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A PRE-SUBADDITIVE FUZZY MEASURE MODEL AND ITS

THEORETICAL INTERPRETATION
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Abstract. In this paper a particular set function which depends on densities of single-
tons with interdependence coefficients and which provides redundancy among singletons
is considered. The Möbius representation of this function is obtained. Then a necessary
and sufficient condition is presented to attain a fuzzy measure from this set function.
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1. Introduction

Multicriteria decision making (MCDM) is a discipline that helps decision makers who
face with conflicting alternatives to make the best decision. Since the decision makers
only need to choose the alternative with the highest preference rating, decision making
is extremely intuitive when decision makers consider single criterion problems whereas
many problems, such as weights of criteria, preference dependence and conflicts among
criteria, seem to complicate the problems and need to be overcome by more sophisticated
methods as decision makers evaluate alternatives with multicriteria [26]. One of these
methods is to study in fuzzy environment. MCDM problems in fuzzy environment have
been studied since Bellman and Zadeh [1] proposed the concepts of decision making under
fuzzy environments. In fact, making decision within a fuzzy environment to fit better
many real-world applications has come into prominence.

Fuzzy measure theory is an innovate and useful tool to model the interaction of criteria
in MCDM problems. There are some remarkable studies that have handled fuzzy measure
theory in MCDM problems [7, 8, 13, 14, 17, 23, 25, 27, 30]. Besides, several authors have
studied the identification of fuzzy measure (see e.g [9, 15, 18, 19, 21, 22, 29]). As identifying
a fuzzy measure, determining the measure of each one of 2n subsets of a finite set that has
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cardinality n is not an easy process. Grabisch [10] has proposed the concept of k-order
additive fuzzy measure in order to overcome this complexity. In [15], to relieve the same
complexity, a fuzzy measure which is developed based on the evaluation of interdependence
coefficients between criteria has been identified. Moreover, the studies [3, 4, 6, 16, 20, 28]
deal with the identification of fuzzy measure by using evolutionary or genetic algorithm.

In [15], the authors aim to identify a fuzzy measure that covers synergy among single-
tons. For this purpose they have mapped each subset that contains at least two points to
the sum of the densities of included singletons and a nonnegative value. This nonnegative
real number is obtained by choosing the maximum of the interdependence coefficients of
each pair of the subset. On the other hand the structure of the set function, in fact the
positivity of these coefficients, has been referring the synergy among criteria. Further-
more, the positivity again and the process of taking maximum are fortunately convenient
with the monotonicity. In other words, since the densities of singletons and the interde-
pendence coefficients are nonnegative the structure of the set function is suitable for the
monotonicity and superadditivity. In contrast to this case obtaining a fuzzy measure that
refers redundancy between criteria is not such an easy process.

Redundancy arises once any two criteria partially comprise each other in a MCDM
problem. For instance, in an electronic equipment selection problem there may be re-
dundancy among some criteria such as surface quality, stainlessness and water resistance.
We illustrate this situation with another example at the end of Section 2. In this paper,
following the idea of [15] we study a particular set function that depends on the densities
of singletons and interdependence coefficients and that considers redundancy between cri-
teria. We investigate the Möbius representation of this set function and we compare the
results about Möbius representation obtained in this paper with some previous studies
that consider the characterization of fuzzy measures. To get redundancy we use negative
interdependence coefficients which makes the structure of the set function more compli-
cated. The complexity of preserving monotonicity while organizing subadditivity enforces
us to give conditions contrary to the superadditive case. In brief, the main goal of the
present paper is to allay the difficulty of the determination of exponentially growth number
of values theoretically in the case which considers redundancy between criteria.

Now let us recall some basic concepts about the fuzzy measure theory: Let X be a
nonempty set and let 2X be the class of all subsets of X. Then a set function µ over 2X

is said to be a fuzzy measure if
i) µ(∅) = 0 and µ(X) = 1,
ii) µ(A) ≤ µ(B) whenever A ⊆ B ⊆ X (monotonicity).

Recall that a set function µ is said to be
i) additive if µ(A ∪B) = µ(A) + µ(B),
ii) superadditive if µ(A ∪B) ≥ µ(A) + µ(B),
iii) subadditive if µ(A ∪B) ≤ µ(A) + µ(B),
whenever A ∩B = ∅ [8]. Moreover, if µ({xi, xj}) ≤ µ(xi) + µ(xj) for any i, j = 1, 2, ..., n
then we say that µ is pre-subadditive where µ(x) := µ({x}) for any x ∈ X. It is clear that
a subadditive set function is pre-subadditive but not conversely. Note that the superad-
ditivity of a fuzzy measure refers to the synergy between criteria and the subadditivity of
it refers to the redundancy [8]. Furthermore, observe that µ is monotone if and only if

µ(A ∪ {xj}) ≥ µ(A) (1)

for any A ⊂ X and for any j = 1, 2, ..., n with xj 6∈ A.
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It suffices to determine the measures of singletons to determine all combinations when-
ever the fuzzy measure is additive. However; if the fuzzy measure is not additive, 2n

subsets should be evaluated convenient to the definition of fuzzy measure.
In Section 2 after studying the Möbius representation, we obtain a necessary and suffi-

cient condition for a particular set function to be a pre-subadditive fuzzy measure, so that
the practical difficulty that requires the evaluation of the measures of exponentially grow-
ing numbers of subsets may be handled for problems in which there is redundancy among
the singletons. Also the results are discussed and an explanatory numerical example is
carried out to show the practicability of the theorem. Finally the study is concluded in
Section 3.

2. main results

In this section we deal with a set function which is pre-subadditive. Firstly, we study the
Möbius representation of this function. Then we give a necessary and sufficient condition
for this set function to be a fuzzy measure. Let X = {x1,x2, ..., xn} be a finite set and let
µ : 2X → R be a set function such that{

µ(xj) ≥ 0, for all 1 ≤ j ≤ n
µ(G) =

∑
xj∈G

µ(xj) + min
xi,xj∈G,i 6=j

λij , for all G ∈ 2X with |G| ≥ 2 (2)

where {λij = λji : 1 ≤ i, j ≤ n, i 6= j} ∈ [−1, 0](
n
2). Considering each λij as an interde-

pendence coefficient, such a function can be used in MCDM problems in which there is
redundancy between criteria. Moreover, note that if |X| ≤ 3 such a measure is subbaditive.

The positivity of µ over singletons does not guarantee positivity over 2X as well as
µ(X) does not have to equal to 1 and such a set function does not need to be monotone.
Therefore, we need some further results. For instance, some characterizations can be
considered to achieve this problem (see e.g., [2, 11, 12]). One of these characterizations
can be given with the help of the Möbius representation.

Let X be a finite set and let f : 2X → R be a set function. The Möbius representation
m of f is a function m : 2X → R defined by

m(G) :=
∑
K⊂G

(−1)|G\K|f(K). (3)

Now let us recall the corresponding characterization of Chateauneuf and Jaffray [2].

Theorem 2.1. Let X be a finite set and let µ : 2X → R be a set function. Then µ is a

fuzzy measure if and only if m(∅) = 0,
∑
G∈2X

m(G) = 1 and for any G ∈ 2X and for any

x ∈ G ∑
x∈K⊂G

m(K) ≥ 0

where m is the Möbius representation of µ.

Now we give a proposition that gives the Möbius representation of a set function defined
with (2).

Proposition 2.1. Let X = {x1, x2, ..., xn} be a finite set, let µ be a set function on X
defined with (2) with . Then we have

m ({xi}) = µ ({xi})
for any i = 1, 2, ..., n and for any K = {xik}

m
k=1 ⊂ X with m ≥ 2 we have
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m(K) =

m∑
j=2

(−1)m−j
∑

A⊂τ(K)

|A|=(j2)

minA


where τ(K) is the set of all interdependence coefficients of the elements of K. In particular,
if K = {xik}

m
k=1 is a subset of X such that

λi1,i2 ≤ λi1,i3 ≤ ...λi1,im ≤ λi2,i3 ≤ λi2,i4 ≤ ... ≤ λi2,im ≤ ... ≤ λim−1,im (4)

then we get

m(K) = (−1)m
m−1∑
k=1

λik,im .

Proof. It is obvious from the definition that m ({xi}) = µ ({xi}) holds for any for any
i = 1, 2, ..., n. Applying the formula (3) we get

m(K) = (−1)m−1
m∑
k=1

µ (xik)

+ (−1)m−2


(
m− 1

1

) m∑
k=1

µ (xik) +
∑

A⊂τ(K)

|A|=(22)

minA



+ (−1)m−3


(
m− 1

2

) m∑
k=1

µ (xik) +
∑

A⊂τ(K)

|A|=(32)

minA


+ ...

+ (−1)m−m


(
m− 1

m− 1

) m∑
k=1

µ (xik) +
∑

A⊂τ(K)

|A|=(m2 )

minA



=

m∑
r=1

(
(−1)m−r

(
m− 1

r − 1

) m∑
k=1

µ (xik)

)
+

m∑
j=2

(−1)m−j
∑

A⊂τ(K)

|A|=(j2)

minA

 .

It is easy to see that the first sum of the right hand side of the last equality is equal to
zero. Hence the proof is completed. Moreover, let K be a subset such that (4) holds.
Then it is easy to check that∑

A⊂τ(K)

|A|=(j2)

minA =

m+2−j∑
r=2

m+2−j∑
k=r

(
m− k
j − 2

)
λir−1,ik .
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Thus we have

m(K) =

m∑
j=2

(−1)m−j
∑

A⊂τ(K)

|A|=(j2)

minA


=

m∑
j=2

(
(−1)m−j

m+2−j∑
r=2

m+2−j∑
k=r

(
m− k
j − 2

)
λir−1,ik

)

= (−1)m
m−1∑
k=1

λik,im .

�

Using Proposition 2.1 in Theorem 2.1 one can check whether a set function given with
formula (2) is a fuzzy measure or not.

Now we give a new necessary and sufficient condition for functions defined with (2) to
be monotone.

Theorem 2.2. Let X = {x1,x2, ..., xn} be a finite set. The function µ : 2X → R defined
with (2) is monotone if and only if

µ(xk) + λik ≥ 0 (5)

for any k = 1, 2, ..., n and for any i 6= k.

Proof. Assume that µ is monotone. Then we have for any k = 1, 2, ..., n and for any i 6= k
that

µ({xk, xj}) ≥ µ(xk). (6)

On the other hand from the definition of µ we know that µ({xk, xj}) = µ(xk)+µ(xk)+λik.
Thus from (6) we have µ(xk) + λik ≥ 0.
For the converse of the statement assume that µ is not monotone. Then if we consider (1)
we see that there exist A ⊂ X and 1 ≤ j0 ≤ n such that xj0 6∈ A and

µ (A ∪ {xj0}) < µ(A).

Therefore one can have

µ(xj0) + min
xi,xj∈A∪{xj0}

λij − min
xi,xj∈A

λij < 0. (7)

As µ is positive now we can write from (7) that

min
xi,xj∈A∪{xj0}

λij < min
xi,xj∈A

λij

which implies there exists xi0 ∈ A such that

λi0j0 = min
xi,xj∈A∪{xj0}

λij .

If we consider this fact in (7) we have

µ(xj0) + λi0j0 < min
xi,xj∈A

λij ≤ 0.

Hence, (5) fails. �
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The following is the promised characterization which is an immediate consequence of
Theorem 2.2. Note that this condition does not depend on Möbius representation of the
set function.

Corollary 2.1. Let X = {x1,x2, ..., xn} be a finite set and let µ : 2X → R be a set
function defined as (2) such that µ(∅) = 0 and

n∑
k=1

µ(xk) = 1− min
1≤i,j≤n

λij . (8)

Then µ is a fuzzy measure on X if and only if (5) holds.

Proof. From (2) and (8) we see that µ(X) = 1. Finally, Theorem 2.2 and the structure of
µ guarantee that it is monotone and nonnegative. �

Remark 2.1. After determining the interdependence coefficients the densities of single-
tons can be calculated such that

n∑
k=1

µ(xk) = 1− min
1≤i,j≤n

λij and µ(xk) ≥ 0 for any k. (9)

In this paper we do not concentrate on determining the densities. In [15]; as the nature
of monotonicity is coherent with the proposed set function, any solution of the system (3)
of [15] can be considered to identify a fuzzy measure that is superadditive for singletons
whereas due to the structure of the set function given in the form (2) a solution of (9) may
be considered to identify a fuzzy measure after checking the condition (5). To illustrate
this fact the following example can be given. Note that there is redundancy among the
criteria used in the example.

Example 2.1. Consider the following table of criteria which can be used for evaluating
degree of the effect of the climate change of some selected regions that have similar climate.
Each criterion is regarded for a fixed and favorable period of time.

Table 1. Criteria

x1 Number of the drought years
x2 Number of the years in which the rainfall is abnormal
x3 Number of the natural disasters caused by weather
x4 Number of the years in which average annual temperature is higher than normal

As there is redundancy among criteria we can use a set function defined with (2). To
construct the function we have two steps: The first step is determining the interdependence
coefficients. Further information for this process can be found in [15]. Now assume that
the interdependence coefficients are determined as follows:

Table 2. Interdependence coefficients

λ1,2 = −0.1 λ1,3 = −0.03 λ1,4 = −0.07
λ2,3 = −0.08 λ2,4 = −0.1 λ3,4 = −0.08.

Next step is determining the densities of singletons. For this purpose system (9) should
be solved for the interdependence coefficients given above. As we mentioned before we omit
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this step (see, e.g. [15]). It is obvious that the set

{g1 = 0.32, g2 = 0.4, g3 = 0.23, g4 = 0.15}

is a solution of

4∑
k=1

gk = 1− min
1≤i,j≤4

λij .

Now let define a set function µ : 2X → R by

µ(∅) = 0,

µ(xj) = gj , (j = 1, 2, 3, 4)

and

µ(G) =
∑
xj∈G

µ(xj) + min
xi,xj∈G

i 6=j

λij .

It is obvious that (5) holds. Therefore µ is a fuzzy measure over X. In fact, the following
table can be checked:

Table 3. Measures of subsets of X

µ(∅) = 0 µ(x4) = 0.15 µ(x2, x3) = 0.55 µ(x1, x2, x4) = 0.77
µ(x1) = 0.32 µ(x1, x2) = 0.62 µ(x2, x4) = 0.45 µ(x1, x3, x4) = 0.62
µ(x2) = 0.4 µ(x1, x3) = 0.52 µ(x3, x4) = 0.3 µ(x2, x3, x4) = 0.68
µ(x3) = 0.23 µ(x1, x4) = 0.4 µ(x1, x2, x3) = 0.85 µ(X) = 1.

3. Conclusion

It is well known that constructing a fuzzy measure is a difficult process out of the
exponential number of subsets. In this paper we encounter a more difficult process in
which subadditivity is involved. We consider a particular set function which fundamentally
depends on singletons and interdependence coefficients. First of all we calculate the Möbius
representation of this set function. This result and Proposition 2 of [2] may be used in a
MCDM problem which contains a set function that is given with (2). Moreover, we aim
to give a new condition which does not depend on Möbius representation. The condition
is easily testable and contributes to model the importance of criteria in MCDM problems
or the importance of coalition of agents in games. We also give a numerical example to
indicate the applicability of the corresponding theorem. In the example, we show that
a set function satisfies the condition of Theorem 2.2 and therefore it is a fuzzy measure
that is pre-subadditive. Consequently, all these arguments stress that with the help of the
condition (5) one can check whether a particular set function is a fuzzy measure or not.
Simultaneously, should such a measure is used as a tool in fuzzy integrals [5, 7, 8, 13, 24],
this paper is a loadstar for decision makers in corresponding area.
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