-open sets (gA, E), (hA, E) such that P λx q(gA, E) v (Pµy , A)c and
Pµy q(hA, E) v (P λx , A)c then (U∼

E , τf ) is called fuzzy soft quasi T1− space (briefly; fsq-T1−
space).

Theorem 4.4. (U∼
E , τf ) is fsq-T1− space if (P 1

x , A) is fs-closed for any x ∈ U .

Proof. Let P λx , P
µ
y (x, y ∈ U, x 6= y) be two fuzzy points of IU . Since (P 1

x , A), (P 1
y , A) are

fs-closed sets, (P 1
x , A)c,(P 1

y , A)c ∈ τf . It is easy to see that P λx q(P
1
y , A)c and Pµy q(P 1

x , A)c.

Moreover, (P 1
y , A)c @ (Pµy , A)c and (P 1

x , A)c @ (P λx , A)c. Therefore, (U∼
E , τf ) is a fsq-T1−

space. �
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Definition 4.4. [6] A fst-space (X, τ) is said to be fuzzy quasi T1 (briefly; fq-T1) iff for
every pair of fuzzy points P λx , P

µ
y ∈ X such that x 6= y there exist U, V ∈ τ such that

P λx qU ≤ (Pµy )c and Pµy qV ≤ (P λx )c.

Theorem 4.5. If (U∼
E , τf ) is a fsq-T1− space then, for any e ∈ E (fA(e), τfe) is fq-T1.

Proof. Let P λx , P
µ
y (x, y ∈ U, x 6= y) be two fuzzy points. Since (U∼

E , τf ) is fsq-T1, there

exist (gA, E), (hA, E) ∈ τf such that P λx q(gA, E) v (Pµy , A)c and Pµy q(hA, E) v (P λx , A)c.

Hence, P λx qgA(e) ≤ (Pµy )c and Pµy qhA(e) ≤ (P λx )c for any e ∈ E . This shows that,
(U∼

E , τfe) is fq-T1. �

Theorem 4.6. If (U∼
E , τf ) is a fsq-T1− space then, (V U∼

E , τfV ) is fsq-T1.

Proof. Similar to Theorem 4.3. �

Remark 4.1. Every fsq-T1− space is a fsq-T0− space, but the converse is not true generally
as seen the following example:

Example 4.1. Let U = {x, y} and E = {e1, e2, e3} and τf = {Φ, U∼
E , (f1A , E)} be a

fst-space where,
(f1A , E) = {e1 = {x1, y0}, e2 = {x1, y0}}.

Then, (U∼
E , τf ) is a fsq-T0− space but not fsq-T1− space.

Definition 4.5. Let (U∼
E , τf ) be a fst-space. If for any fuzzy points P λx , P

µ
y (x, y ∈ U, x 6=

y) of IU there exist fs-open sets (gA, E), (hA, E) such that P λx q(gA, E) v (Pµy , A)c and
Pµy q(hA, E) v (P λx , A)c and (gA, E) is not q-coincident with (hA, E) then (U∼

E , τf ) is called
fuzzy soft quasi T2− space (briefly; fsq-T2− space).

Example 4.2. Let U = {x, y}, E = {e1, e2, e3}, A = {e1, e2} and τf = {Φ, E∼, (f1A , E), (f2A , E)}
where,

(f1A , E) = {e1 = {x0, y1}, e2 = {x0, y1},
(f2A , E) = {e1 = {x1, y0}, e2 = {x1, y0}.

Then, (fA, E, τf ) is a fsq-T2− space.

Remark 4.2. Every fsq-T2− space is a fsq-T1− space.

Definition 4.6. [6] A fuzzy topological space (X, τ) is said to be fuzzy quasi T2 (briefly;
fq-T2) iff for every pair of fuzzy points P λx , P

µ
y ∈ X such that x 6= y there exist U, V ∈ τ

such that P λx qU ≤ (Pµy )c, Pµy qV ≤ (P λx )c and U is not q-coincident with V.

Theorem 4.7. If (U∼
E , τf ) is a fsq-T2− space then, for any e ∈ E, (fA(e), τfe) is fq-T2−

space.

Theorem 4.8. If (U∼
E , τf ) is a fsq-T2− space then, (V U∼

E , τfV ) is fsq-T2.

Proof. Similar to Theorem 4.3. �

Definition 4.7. Let (U∼
E , τf ) be a fst-space P λx be a fuzzy point of IU and (gA, E) be a

fs-closed set such that P λx q(gA, E)c. If there exist fs-open sets (sA, E), (hA, E) such that
P λx q(sA, E), (gA, E)q(hA, E) and (sA, E)q(hA, E)c then, (U∼

E , τf ) is called fuzzy soft quasi
regular space (briefly; fsq-regular space).

Example 4.3. Let U = {x, y}, E = {e1, e2, e3} and

τf ={Φ, U∼
E , (f1A , E), (f2A , E), (f3A , E), (f4A , E), (f5A , E),

(f6A , E), (f7A , E), (f8A , E), (f9A , E), (f10A , E), (f11A , E)}
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be a fs-topology where,

(f1A , E) = {e1 = {x0.6, y0.7}, e2 = {x0.6, y0.8}},
(f2A , E) = {e1 = {x0, y0.9}, e2 = {x0, y0.8}},
(f3A , E) = {e1 = {x0.8, y0}, e2 = {x0.8, y0}},
(f4A , E) = {e1 = {x0.9, y0.9}, e2 = {x0.8, y0.8}},
(f5A , E) = {e1 = {x0.6, y0.9}, e2 = {x0.6, y0.8}},
(f6A , E) = {e1 = {x0, y0.7}, e2 = {x0, y0.8}},
(f7A , E) = {e1 = {x0.8, y0.7}, e2 = {x0.8, y0.8}},
(f8A , E) = {e1 = {x0.6, y0}, e2 = {x0.6, y0}},
(f9A , E) = {e1 = {x0.8, y0.9}, e2 = {x0.8, y0.8}},

(f10A , E) = {e1 = {x1, y0.9}, e2 = {x1, y0.8}},
(f11A , E) = {e1 = {x0.9, y1}, e2 = {x0.8, y1}}.

Then, (U∼
E , τf ) is a fsq-regular space.

Definition 4.8. If (U∼
E , τf ) is both fsq-regular and fsq-T1 then it is called fuzzy soft quasi

T3− space (briefly; fsq-T3− space).

Remark 4.3. If (U∼
E , τf ) is a fsq-regular space then (V U∼

E , τfV ) may not be fsq-regular
space as seen in the following example.

Example 4.4. We consider example 4.3. (V U∼
E , τfV ) where V = {x} is not a fsq-

regular space. Because, for the fuzzy point P 0.3
x and the fs-closed set (f10A , E)c such that

P 0.3
x q(f10A , E) there do not exist any fs-open sets (gA, E), (hA, E) such that P 0.3

x q(gA, E)
and (f10A , E)cq(hA, E) and (gA, E)cq(hA, E).

Definition 4.9. Let (U∼
E , τf ) be a fst-space and (gA, E), (sA, E) be fs-closed sets such that

(gA, E)q(sA, E)c. If there exist fs-open sets (hA, E), (kA, E) ∈ τf such that (gA, E)q(hA, E),
(sA, E)q(kA, E) and (hA, E)q(kA, E)c then (U∼

E , τf ) is called fuzzy soft quasi normal space
(briefly; fsq-normal space).

Example 4.5. Let U = {x, y}, E = {e1, e2, e3}and τf = {Φ, U∼
E , (f1A , E), (f2A , E),

(f3A , E), (f4A , E), (f5A , E), (f6A , E)} be a fs-topology where,

(f1A , E) = {e1 = {x0.3, y0.5}, e2 = {x0.5, y0.4}},
(f2A , E) = {e1 = {x0.6, y0.4}, e2 = {x0.2, y0.7}},
(f3A , E) = {e1 = {x0.6, y0.5}, e2 = {x0.5, y0.7}},
(f4A , E) = {e1 = {x0.3, y0.4}, e2 = {x0.2, y0.4}},
(f5A , E) = {e1 = {x0.9, y0.9}, e2 = {x0.8, y0.8}},
(f6A , E) = {e1 = {x1, y0.4}, e2 = {x1, y0.5}}.

Then (U∼
E , τf ) is a fsq-normal space.

Definition 4.10. If (U∼
E , τf ) is both fsq-normal and fsq-T1 then it is called fuzzy soft quasi

T4− space (briefly; fsq-T4− space).

Remark 4.4. If (U∼
E , τf ) is a fsq-normal space then (V U∼

E , τfV ) may not be fsq-normal
space as seen in the following example.
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Example 4.6. We consider example 4.5. (V U∼
E , τfV ) where V = {x} is not a fsq-normal

space. Because, for the fs-closed sets (f1A , E)c and (f5A , E)c such that (f1A , E)cq(f5A , E)
there do not exist any fs-open sets (gA, E), (hA, E) such that (f1A , E)cq(gA, E), (f5A , E)cq(hA, E)
and (gA, E)cq(hA, E).
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