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STABILITY AND DATA DEPENDENCE RESULTS FOR ZAMFIRESCU

MULTI-VALUED MAPPINGS

IZHAR UDDIN1∗, JAVID ALI2, FAIK GÜRSOY3, §

Abstract. In this paper, we prove some stability and data dependence results for the
class of multivalued Zamfirescu operators. Our results generalize and improve several
existing results in literature. It is worth mentioning here that our results are new even
for single valued mappings.
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1. Introduction

To approximate the fixed points of a nonlinear operator is one of the most commonly
used techniques for solving differential/integral equations. There exists several procedures
for approximating fixed points. Picard [1] iteration, Krasnoselski iteration, Mann [2] itera-
tion and Ishikawa [3] iteration are the basic processes. The utility of a numerical iteration
procedure depends on its numerically stability. A fixed point iteration is numerically sta-
ble if small errors (due to approximation, rounding errors etc.) during calculations, will
produce small changes on the approximate value of the fixed point calculated by means of
this method. In 1967, Ostrowski [5] first introduced the concept of stability of iteration
procedures and proved Picard iteration for contraction mappings is stable.

In 1987, Harder [4] studied the concept of stability which utilized by many authors for
different classes of mappings (for example cf. [6, 7, 8, 9]). In 2000, Osilike [10] introduced
a slightly weaker form of stability called almost stability and proved some results. In 2003,
Berinde [11] introduced sharper concept of almost stability and showed some almost stable
fixed point iteration procedures which are also summably almost stable with respect to
some classes of contractive mappings.
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2. Preliminaries

Let E be a metric space and S a self map on E with F (S) = {y ∈ E : Sy = y} 6= ∅.
Consider a fixed point iteration procedure, i.e., for any z0 ∈ E define a sequence {zn} as

zn+1 = f(S, zn), n = 0, 1, 2, ..., (1)

where f is some function. Suppose {zn} converges strongly to some z ∈ F (S). In concrete
applications, when computing {zn} we usually follow the following procedure:
1. Choose the initial approximation z0 ∈ E.
2. Compute z1 = f(S, z0). But, due to various errors that occur during the calculations
(rounding errors, numerical approximations of functions, derivatives, integrals etc.), we
do not obtain the exact value of z1 but a different one (say w1) which is however closed
enough to z1 i.e., w1 ≈ z1
3. Consequently, while computing z2 = f(S, z1) we actually obtain z2 as z2 = f(S,w1).
So, again, instead of the theoretical value of z2 we find another value w2, w2 being closed
enough to z2 i.e., w2 ≈ z2 and so on. In this way, instead of the theoretical sequence {zn}
defined by the iteration (1), we obtain practically an approximate sequence {wn}. Recall
that a given fixed point iteration method is numerically stable if and only if for wn close
enough to zn at each stage, the approximate sequence {wn} still converges to the fixed
point z of S.

In 1988, Harder and Hicks [6] introduced the concept of stability which runs as follows:

Definition 2.1. Let E be a metric space, S : E → E and z0 ∈ E. Assume that the
iteration process (1) converges to a fixed point z of S. Let {wn} be an arbitrary sequence
in E and define

σn = d(wn+1, f(S,wn)), n = 0, 1, 2, ... (2)

The fixed point procedure (1) is said to be S-stable or stable with respect to S if

lim
n→∞

σn = 0⇒ lim
n→∞

wn = z.

By utilizing this notion, Harder and Hicks [6, 7] verified the stability of various iteration
procedures (Picard, Mann and Kirk’s iterations) with respect to several classes of contrac-
tive type operators. In 2000, Osilike [10] introduced a weaker concept of stability, called
almost stability and he also investigated the stability of Ishikawa iteration with respect to
some classes of pseudocontractive operators.

Definition 2.2. Let E be a metric space and S : E → E. Assume that the iteration
procedure (1) converges to a fixed point z of S. Let {wn} be an arbitrary sequence in E
and let σn defined by (2). The fixed point procedure (1) is said to be almost S-stable or
almost stable with respect to S if

∞∑
n=0

σn <∞⇒ lim
n→∞

wn = z.

Recently, Berinde [11] introduced a sharper concept of almost stability and showed some
almost stable fixed point iteration procedures which are also summably almost stable with
respect to some classes of contractive operators.

Definition 2.3. Let E be a metric space and S : E → E. Assume that the iteration
procedure (1) converges to a fixed point z of S. Let {wn} be an arbitrary sequence in E
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and let σn defined by (2). The fixed point procedure (1) is said to be summably almost
S-stable or summably almost stable with respect to S if

∞∑
n=0

σn <∞⇒
∞∑
n=0

d(wn, z) <∞.

It is worth mentioning here that any almost stable iteration procedure is also summably
almost stable, since

∞∑
n=0

d(wn, z) <∞⇒ lim
n→∞

wn = z.

but the converse need not be true in general. For illustrative examples, one may referred
to [11].

To make our paper self contained, we state following known but important definition
and lemma. Let E be a metric space and K be a nonempty subset of E. Let CB(K) be
the family of nonempty closed bounded subsets of K. A subset K of E is called proximinal
if for each x ∈ E, there exists an element k ∈ K such that

d(x, k) = dist(x,K) = inf{d(x, y) : y ∈ K}.
We shall denote by PB(K), the family of nonempty bounded proximinal subsets of K.
The Hausdorff metric H on CB(K) is defined as

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for A, B ∈ CB(K).

In 1972, Zamfirescu [12] extended contraction mapping to the class of maps which may
not be continuous, called Zamfirescu mappings and utilized them to extend the Banach
contraction principle. Now, we present the definition of multi-valued Zamfirescu mapping.

Definition 2.4. Let E be a metric space and S : E → CB(E), a multi-valued mapping.
Then S is said to be a multi-valued Zamfirescu mapping if there exist real numbers α, β
and γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 and 0 ≤ γ < 1
2 such that for each x, y ∈ E at least

one of the followings is true:

(z̃1) H(Sx, Sy) ≤ αd(x, y)
(z̃2) H(Sx, Sy) ≤ β[d(x, Sx) + d(y, Sy)]
(z̃3)H(Sx, Sy) ≤ γ[d(x, Sy) + d(y, Sx)].

The following lemma plays a key role in proving the main results which is actually the
generalized ratio test for positive series (cf. [13] and references cited therein).

Lemma 2.1. Let {αn}, {βn} be sequences of nonnegative numbers and 0 < c < 1 such
that

αn+1 ≤ cαn + βn for all n ≥ 0.

(i) If lim
n→∞

βn = 0, then lim
n→∞

αn = 0.

(ii) If
∞∑
n=0

βn <∞, then
∞∑
n=0

αn <∞.

The following lemma due to Song and Cho [14] is very cruicial for our main result:

Lemma 2.2. Let S : K → P (K) be a multivalued mapping and PS(x) = {y ∈ Sx :
‖x− y‖ = d(x, Sx)}. Then the following are equivalent.
(i) x ∈ F (S),
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(ii) PS(x) = {x},
(iii) x ∈ F (PS). Moreover, F (S) = F (PS).

In this paper, we utilize the concept of summably almost stable due to Berinde [11] to
prove some stability and data dependence results for Zamfirescu multivalued operators.
Hence our results generalize and improve the corresponding results of Harder and Hicks
[6], Berinde [11], Oslike [10] and Singh et al. [15].

3. Main Results

Theorem 3.1. Let E be a metric space and S : E → CB(E) a multi-valued Zamfirescu
mapping with Sz = {z} for every z ∈ F (S). Let z0 ∈ E and zn+1 = an ∈ Szn, n ≥ 0.
Then {zn} converges to z and is summable almost stable with respect to S.

Proof. Let {wn} be any given sequence in E and S a multi-valued Zamfirescu mapping
such that

f(S,wn) = bn ∈ Swn for all n ≥ 0.

Now, we have the following three cases:

Case I. When S satisfies (z̃1), i.e.

H(Sx, Sy) ≤ α d(x, y) for some α ∈ [0, 1).

Now,

d(wn+1, z) ≤ d(wn+1, bn) + d(bn, z)

= σn + d(bn, Sz)

≤ σn +H(Swn, Sz)

≤ σn + αd(wn, z). (3.1)

Case II. When S satisfies ˜(z2), i.e. H(Sx, Sy) ≤ β[d(x, Sx) + d(y, Sy)] for some β with
0 ≤ β < 1/2.
Now,

d(wn+1, z) ≤ d(wn+1, bn) + d(bn, z)

= d(wn+1, bn) + d(bn, Sz)

≤ d(wn+1, bn) +H(Swn, Sz)

≤ d(wn+1, bn) + β[d(wn, Swn) + d(z, Sz)]

≤ d(wn+1, bn) + β[d(wn, z) + d(z, wn+1) + d(wn+1, bn) + d(bn, Swn)]

≤ 1 + β

1− β
σn +

β

1− β
d(wn, z). (3.2)

Case III. When S satisfies ˜(z3), i.e. H(Sx, Sy) ≤ γ[d(x, Sy) + d(y, Sx)] for some γ with
0 ≤ γ < 1/2.
Now,

d(wn+1, z) ≤ d(wn+1, bn) + d(bn, z)

= d(wn+1, bn) + d(bn, Sz)

≤ d(wn+1, bn) +H(Swn, Sz)

≤ d(wn+1, bn) + γ[d(wn, Sz) + d(z, Swn)]

≤ d(wn+1, bn) + γ[d(wn, z) + d(z, Sz) + d(z, wn+1) + d(wn+1, bn) + d(bn, Swn)]

≤ 1 + γ

1− γ
σn +

γ

1− γ
d(wn, z). (3.3)
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Hence, in view of (3.1), (3.2) and (3.3) with Lemma 2.1, {zn} is summably almost sta-
ble with respect to S. To show {zn} converges to z, letting wn = zn we get σn =

d(zn+1, Szn) = 0 and by choosing a = max{α, β
1−β ,

γ
1−γ }, we have

d(zn+1, z) ≤ ad(zn, z)

yielding thereby

d(zn, z) ≤ and(z0, z)→ 0 as n→∞.

Thus {zn} converges to fixed point z. �

We proved Theorem 3.1 with the aid of end point condition, i.e. for a multivalued
mapping S, Sz = {z} for all fixed point z of S which is a strong condition in practical. To
remove this, we consider Picard projection iteration, i.e.

zn+1 = an ∈ PSzn for all n ≥ 0.

Theorem 3.2. Let E be a metric space and S : E → PB(E) a multi-valued mapping such
that PS is Zamfirescu multi-valued mapping. Let z0 ∈ E and zn+1 = an ∈ PSzn, n ≥ 0.
Then {zn} converges to z and is summable almost stable with respect to S.

Proof. Let {wn} be any given sequence in E and S a multi-valued mapping such that PS
is Zamfirescu multivalued mapping and define

f(PS , wn) = bn ∈ PSwn for all n ≥ 0,

then we have the following three cases:
Case I. When PS satisfies (z̃1), i.e.

H(PSx, PSy) ≤ α d(x, y) for some α ∈ [0, 1).

For any fixed point z of S, in view of Lemma 2.2, we have z ∈ PSz = {z}.

d(wn+1, z) ≤ d(wn+1, bn) + d(bn, z)

= σn + d(bn, PSz)

≤ σn +H(PSwn, PSz)

≤ σn + αd(wn, z) (3.4)

Case II. When S satisfies (z̃2), i.e. H(PSx, PSy) ≤ β[d(x, PSx) + d(y, PSy)] for some β
with 0 ≤ β < 1/2.
Now,

d(wn+1, z) ≤ d(wn+1, bn) + d(bn, z)

= d(wn+1, bn) + d(bn, PSz)

≤ d(wn+1, bn) +H(PSwn, PSz)

≤ d(wn+1, bn) + β[d(wn, PSwn) + d(z, PSz)]

≤ d(wn+1, bn) + β[d(wn, z) + d(z, wn+1) + d(wn+1, bn) + d(bn, PSwn)]

≤ 1 + β

1− β
σn +

β

1− β
d(wn, z). (3.5)

Case III. When S satisfies (z̃3), i.e. H(PSx, PSy) ≤ γ[d(x, PSy) + d(y, PSx)] for some γ
with 0 ≤ γ < 1/2.
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Now,

d(wn+1, z) ≤ d(wn+1, bn) + d(bn, z)

= d(wn+1, bn) + d(bn, PSz)

≤ d(wn+1, bn) +H(PSwn, PSz)

≤ d(wn+1, bn) + γ[d(wn, PSz) + d(z, PSwn)]

≤ d(wn+1, bn) + γ[d(wn, z) + d(z, PSz) + d(z, wn+1) + d(wn+1, bn) + d(bn, PSwn)]

≤ 1 + γ

1− γ
σn +

γ

1− γ
d(wn, z). (3.6)

Hence, in view of (3.4), (3.5) and (3.6) with Lemma 2.1, {zn} is summably almost stable
with respect to S. To show {zn} converges to z, letting wn = zn we get σn = d(zn+1, an) =

0 and so by choosing a = max{α, β
1−β ,

γ
1−γ }, we have

d(zn+1, z) ≤ ad(zn, z)

yielding thereby

d(zn, z) ≤ and(z0, z)→ 0 as n→∞.
Thus {zn} converges to fixed point z.

�

Now, we prove following data dependence result for two multi-valued Zamfirescu oper-
ators.

Theorem 3.3. Let E be a metric space and S, S̃ : E → CB(E) two multi-valued Zam-
firescu operators with the fixed points z and z̃ respectively. If for every x ∈ E following
holds

H(Sx, S̃x) ≤ σ,
then

d(z, z̃) ≤ σ

1− a

Proof. Let S, S̃ : E → CB(E) be two multi-valued Zamfirescu operators such that zn+1 =

an ∈ Szn, n ≥ 0 and z̃n+1 = ãn ∈ S̃z̃n, n ≥ 0 with zn → z and z̃n → z̃. Now, consider

d(zn+1, z̃n+1) = d(an, ãn)

≤ d(an, S̃zn) + d(S̃zn, ãn)

≤ H(Szn, S̃zn) +H(S̃zn, S̃z̃n)

≤ σ +H(S̃zn, S̃z̃n). (3.7)

Now, we have following three cases:
Case I: When S̃ satisfies (z̃1), then from equation (3.7), we have

d(zn+1, z̃n+1) ≤ σ + αd(zn, z̃n).

On letting n→∞, we have d(z, z̃) ≤ σ
1−α . (3.8)

Case II: When S̃ satisfies (z̃2), then from equation (3.7), we have

d(zn+1, z̃n+1) ≤ σ + β[d(zn, S̃zn) + d(z̃n, S̃z̃n)

≤ σ + βd(zn, Szn) + βd(Szn, S̃zn) + βd(z̃n, S̃z̃n)

≤ (1 + β)σ + βd(zn, Szn) + βd(z̃n, S̃z̃n). (3.9)
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On letting n→∞, we have d(z, z̃) ≤ (1 + β)σ.
Case III. When S satisfies (z̃3), then from equation (3.7), we have

d(zn+1, z̃n+1) ≤ σ + γ[d(zn, S̃z̃n) + d(z̃n, S̃zn)]

≤ σ + γd(zn, z̃n) + γd(z̃n, S̃z̃n) + γd(z̃n, zn) + γd(zn, Szn) + γd(Szn, S̃zn).

On letting n→∞, we have

d(z, z̃) ≤ 1 + γ

1− 2γ
σ. (3.10)

On choosing a ∈ (0, 1) such that

1

1− a
= max

{
1

1− α
, (1 + β),

1 + γ

1− 2γ

}
,

and by equations (3.8), (3.9) and (3.10), we get

d(z, z̃) ≤ σ

1− a
.

�

4. Conclusion

We obtained interesting and important stability and data dependence results for class
of multi-valued Zamfirescu operators.
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