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ϕ-BEST PROXIMITY POINT THEOREMS IN METRIC SPACES WITH

APPLICATIONS IN PARTIAL METRIC SPACES
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Abstract. In this paper, we introduce the notions of (F,ϕ, θ)-proximal contraction
and (F,ϕ, θ)-weak proximal contraction for non-self mappings and utilize the same to
prove some existence and uniqueness of ϕ-best proximity point for such mappings. Some
illustrative examples are also given to exhibit the utility of our results. As an application
of the concept of ϕ-best proximity point, we deduce some best proximity point theorems
in the context of partial metric spaces.
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1. Introduction and Preliminaries

Let (A,B) be a pair of non-empty subsets of a metric space (X, d) and T : A → B a
mapping. Naturally, Banach contraction principle implies that every self-contraction T
defined on a complete subsets A of a metric space X admits a unique fixed point. But a
non self-mapping T : A → B need not to have a fixed point. In case T is free from fixed
point, it is of interest to find an element x in A which is close to Tx (belonging to B) in the
sense that d(x, Tx) is minimum. In view of the fact that d(A,B) ≤ d(x, Tx), for all x ∈ A,
a best proximity point is a point x that satisfies the condition d(x, Tx) = d(A,B). A best
proximity theorem enunciates sufficient conditions for the existence of a best proximity
point of the mapping T . In fact, best proximity theorems are natural generalizations
of fixed point theorems. For the convergence and existence theorems pertaining to best
proximity points for several variants of contractions, one can be referred to [1, 2, 3, 4].
Results on best proximity point for cyclic mappings can be found in[5, 6] whereas Abkar
and Gabeleh [7] studied best proximity point for noncyclic mappings in metric spaces.

In this article, we introduce the notions of (F,ϕ, θ)-proximal contraction and (F,ϕ, θ)-
weak proximal contraction for non-self mappings wherein the control function F can be
discontinuous(unlike [8]) and utilize the same to prove some existence and uniqueness
results for ϕ-best proximity point for such mappings. We also adopt some examples to
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exhibit the utility of our results. These examples also demonstrate that our results are
proper generalizations of the results due to Işlk et al. [8]. As an application of the concept
of ϕ-best proximity point, we deduce some best proximity point theorems in the context
of partial metric spaces.

In 2014, Jleli et al. [9] introduced the control function F : [0,∞)3 → [0,∞) satisfying
the following conditions:

(F1) max{a, b} ≤ F (a, b, c), for all a, b, c ∈ [0,∞);
(F2) F (0, 0, 0) = 0;
(F3) F is continuous.

The class of all functions F satisfying conditions (F1)-(F3) is denoted by F .

Example 1.1. [9] The following functions F : [0,∞)3 → [0,∞) belong to F :

(1) F (a, b, c) = a+ b+ c;
(2) F (a, b, c) = max{a, b}+ c;
(3) F (a, b, c) = a+ a2 + b+ c.

Recently, Asadi. [10] replaced condition (F3) by the following condition :

(F3′) lim supn→∞ F (xn, yn, 0) ≤ F (x, y, 0), when xn → x and yn → y as n→∞.

The class of all functions F satisfying the conditions (F1), (F2) and (F3′) is denoted
by F. Observe that F ⊆ F but the converse is not true as substantiated by the following
example:

Example 1.2. [10] The following functions F : [0,∞)3 → [0,∞) belong to F but not in
F as they are not continuous:

(1) F (a, b, c) = a+ b+ [c];
(2) F (a, b, c) = max{a, b}+ [c].

For any pair (A,B) of non-empty subsets of a metric space (X, d), we employ the
following notions:

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A}.
Throughout this work, Best(T ) denotes the set of all best proximity points of non-self

mapping T defined on a metric space (X, d). Particularly, for a mapping T : A → B we
have

Best(T ) = {x ∈ A : d(x, Tx) = d(A,B)}.
Let ϕ : A → [0,∞) be a function. Then, we denote the set of all zeros of the function

ϕ by Zϕ. That is,

Zϕ = {x ∈ A : ϕ(x) = 0}.
In 2017, Işik et al.[8] introduced the concepts of ϕ-best proximity point of non-self

mapping, (F,ϕ)-proximal contraction and (F,ϕ)-weak proximal contraction as follows:

Definition 1.1. [8] Let (A,B) be a pair of non-empty subsets of a metric space (X, d)
and ϕ : A → [0,∞) a given function. An element x∗ ∈ A is called a ϕ-best proximity
point of the mapping T : A → B if x∗ is best proximity point of T and ϕ(x∗)=0, that is,
x∗ ∈ Best(T ) ∩ Zϕ.
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Definition 1.2. [8] Let (A,B) be a pair of non-empty subsets of a metric space (X, d),
ϕ : A→ [0,∞) a given function and F ∈ F . We say that the non-self mapping T : A→ B
is an (F,ϕ)-proximal contraction if there exists k ∈ (0, 1) such that (for all u, v, x, y ∈ A)

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ F (d(u, v), ϕ(u), ϕ(v)) ≤ kF (d(x, y), ϕ(x), ϕ(y)). (1)

Definition 1.3. [8] Let (A,B) be a pair of non-empty subsets of a metric space (X, d),
ϕ : A→ [0,∞) a given function and F ∈ F . We say that the non-self mapping T : A→ B
is an (F,ϕ)-weak proximal contraction if there exist k ∈ (0, 1) and L ≥ 0 such that (for
all u, v, x, y ∈ A)

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ F (d(u, v), ϕ(u), ϕ(v)) ≤ kF (d(x, y), ϕ(x), ϕ(y))

+ L[F (d(y, u), ϕ(y), ϕ(u))

− F (0, ϕ(y), ϕ(u))]. (2)

Let J be the set of all functions θ : [0,∞)→ [0,∞) satisfying the following conditions:

(j1) θ is a nondecreasing function;
(j2) θ is continuous;
(j3)

∑∞
k=1 θ

n(t) <∞, for all t > 0.

The above control function is used in [10, 11]

Lemma 1.1. [11]

(i) If θ ∈ J , then θ(t) < t, for all t > 0;
(ii) If θ ∈ J , then θ(0) = 0.

Remark 1.1. Observe that (j3) implies limn→∞ θ
n(t) = 0, for all t ∈ (0,∞).

2. Main results

We begin this section by introducing the notion of (F,ϕ, θ)-proximal contraction as
follows:

Definition 2.1. Let (A,B) be a pair of non-empty subsets of a metric space (X, d),
ϕ : A → [0,∞) a given function, F ∈ F and θ ∈ J . A mapping T : A → B is said
to be an (F,ϕ, θ)-proximal contraction if (for all u, v, x, y ∈ A)

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ F (d(u, v), ϕ(u), ϕ(v)) ≤ θ(F (d(x, y), ϕ(x), ϕ(y))). (3)

Now, we state and prove our first result as follows:

Theorem 2.1. Let (A,B) be a pair of non-empty subsets of a metric space (X, d), ϕ :
A→ [0,∞) a given function, F ∈ F and θ ∈ J . Suppose that the following conditions are
satisfied:

(H1) A0 is non-empty and complete with respect to the topology induced by d;
(H2) T (A0) ⊆ B0;
(H3) ϕ : A→ [0,∞) is lower semi-continuous;
(H4) T : A→ B is an (F,ϕ, θ)-proximal contraction.

Then the following assertions hold:

(i) Best(T ) ⊆ Zϕ;
(ii) T has a unique ϕ-best proximity point x∗ ∈ A. Moreover, limn→∞ T

nx = x∗, for all
x ∈ X.
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Proof. (i) Suppose that ξ ∈ A is a best proximity point of T so that d(ξ, T ξ) = d(A,B).
Applying (3) with u = v = x = y = ξ, we obtain

F (0, ϕ(ξ), ϕ(ξ)) ≤ θ(F (0, ϕ(ξ), ϕ(ξ))),

which in view of Lemma 1.1 gives rise

F (0, ϕ(ξ), ϕ(ξ)) = 0. (4)

On the other hand, from (F1), we have

ϕ(ξ) ≤ F (0, ϕ(ξ), ϕ(ξ)). (5)

Using (4) and (5), we obtain ϕ(ξ) = 0 so that ξ ∈ Zϕ. This implies that

Best(T ) ⊆ Zϕ.

(ii) Next, choose an element x0 ∈ A0. As Tx0 ∈ T (A0) ⊆ B0, we can find x1 in A0 such
that d(x1, Tx0) = d(A,B). Again, Tx1 ∈ T (A0) ⊆ B0 implies that there exists an element
x2 ∈ A0 such that d(x2, Tx1) = d(A,B). Repeating this process, we construct a sequence
{xn} ⊆ A0 satisfying

d(xn+1, Txn) = d(A,B), for all n ∈ N. (6)

If there exists n0 ∈ N such that xn0 = xn0+1, then

d(xn0 , Txn0) = d(xn0+1, Txn0) = d(A,B).

Hence xn0 is a best proximity point of T and we are done. Now, assume that xn 6= xn+1,
for all n ∈ N. On using (3) and (6), we have

F (d(xn, xn+1), ϕ(xn), ϕ(xn+1)) ≤ θ(F (d(xn−1, xn), ϕ(xn−1), ϕ(xn))),

for all n ∈ N. By induction on n, for each n ∈ N, we have

F (d(xn, xn+1), ϕ(xn), ϕ(xn+1)) ≤ θn(F (d(x0, x1), ϕ(x0), ϕ(x1))),

which implies that (in view of (F1))

max{d(xn, xn+1), ϕ(xn)} ≤ θn(F (d(x0, x1), ϕ(x0), ϕ(x1))), (7)

for all n ∈ N. Hence

d(xn, xn+1) ≤ θn(F (d(x0, x1), ϕ(x0), ϕ(x1))), (8)

for all n ∈ N. We assert that {xn} is a Cauchy sequence. To prove our assertion, let
m,n ∈ N such that m > n. On using (8) and triangle inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

≤ θn(F (d(x0, x1), ϕ(x0), ϕ(x1))) + θn+1(F (d(x0, x1), ϕ(x0), ϕ(x1)))

+ ...+ θm−1(F (d(x0, x1), ϕ(x0), ϕ(x1)))

=
m−1∑
i=1

θi(F (d(x0, x1), ϕ(x0), ϕ(x1)))−
n−1∑
j=1

θj(F (d(x0, x1), ϕ(x0), ϕ(x1))). (9)

From (9), (j3) and Remark 1.1, we obtain limn,m→∞ d(xn, xm) = 0. Hence {xn} is a
Cauchy sequence. Thus, our claim is established.
Now, as A0 is complete, there exists x∗ ∈ A0 such that

lim
n→∞

d(xn, x
∗) = 0. (10)
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We now prove that x∗ is a ϕ-best proximity point of T . From (7), we can write

ϕ(xn) ≤ θn(F (d(x0, x1), ϕ(x0), ϕ(x1))).

letting n→∞ in the above inequality and Making use of Remark 1.1, we have

lim
n→∞

ϕ(xn) = 0. (11)

Since ϕ is lower semi-continuous, from (10) and (11) we get

ϕ(x∗) = 0. (12)

Also, since x∗ ∈ A0 and T (A0) ⊆ B0, we can find z ∈ A0 such that

d(z, Tx∗) = d(A,B). (13)

Using (H4), (6) and (13), we obtain

F (d(xn+1, z), ϕ(xn+1), ϕ(z)) ≤ θ(F (d(xn, x
∗), ϕ(xn), ϕ(x∗))), (14)

which on making use of (12), (14) and Lemma 1.1 (i), gives rise

d(xn+1, z) ≤ max{d(xn+1, z), ϕ(xn+1)}
≤ F (d(xn+1, z), ϕ(xn+1), ϕ(z))

≤ θ(F (d(xn, x
∗), ϕ(xn), ϕ(x∗)))

< F (d(xn, x
∗), ϕ(xn), ϕ(x∗))

= F (d(xn, x
∗), ϕ(xn), 0).

Taking lim supn→∞ of both the sides and making use of (F3′), we obtain

lim sup
n→∞

d(xn+1, z) ≤ lim sup
n→∞

F (d(xn, x
∗), ϕ(xn), 0) ≤ F (0, 0, 0) = 0,

which implies that

lim
n→∞

d(xn, z) = 0. (15)

From (10) and (15), we get z = x∗. This together with (12) and (13) imply that x∗ is a
ϕ-best proximity point of T , that is

x∗ ∈ Best(T ) ∩ Zϕ.

Finally, we show that x∗ is unique ϕ-best proximity point. Suppose that w ∈ A is
another ϕ-best proximity point of T . So, we have

d(x∗, Tx∗) = d(w, Tw) = d(A,B), ϕ(x∗) = 0, and ϕ(w) = 0.

Now, on using (H4), we have

F (d(x∗, w), ϕ(x∗), ϕ(w)) ≤ θ(F (d(x∗, w), ϕ(x∗), ϕ(w))),

which implies that

F (d(x∗, w), 0, 0) ≤ θ(F (d(x∗, w), 0, 0)).

In view of Lemma 1.1, we conclude that F (d(x∗, w), 0, 0) = 0 so that d(x∗, w) = 0, that is
x∗ = w. Hence, the ϕ-best proximity point of T is unique. This concludes the proof. �

Remark 2.1. Notice that for any F ∈ F (as F ⊆ F ) with θ(t) = kt, for all t ∈ [0,∞),
(where k ∈ [0, 1)) in Theorem 2.1, we obtain [8, Theorem 7].

The following examples show that Theorem 2.1 remains genuine extensions of the cor-
responding theorems due to Işik et al.[8]
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Example 2.1. Let X = [0, 1] endowed with the usual metric. Suppose that A = [12 , 1]

and B = [0, 12 ]. Then A and B are non-empty subsets of X, A0 = {12}, B0 = {12} and

d(A,B) = 0. Let F : [0,∞)3 → [0,∞) and ϕ : A→ [0,∞) be defined by

F (a, b, c) = a+ b+ [c], for all a, b, c ∈ [0,∞) and ϕ(x) = ln(x+
1

2
), for all x ∈ A,

where [c] is the integer of c. Then F ∈ F and Zϕ = {12}. Define T : A → B and
θ : [0,∞)→ [0,∞) by

T (x) = 1− x, for all x ∈ A and θ(t) = kt, for all t ∈ [0,∞),

where k ∈ [0, 1). Then T (A0) ⊆ B0 and θ ∈ J . Observe that T is a (F,ϕ, θ)-proximal
contraction mapping, because if d(u, Tx) = d(A,B) and d(v, Ty) = d(A,B),
wherein u = v = x = y = 1

2 , we have

F (d(u, v), ϕ(u), ϕ(v)) = d(u, v) + ϕ(u) + [ϕ(v)]

= d(x, y) + ϕ(x) + [ϕ(y)]

= F (d(x, y), ϕ(x), ϕ(y))

= θ(F (d(x, y), ϕ(x), ϕ(y))).

Hence, all conditions of Theorem 2.1 are satisfied so that T has a unique ϕ-best proximity
point (namely Best(T ) ∩ Zϕ = {12}).

Example 2.2. Let X = R2 endowed with the usual metric, A = {(x, 0), x ≥ 1} and
B = {(0, y), y ≥ 1}. Then, we have A0 = {(1, 0)}, B0 = {(0, 1)} and d(A,B) =

√
2. Let

F : [0,∞)3 → [0,∞) and ϕ : A→ [0,∞) be defined by

F (a, b, c) = max{a, b}+[c], for all a, b, c ∈ [0,∞) and ϕ(x, y) = ln(x) for all x, y ∈ A,

where [c] is the integer of c. Then F ∈ F and Zϕ = {(0, 1)}. Define T : A → B and
θ : [0,∞)→ [0,∞) by

T (x, y) =
(

0,
x+ 1

2

)
, for all x, y ∈ A and θ(t) =

{
0, 0 ≤ t ≤ 1,
k ln(t), t ≥ 1.

where k ∈ [0, 1). So, T (A0) ⊆ B0 and θ ∈ J . Now, we claim that T is a (F,ϕ, θ)-
proximal contraction mapping. Consider

d(u, Tx) = d(A,B) and d(v, Ty) = d(A,B),

then we have u = v = x = y = (1, 0). Hence

F (d(u, v), ϕ(u), ϕ(v)) = max {d(u, v) + ϕ(u)}+ [ϕ(v)]

= max {d(x, y) + ϕ(x)}+ [ϕ(y)]

= F (d(x, y), ϕ(x), ϕ(y))

= θ(F (d(x, y), ϕ(x), ϕ(y))).

Therefore, all conditions of Theorem 2.1 are satisfied so that T has a unique ϕ-best prox-
imity point (namely Best(T ) ∩ Zϕ = {(1, 0)}).

Next, we define (F,ϕ, θ)-weak proximal contraction as follows:
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Definition 2.2. Let (A,B) be a pair of non-empty subsets of a metric space (X, d),
ϕ : A→ [0,∞) a given function, F ∈ F and θ ∈ J . A mapping T : A→ B is said to be an
(F,ϕ, θ)-weak proximal contraction if there exists L ≥ 0 such that (for all u, v, x, y ∈ A)

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ F (d(u, v), ϕ(u), ϕ(v)) ≤ θ(F (d(x, y), ϕ(x), ϕ(y)))

+ L[F (d(y, u), ϕ(y), ϕ(u))

− F (0, ϕ(y), ϕ(u))]. (16)

Now, we prove the following result under (F,ϕ, θ)-weak proximal contraction.

Theorem 2.2. Let (A,B) be a pair of non-empty subsets of a metric space (X, d), ϕ :
A→ [0,∞) a given function, F ∈ F and θ ∈ J . Suppose that the following conditions are
satisfied:

(H1) A0 is non-empty and complete with respect to the topology induced by d;
(H2) T (A0) ⊆ B0;
(H3) ϕ : A→ [0,∞) is lower semi-continuous;
(H4) T : A→ B is an (F,ϕ, θ)-weak proximal contraction.

Then the following assertions hold:

(i) Best(T ) ⊆ Zϕ,
(ii) T has at least one ϕ-best proximity point x∗ ∈ A. Moreover, for any x ∈ X, the

sequence {Tnx} converges to a ϕ-best proximity point of T .

Proof. (i) Suppose that ξ ∈ A is a best proximity point of T , then d(ξ, T ξ) = d(A,B).
Applying (16) with u = v = x = y = ξ, we get

F (0, ϕ(ξ), ϕ(ξ)) ≤ θ(F (0, ϕ(ξ), ϕ(ξ))) + L(F (0, ϕ(ξ), ϕ(ξ))− F (0, ϕ(ξ), ϕ(ξ)))

= θ(F (0, ϕ(ξ), ϕ(ξ))).

This together with Lemma 1.1 imply that

F (0, ϕ(ξ), ϕ(ξ)) = 0. (17)

Now, from (F1), we have
ϕ(ξ) ≤ F (0, ϕ(ξ), ϕ(ξ)). (18)

Using (17) and (18), we obtain that ϕ(ξ) = 0 so that

Best(T ) ⊆ Zϕ.

(ii) We choose an element x0 in A0. As T (x0) ∈ B0, we can find x1 ∈ A0 such that
d(x1, Tx0) = d(A,B). By repeating this process, we construct a sequence {xn} ⊆ A0

satisfying
d(xn+1, Txn) = d(A,B), for all n ∈ N.

By using (16), we have (for all n ∈ N)

F (d(xn, xn+1), ϕ(xn), ϕ(xn+1)) ≤ θ(F (d(xn−1, xn), ϕ(xn−1), ϕ(xn)))

+ L(F (d(xn, xn), ϕ(xn), ϕ(xn))

− F (d(0, ϕ(xn), ϕ(xn)))

= θ(F (d(xn−1, xn), ϕ(xn−1), ϕ(xn))).

Inductively, for each n ∈ N, we get

F (d(xn, xn+1), ϕ(xn), ϕ(xn+1)) ≤ θn(F (d(x0, x1), ϕ(x0), ϕ(x1))).

The rest of the proof follows by using similar arguments as in the proof of Theorem 2.1. �
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Remark 2.2. Notice that for any F ∈ F (as F ⊆ F ) with θ(t) = kt for all t ∈ [0,∞),
(where k ∈ [0, 1)) in Theorem 2.2, we obtain [8, Theorem 10].

3. Application to partial metric spaces

We begin this section by recalling some definitions and basic results which are needed
in the sequel.

Definition 3.1. [12] Let X be a non-empty set. A mapping p : X ×X → [0,∞) is said
to be a partial metric on X, if for all x, y, z ∈ X, we have

(P1) p(x, x) = p(y, y) = p(x, y)⇔ x = y;
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
The pair (X, d) is called a partial metric space.

Remark 3.1. [12] If p(x, y) = 0, then (p1) and (p2) imply that x = y but the converse is
not true in general.

Remark 3.2. [12] Let X be a non-empty set.

(a) Every partial metric p on X generates a T0 topology τp on X with base the family of
the open balls {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}.

(b) If p is a partial metric on X, then the function dp : X × X → [0,∞) defined by
dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Definition 3.2. [12] Let (X, p) be a partial metric space.

(i) A sequence {xn} ⊆ X is said to be convergent and converges to a point x ∈ X with
respect to τp if p(x, x) = limn→∞ p(xn, x).

(ii) A sequence {xn} ⊆ X is said to be a Cauchy sequence if limn→∞ p(xn, xm) exists
and is finite.

(iii) A partial metric space (X, p) is called a complete partial metric space if every Cauchy
sequence in X converges (with respect to τp) to a point in X.

Lemma 3.1. [12] Let (X,p) be a partial metric space. Then the following assertions hold:

(a) {xn} is a Cauchy sequence in (X, p) if and if {xn} is a Cauchy sequence in the metric
space (X, dp);

(b) the partial metric space (X, p) is complete if and only if the metric space (X, dp) is
complete.

Lemma 3.2. [13] Let (X, p) be a partial metric space and ϕ : X → [0,∞) defined by
ϕ(x) = p(x, x), ∀x ∈ X. Then the function ϕ is lower semi-continuous in the metric space
(X, dp).

Before giving our best proximity point results in the partial metric space, we adapt the
following notations
Let (A,B) be a pair of non-empty subsets of a partial metric space (X, p) and T : A→ B.
Then

p(A,B) = inf{p(x, y) : x ∈ A, y ∈ B};
A0 = {x ∈ A : p(x, y) = p(A,B), for some y ∈ B};
B0 = {y ∈ B : p(x, y) = p(A,B), for some x ∈ A}.

As an application of our main results, we derive the following results in the setting of
partial metric space.
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Theorem 3.1. Let (A,B) be a pair of non-empty subsets of a partial metric space (X, p),
T : A→ B and θ ∈ J . Suppose that the following conditions are satisfied:

(H1) A0 is non-empty and complete with respect to the topology induced by p;
(H2) T (A0) ⊆ B0;
(H3) θ(2t) = 2θ(t), for all t ∈ [0,∞);
(H4) the mapping T satisfies (for all x, y, u, v ∈ X)

p(u, Tx) = p(A,B)
p(v, Ty) = p(A,B)

}
⇒ p(u, v) ≤ θ(p(x, y)).

Then the following assertions hold:

(i) T has a unique best proximity point x∗ ∈ A,
(ii) p(x∗, x∗) = 0.

Proof. Let x, y ∈ A. Obviously, (H3) and (H4) imply that

2p(u, v) ≤ θ(2p(x, y)). (19)

Consider the metric dp defined by dp(x, y) = 2p(x, y) − p(x, x) − p(y, y) for all x, y ∈ X
and the function ϕ : A→ [0,∞) defined by ϕ = p(x, x), for all x ∈ A. Now, we can write

p(x, y) =
dp(x, y) + p(x, x) + p(y, y)

2
, for all x, y ∈ X. (20)

Using (19) and (20), we get

dp(u, v) + ϕ(u) + ϕ(v) ≤ θ(dp(x, y) + ϕ(x) + ϕ(y)).

Define F : [0,∞)3 → [0,∞) by F (a, b, c) = a+ b+ c, we obtain

F (dp(u, v), ϕ(u), ϕ(v)) ≤ θ(F (dp(x, y), ϕ(x), ϕ(y))).

By using Lemmas 3.1 and 3.2, the hypotheses of Theorem 2.1 are satisfied. Hence, T has
a unique best proximity point x∗ ∈ A such that p(x∗, x∗) = 0. �

Similarly, from Theorem 2.2, we derive the following result:

Theorem 3.2. Let (A,B) be a pair of non-empty subsets of a partial metric space (X, d),
T : A→ B and θ ∈ J . Suppose that the following conditions are satisfied:

(H1) A0 is non-empty and complete with respect to the topology induced by p;
(H2) T (A0) ⊆ B0;
(H3) θ(2t) = 2θ(t), for all t ∈ [0,∞);
(H4) the mapping T satisfies (for all x, y, u, v ∈ X and L ≥ 0)

p(u, Tx) = p(A,B)
p(v, Ty) = p(A,B)

}
⇒ p(u, v) ≤ θ (p(x, y)) + L

(
p(y, u)− p(y, y) + p(u, u)

2

)
.

Then the following assertions hold:

(i) T has at least one best proximity point x∗ ∈ A,
(ii) p(x∗, x∗) = 0.

On setting θ(t) = kt for all t ∈ [0,∞), (where k ∈ (0, 1)) in Theorems 3.1 and 3.2, we
deduce the following corollaries:

Corollary 3.1. [8] Let (A,B) be a pair of non-empty subsets of a partial metric space
(X, p) and T : A→ B. Assume that the following conditions hold:

(H1) A0 is non-empty and complete with respect to the topology induced by p;
(H2) T (A0) ⊆ B0;
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(H3) there exists k ∈ (0, 1) such that (for all u, v, x, y ∈ A)

p(u, Tx) = p(A,B)
p(v, Ty) = p(A,B)

}
⇒ p(u, v) ≤ kp(x, y).

Then T has a unique best proximity point x∗ ∈ A.

Corollary 3.2. [8] Let (A,B) be a pair of non-empty subsets of a partial metric space
(X, p) and T : A→ B. Assume that the following conditions hold:

(H1) A0 is non-empty and complete with respect to the topology induced by p;
(H2) T (A0) ⊆ B0;
(H3) there exists k ∈ (0, 1) and L ≥ 0 such that (for all u, v, x, y ∈ A)

p(u, Tx) = p(A,B)
p(v, Ty) = p(A,B)

}
⇒ p(u, v) ≤ k (p(x, y)) + L

(
p(y, u)− p(y, y) + p(u, u)

2

)
.

Then T has at least one best proximity point x∗ ∈ A.
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