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THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF THE SYSTEM

OF THE DIFFERENTIAL EQUATIONS PARTIALLY SOLVED

RELATIVELY TO THE DERIVATIVES WITH NON-SQUARE

MATRICES

D. LIMANSKA1, §

Abstract. The systems of ordinary differential equations, which are partially resolved
relatively to the derivatives, were considered in case of a removable singularity and in
case of a pole. The theorems on the existence of at least one analytic solution in the
complex domain of the Cauchy problem with an additional condition are established
for both cases. Moreover, the asymptotic behavior of these solutions in this domain is
studied.
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1. Introduction

One of the methods of researching the systems of differential equations which are
not resolved relatively to the derivatives in the real-valued domain was suggested by
R.Grabovskaya [1] and J. Diblic [2, 11]. It was developed in the complex domain in
the articles by G. Samkova [7], N.Sharay [8,9], E.Michalenko, D.Limanska [3-6] and oth-
ers. The current article is a continuation of the researching of the systems of differential
equations that are not resolved relatively to the derivatives in the complex domain.

Let us consider the system of ordinary differential equations

A(z)Y
′

= B(z)Y + f(z, Y, Y
′
), (1)

where matrices A,B : D1 → Cm×p, D1 = {z : |z| < R1, R1 > 0} ⊂ C, matrices A(z), B(z)
are analytic in the domain D10, D10 = D1\{0}, the pencil of matrices A(z)λ − B(z) is
singular on the condition that z → 0, function f : D1 × G1 × G2 → Cm,where domains
Gk ⊂ Cp, 0 ∈ Gk, k = 1, 2, function f(z, Y, Y

′
) is analytic in D10 × G10 × G20, Gk0 =

Gk\{0}, k = 1, 2.
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Let us research the system of ordinary differential equations (1) on the conditions that
m > p and rangA(z) = p on the condition that z ∈ D1.

Without restricting the generality, let’s assume that matrices A(z), B(z) and vector-

function f(z, Y, Y
′
) take the forms

A(z) =

(
A1(z)
A2(z)

)
;B(z) =

(
B1(z)
B2(z)

)
; f(z, Y, Y

′
) =

(
A1(z, Y, Y

′
)

A2(z, Y, Y
′
)

)
(2)

A1 : D1 → Cp×p, A2 : D1 → C(m−p)×p, B1 : D1 → Cp×p, B2 : D1 → C(m−p)×p, detA1(z) 6=
0 on the condition that z ∈ D1, f1 : D1 ×G1 ×G2 → Cp, f2 : D1 ×G1 ×G2 → C(m−p).

The system (1) may be written as{
Y

′
1 = A−11 (z)B1(z)Y1 +A−11 (z)f1(z, Y, Y

′
1 ), (3.1)

A2(z)Y
′

= B2(z)Y + f2(z, Y, Y
′
), (3.2)

(3)

where A−11 (z)B1(z) is analytic matrix in the domain D10, A
−1
1 (z)f1(z, Y, Y

′
) is analytic

vector-function in the domain D10 ×G10 ×G20.
Then vector-function A−11 (z)f1(z, Y, Y

′
) has an isolated singularity in the point (0, 0, 0).

Thus, according to the theorem about an isolated singularity for a function of several com-
plex variables, point (0, 0, 0) is a removable singularity of the function A−11 (z)f1(z, Y, Y

′
).

Let us complete definition of vector-function A−11 (z)f1(z, Y, Y
′
) in the point (0, 0, 0)

thus it became analytic function in the domain D1×G1×G2 and, without restricting the
generality, let’s assume that A−11 (0)f1(0, 0, 0) = 0.

Let us consider two cases:

(1) A−11 (z)B1(z) is analytic matrix in the domain D10 and has a removable singularity
in the point z = 0

(2) A−11 (z)B1(z) is analytic matrix in the domain D10 and has a pole of order r in the
point z = 0

For the first case let us introduce the following notations

A−11 (z)B1(z) = P (1)(z), A−11 f1(z, Y, Y
′
) = F (z, Y, Y

′
) (4)

then for the first case the system (3.1) may be written as

Y
′

= P (1)(z)Y + F (z, Y, Y
′
) (5)

where P (1) : D1 → Cp×p, P (1)(z) is analytic matrix in the domain D1, F
(1)(z, Y, Y

′
) is

analytic vector-function in the domain D1 ×G1 ×G2.
For the second case let us introduce the following notations

A−11 (z)B1(z) = z−rP (2)(z), A−11 f1(z, Y, Y
′
) = F (z, Y, Y

′
) (6)

then for the second case the system (3.1) may be written as

Y
′

= z−rP (2)(z)Y + F (z, Y, Y
′
) (7)

where P (2) : D1 → Cp×p, P (2)(z) is analytic matrix in the domain D1.
We research the questions of the analytic solutions existence of the system (3) for both

cases that satisfy the initial condition

Y (z)→ 0 on the condition z → 0, z ∈ D10, (8)

and additional condition

Y ′(z)→ 0 on the condition z → 0, z ∈ D10, (9)
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2. Introduction of some intermediary notation

For arbitrary fixed t1 > 0, v1, v2 ∈ R, v1 < v2, we introduce auxiliary sets: Ĭ(t1) =
{(t, v) ∈ R2 : t ∈ (0, t1), v ∈ (v1, v2)};Lv0(t1) = {(t, v) ∈ R2 : t ∈ (0, t1), v = v0 ∈
(v1, v2)}, v0 is a fixed number. For arbitrary t0 ∈ (0, t1), Ot1(t0) = {(t, v) ∈ R2 : t = t0, v ∈
(v1, v2)}.

On the condition that z = z(t, v) = teiv, we associate the set Ĭ(t1) ⊂ R2 with the set
I(t1) ⊂ C : I(t1) = {z = teiv ∈ C : t ∈ (0, t1), v ∈ (v1, v2)}.

Definition 2.1. Let functions p, g : Ĭ(t1) → [0,+∞). We say that a function p(t, v)
possesses the property Q1 with respect to the function g(t, v) on the condition that v =
v0 ∈ (v1, v2), if p(t, v0) is the function of higher order of smallness with respect to the
function g(t, v0) on the condition that t→ +0.

Definition 2.2. Let functions p, g : Ĭ(t1) → [0,+∞). We say that a function p(t, v)

possesses the property Q2 with respect to the function g(t, v) on the set Ĭ(t1), if there exist
numbers C1 ≥ 0, C2 ≥ 0, such that the inequality

C1g(t, v) ≤ p(t, v) ≤ C2g(t, v)

is true on the set Ĭ(t1).

We introduce auxiliary vector functions as follows: ϕ(0)(z) = (ϕ
(0)
1 (z), ..., ϕ

(0)
p (z)), ϕ0) :

I(t1) → Cp, ψ(0)(t, v) = (ψ
(0)
1 (t, v), ..., ψ

(0)
p (t, v)), ψ

(0)
j : Ĭ(t1) → [0; +∞), j = 1, p, on the

condition that z = z(t, v) = teiv, ψ
(0)
j (t, v) =| ϕ(0)

j (z(t, v)) |, j = 1, p.

Let us choose the vector function ϕ(0)(z) that is analytic on the set I(t1) and, for any
z ∈ I(t1), the following conditions are true for the vector-function:

ψ
(0)
j (t, v) > 0; (ψ

(0)
j (t, v))

′
t > 0; (ψ

(0)
j (t, v))

′
v ≥ 0;ψ

(0)
j (+0, v) = 0, (ψ

(0)
j (+0, v))

′
t = 0, j =

1, p uniformly in v ∈ (v1, v2), (t, v) ∈ Ĭ(t1).

3. Transformation of systems (5) and (7) behavior on the segment Lv0(t1)
and along arc Ot1(t0)

Let us consider the systems (5) and (7) on the segment Lv0(t1) for any fixed v0 ∈ (v1, v2).
For z = z(t, v0) = teiv0 we represent each function and matrix in systems (5) and (7)

in the algebraic form by separating the real and imaginary parts and introducing the
following notation:

Y (z(t, v0)) = Ỹ (t), Ỹ (t) = Ỹ1(t) + iỸ2(t), Ỹj(t) = col(Ỹj1(t), ..., Ỹjp(t)), j = 1, 2,

P (β)(z(t, v0)) = ‖p̃(β)jk (t)‖pj,k=1 = P̃
(β)
1 (t)+ iP̃

(β)
2 (t), P̃

(β)
s (t) = ‖p̃(β)jks(t)‖

p
j,k=1, s = 1, 2, where

p̃
(β)
jk (t) = p̃

(β)
jk1(t) + ip̃

(β)
jk2(t), j, k = 1, p, β = 1, 2,

F (z(t, v0), Y (z(t, v0)), Y
′
(z(t, v0))) = F̃ (t, Ỹ , Ỹ

′
), F̃ (t, Ỹ , Ỹ

′
) = col(F̃1(t, Ỹ , Ỹ

′
), ...,

F̃p(t, Ỹ , Ỹ
′
)), F̃j(t, Ỹ , Ỹ

′
) = F̃1j(t, Ỹ , Ỹ

′
) + iF̃2j(t, Ỹ , Ỹ

′
), j = 1, p.

Let us consider the systems (5) and (7) along arc Ot1(t0) of the circle for any fixed
t0 ∈ (0, t1).

For z = z(t0, v) = t0e
iv we represent each function and matrix in systems (5) and (7) in

the algebraic form by separating the real and imaginary parts and introducing the following

notation Y (z(t0, v)) = Ŷ (v), Ŷ (v) = Ŷ1(v)+ iŶ2(v), Ŷj(v) = col(Ŷj1(v), ..., Ŷjp(v)), j = 1, 2,

P (β)(z(t0, v)) = ‖p̂(β)jk (v)‖pj,k=1 = P̂
(β)
1 (v) + iP̂

(β)
2 (v), P̂

(β)
s (v) = ‖p̂(β)jks(v)‖pj,k=1, s = 1, 2,

where p̂
(β)
jk (v) = p̂

(β)
jk1(v) + ip̂

(β)
jk2(v), j, k = 1, p, β = 1, 2,
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F (z(t0, v), Y (z(t0, v)), Y
′
(z(t0, v))) = F̂ (v, Ŷ , Ŷ

′
), F̂ (v, Ŷ , Ŷ

′
) = col(F̂1(v, Ŷ , Ŷ

′
), ...,

F̂p(v, Ŷ , Ŷ
′
)), F̂j(v, Ŷ , Ŷ

′
) = F̂1j(v, Ŷ , Ŷ

′
) + iF̂2j(v, Ŷ , Ŷ

′
), j = 1, p.

4. Some classes of functions and the properties of systems (5) and (7)

Definition 4.1. We say that the matrix P (β)(z), β ∈ 1, 2 has the property S1 with respect

to the vector-function ϕ(0)(z), if the following conditions are satisfied:

(1) For each v0 ∈ (v1, v2) functions (ψ
(0)
j (z(t, v)))

′
t possess the property Q1 with respect

to functions | p̃(β)jj (t) | ψ(0)
j (z(t, v)), j = 1, p, on the conditions that v = v0;

(2) Functions (ψ
(0)
j (t, v))

′
v possess the property Q2 with respect to functions | p̂(β)jj (v) |

ψ
(0)
j (t, v), j = 1, p on the set Ĭ(t2) for some t2 ∈ (0, t1];

(3) For each v0 ∈ (v1, v2) functions | p̃(β)jk (t)|ψ(0)
k (t, v) possess the property Q1 with

respect to functions (ψ
(0)
j (t, v))

′
v, j, k = 1, p, j 6= k, on the conditions that v = v0;

(4) Functions |p̂(β)jk (v)|ψ(0)
k (t, v) possess the property Q2 with respect to functions

(ψ
(0)
j (t, v))

′
v, j, k = 1, p, j 6= k on the set Ĭ(t2) or some t2 ∈ (0, t1].

Definition 4.2. We say that the vector-function P (β)(z), β ∈ 1, 2 possesses the property

S2 with respect to the vector-function ϕ(0)(z), if the following conditions are satisfied

(1) For each v0 ∈ (v1, v2) functions tr(ψ
(0)
j (z(t, v)))

′
t possess the property Q1 with

respect to functions | p̃(β)jj (t) | ψ(0)
j (z(t, v)), j = 1, p, on the conditions that v = v0;

(2) Functions tr−1(ψ
(0)
j (t, v))

′
v possess the property Q2 with respect to functions | p̂(β)jj (v) |

ψ
(0)
j (t, v), j = 1, pon the set Ĭ(t2) for some t2 ∈ (0, t1];

(3) For each v0 ∈ (v1, v2) functions | p̃(β)jk (t) | ψ(0)
k (t, v) possess the property Q1 with

respect to functions tr(ψ
(0)
j (t, v))

′
v, j, k = 1, p, j 6= k, on the conditions that v = v0;

(4) Functions | p̂(β)jk (v)|ψ(0)
k (t, v) possess the property Q2 with respect to functions

tr−1(ψ
(0)
j (t, v))

′
v, j, k = 1, p, j 6= k on the set Ĭ(t2) for some t2 ∈ (0, t1].

Denote the sets

Ω̃(δ, ϕ(0)(z(t, v0))) = {(t, Ỹ1, Ỹ2) : t ∈ (0, t1), Ỹ
2
1j + Ỹ 2

2j < δ2j (ψ
(0)
j (t, v0))

2, j = 1, p},

v0 is fixed on (v1, v2) (10)

Ω̂(τ, ϕ(0)(z(t0, v))) = {(v, Ŷ1, Ŷ2) : v ∈ (v1, v2), Ŷ
2
1j + Ŷ 2

2j < τ2j (ψ
(0)
j (t0, v))2, j = 1, p},

t0 is fixed on (0, t1) (11)

where δ = (δ1, ..., δp), τ = (τ1, ..., τp), δj , τj ∈ R\{0}, j = 1, p.

Definition 4.3. We say that the vector-function F (z, Y, Y
′
) possesses the property Mβ, β ∈

{1, 2} with respect to the vector-function ϕ(0)(z), if the following conditions are satisfied:

(1) For each v0 ∈ (v1, v2) and for (t, Ỹ1, Ỹ2) ∈ Ω̃(δ, ϕ(0)(z(t, v0))) functions

F̃kj(t, Ỹ1, Ỹ2, Ỹ
′
1 , Ỹ

′
2 ) possess the property Q1 with respect to functions | p̃(β)jj (z(t, v)) |

×ψ(0)
j (t, v), j = 1, p, k = 1, 2 on the conditions that v = v0;

(2) For (v, Ŷ1, Ŷ2) ∈ Ω̂(τ, ϕ(0)(z(t0, v))) functions F̂kj(v, Ŷ1, Ŷ2, Ŷ
′
1 , Ŷ

′
2 ) possess the prop-

erty Q2 with respect to functions | p̂(β)jj (z(t, v)) | ×ψ(0)
j (t, v)), j = 1, p, k = 1, 2 on

the set Ĭ(t2) for some t2 ∈ (0, t1].
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Without restricting the generality, let us suppose that 0 < t2 ≤ t1 ≤ R1. Further, we

introduce the following domains Λ
(β)
+.k(t2), k ∈ {+,−}, β = 1, 2

Λ
(β)
+.+(t2) = {(t, v) : cos((r − 1)v + ã

(β)
jk (t)) > 0,

sin((r − 1)v + â
(β)
jk (v)) > 0, j = 1, p, t ∈ (0, t2), v ∈ (v1, v2)};β = 1, 2

Λ
(β)
+.−(t2) = {(t, v) : cos((r − 1)v + ã

(β)
jk (t)) > 0,

sin((r − 1)v + â
(β)
jk (v)) < 0, j = 1, p, t ∈ (0, t2), v ∈ (v1, v2)};β = 1, 2

where functions ã
(β)
jk (t), â

(β)
jk (v), j, k = 1, p, β = 1, 2 can be defined as

cos(ã
(β)
jk (t)) =

p̃
(β)
jk1(t)√

p̃
(β)
jk1(t)

2
+ p̃

(β)
jk2(t)

2
, j, k = 1, p, β = 1, 2

sin(ã
(β)
jk (t)) =

p̃
(β)
jk2(t)√

p̃
(β)
jk1(t)

2
+ p̃

(β)
jk2(t)

2
, j, k = 1, p, β = 1, 2

cos(â
(β)
jk (t)) =

p̂
(β)
jk1(t)√

p̂
(β)
jk1(t)

2
+ p̂

(β)
jk2(t)

2
, j, k = 1, p, β = 1, 2

sin(â
(β)
jk (t)) =

p̂
(β)
jk2(t)√

p̂
(β)
jk1(t)

2
+ p̂

(β)
jk2(t)

2
, j, k = 1, p, β = 1, 2

Definition 4.4. We say that system (5) belongs to the class C
(1)
+.k, k ∈ {+,−}, if the

matrix P (1)(z) = P (1)(teiv) is such that (t, v) ∈ Λ
(1)
+.k(t2), k ∈ {+,−}.

Definition 4.5. We say that system (7) belongs to the class C
(2)
+.k, k ∈ {+,−}, if the

matrix P (2)(z) = P (2)(teiv) is such that (t, v) ∈ Λ
(2)
+.k(t2), k ∈ {+,−}.

5. Main results

Let us introduce the following domains G
(β)
+.k(t2) = {z = z(t, v) : 0 < |z| < t2, (t, v) ∈

Λ
(β)
+.k(t2)}, k ∈ {+,−}, β = 1, 2.

Theorem 5.1. Let us suppose that m > p,A(z) is analytic matrix in the domain D1 and
rangA(z) = p on the condition that z ∈ D1. Suppose that the system (1) can be reduced to
the form (5)-(3.2). Moreover, suppose that the system (5) satisfies the following conditions:

(1) The matrix P (1)(z) is analytic in the domain D1 and has the property S1 with

respect to the analytic vector-function ϕ(0)(z);

(2) The vector-function F (z, Y, Y
′
) is analytic in the domain D1×G1×G2, F (0, 0, 0) =

0 and has the property M1 with respect to the analytic vector function ϕ(0)(z);

(3) The system (5) belongs to one of the classes C
(1)
+.k, k ∈ {+,−};

(4) The matrices A2(z), B2(z) and the vector-function f2(z, Y, Y
′
) have such form that

the compatibility conditions with (3.2) are fulfilled along the solution of the system

(5) on the condition that z ∈ D1, D1 ∩G(1)
+.k(t

∗) 6= ∅, k ∈ {+,−};
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Then, for each k ∈ {+,−} and for some t∗ ∈ (0, t2) there exist such solutions of the

system (1) Y (z), satisfying the initial conditions Y (z0) = Y0 for z0 ∈ G(1)
+.k(t

∗), Y0 ∈ {Y :

|Yj(z0)| < δj | ϕ(0)
j (z0) |, δj > 0, j = 1, p}, are analytic in the domain D1 ∩ G(1)

+.k(t
∗) and

these solutions admit the estimates

| Yj(z) |2< δ2j | ϕ
(0)
j (z) |2, j = 1, p (12)

in the domain D1 ∩G(1)
+.k(t

∗).

Proof. Taking into account the representations (2), let us reduce the system (1) to the
system (3). Assuming that A−11 (z)B1(z) is analytic matrix in the domain D10 and has
removable singularity in the point z = 0, the system (3) may be written as (5)-(3.2).

Let us adapt the results of the theorem 1 [3] for the system (1). We get that the system

(5) that satisfies the initial condition Y0 = Y (z0) for z0 ∈ G(1)
+.k(t

∗), Y0 ∈ {Y :| Yj(z0) |<
δj | ϕ(0)

j (z0) |, δj > 0, j = 1, p}, k ∈ {+,−}, has at least one analytic solution in the domain

D1 ∩G(1)
+.k(t

∗). Moreover, inequalities (12) are true for every solution in this domain.

If the matrices A2(z), B2(z) and the vector-function f2(z, Y, Y
′
) have such form that

the compatibility conditions with (3.2) are fulfilled along the solution of the system (5)

on the condition that z ∈ D1, D1 ∩ G(1)
+.k(t

∗) 6= ∅, k ∈ {+,−}, then the system (1), that
satisfies the initial condition Y0 = Y (z0), has at least one analytic solution in the domain

D1 ∩G(1)
+.k(t

∗). Moreover, inequalities (12) are true for every solution in this domain. The
theorem is proved.

Theorem 5.2. Let us suppose that m > p,A(z) is analytic matrix in the domain D1 and
rangA(z) = p on the condition that z ∈ D1. Suppose that the system (1) can be reduced to
the form (7)-(3.2). Moreover, suppose that the system (7) satisfies the following conditions:

(1) The matrix P (2)(z) is analytic in the domain D1 and has the property S2 with

respect to the analytic vector-function ϕ(0)(z);

(2) The vector-function F (z, Y, Y
′
) is analytic in the domain D1×G1×G2, F (0, 0, 0) =

0 and has the property M2 with respect to the analytic vector function ϕ(0)(z);

(3) The system (7) belongs to one of the classes C
(2)
+.k, k ∈ {+,−};

(4) The matrices A2(z), B2(z) and the vector-function f2(z, Y, Y
′
) have such form that

the compatibility conditions with (3.2) are fulfilled along the solution of the system

(7) on the condition that z ∈ D1, D1 ∩G(2)
+.k(t

∗) 6= ∅, k ∈ {+,−};
Then, for each k ∈ {+,−} and for some t∗ ∈ (0, t2) there exist such solutions of the

system (1) Y (z), satisfying the initial conditions Y (z0) = Y0 for z0 ∈ G(2)
+.k(t

∗), Y0 ∈ {Y :

|Yj(z0)| < δj | ϕ(0)
j (z0) |, δj > 0, j = 1, p}, are analytic in the domain D1 ∩ G(2)

+.k(t
∗) and

these solutions admit the estimates (12) in the domain D1 ∩G(2)
+.k(t

∗).

Proof

Taking into account the representations (2), let us reduce the system (1) to the system
(3). Assuming that A−11 (z)B1(z) is analytic matrix in the domain D10 and has removable
singularity in the point z = 0, the system (3) may be written as (7)-(3.2).

Let us adapt the results of the theorem 1 [4] for the system (1). We get that the system

(7) that satisfies the initial condition Y0 = Y (z0) for z0 ∈ G(2)
+.k(t

∗), Y0 ∈ {Y :| Yj(z0) |<
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δj | ϕ(0)
j (z0) |, δj > 0, j = 1, p}, k ∈ {+,−}, has at least one analytic solution in the domain

D1 ∩G(2)
+.k(t

∗). Moreover, inequalities (12) are true for every solution in this domain.

If the matrices A2(z), B2(z) and the vector-function f2(z, Y, Y
′
) have such form that

the compatibility conditions with (3.2) are fulfilled along the solution of the system (7)

on the condition that z ∈ D1, D1 ∩ G(2)
+.k(t

∗) 6= ∅, k ∈ {+,−}, then the system (1), that
satisfies the initial condition Y0 = Y (z0), has at least one analytic solution in the domain

D1 ∩G(2)
+.k(t

∗). Moreover, inequalities (12) are true for every solution in this domain. The
theorem is proved. �

6. Conclusions

The sufficient conditions of the existence of the analytical solutions for systems of differ-
ential equations (5) and (7), partially solved relatively to the derivatives, with non-square
matrices, in the presence of a removable singularity or a pole z = 0, were found. It was
found an estimate for these solutions in the neighborhood of the point z = 0.

Theorems of the existence of the solutions for the system (1) were proved. These
solutions are analytic in the domain with the zero-point on a border and have estimates
in this domain.
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