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TOTAL COLORINGS OF CORE-SATELLITE, COCKTAIL PARTY AND

MODULAR PRODUCT GRAPHS

R. VIGNESH1,2, S. MOHAN3, J. GEETHA1, K. SOMASUNDARAM1, §

Abstract. A total coloring of a graph G is a combination of vertex and edge colorings
of G. In other words, is an assignment of colors to the elements of the graph G such that
no two adjacent elements (vertices and edges) receive a same color. The total chromatic
number of a graph G, denoted by χ′′(G), is the minimum number of colors that suffice in
a total coloring. Total coloring conjecture (TCC) was proposed independently by Behzad
and Vizing that for any graph G, ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2, where ∆(G) is the
maximum degree of G. In this paper, we prove TCC for Core Satellite graph, Cocktail
Party graph, Modular product of paths and Shrikhande graph.

Keywords: Total coloring, Modular product graph, Core Satellite graph, Cocktail Party
graph, Shrikhande graph.
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1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). In this
paper, graph is simple, that is, it has no multiple edges or loops. A total coloring of G is
a mapping f : V (G)∪E(G)→ C, where C is a set of colors, satisfying the following three
conditions (a)-(c):

(a) f(u) 6= f(v) for any two adjacent vertices u, v ∈ V (G),
(b) f(e) 6= f(e′) for any two adjacent edges e, e′ ∈ E(G) and
(c) f(v) 6= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident with v.

1 Department of Mathematics, Amrita School of Engineering, Coimbatore, Amrita Vishwa
Vidyapeetham, India.
e-mail: r vignesh@cb.amrita.edu; ORCID: https://orcid.org/0000-0002-2454-7356.
e-mail: j geetha@cb.amrita.edu; ORCID: https://orcid.org/0000-0003-0558-5389.
e-mail: s sundaram@cb.amrita.edu; ORCID: https://orcid.org/0000-0003-2226-1845.

2 Department of Computer Science and Engineering, School of Advanced Computing, Presidency
University, Bengaluru, India.
e-mail: hananyaresearch@gmail.com; vigneshr@presidencyuniversity.in

3 Department of Mathematics, School of Engineering, Presidency University, Bengaluru, India.
e-mail: smohanmat@gmail.com; ORCID: https://orcid.org/0000-0002-8459-9588.

§ Manuscript received: December 19, 2018; accepted: June 30, 2019.
TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.3© Işık University, Department
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The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number
of colors that suffice in a total coloring. It is clear that χ′′(G) ≥ ∆(G) + 1, where ∆(G)
is the maximum degree of G. Behzad [6] and Vizing [19] indepndently conjectured (Total
Coloring Conjecture (TCC)) that for every graph G, ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2. If
χ′(G) = ∆(G) then G is called class-I graph and if χ′(G) = ∆(G) + 1 then G is called
class-II graph, where χ′(G) is the edge chromatic number of G. For example, K2n is class-I
where as K2n+1 is class-II. Also, any bipartite graph is class-I. We call a graph G is total
colorable if it has a total coloring with ∆(G) + 2 colors. Analogously, if a graph G is
total colorable with ∆(G) + 1 colors then the graph is called type-I, and if it is not total
colorable with ∆(G) + 1 colors but ∆(G) + 2 colors, then it is type - II. The following
theorems are due to Yap [21]. Arindam Dey et al. studied the concept of vertex and edge
coloring on simple vague graphs [1]. Also, they studied the colorings of fuzzy graph in
[2][3][4][5].

Theorem 1.1. For any complete graph Kn, χ
′′(Kn) =

{
n, if n is odd

n+ 1, if n is even.

Theorem 1.2. For any cycle Cn, χ
′′(Cn) =

{
3, if n is multiple of 3

4, otherwise.

In [14], Molly and Reed gave a probabilistic approach to prove that for sufficiently large
∆(G), the total chromatic number is at most ∆(G) + 1026. It is known [13] that the
problem of finding a minimal total coloring of a graph is in general case NP-complete.
The problem remains NP-complete even for cubic bipartite graphs. For general classes of
graphs, the total colouring would be harder than edge colouring. A lot of work was done
on various topics related to graph products, but on the other hand there are still many
questions open. Geetha and Somasundaram [10] verified TCC for certain classes of direct
product, strong product and lexicographic product graphs. In [9] Geetha and Somasun-
daram studied the total coloring conjecture for certain classes of Generalized Sierpiński
graphs. An exhaustive survey on total colorings is given [11]. This survey includes all the
recent results and open problems in total colorings.
Recently, Vignesh et al. verified TCC for certain classes of deleted lexicographic product
graphs [16] and corona product graphs [17].

If we color a graph G with ∆(G) + 2 colors then at each vertex v ∈ V (G), at least one
color is not used among ∆(G) + 2 colors. These colors are called missing colors of v. In
particular, if n is even and we color the graph Kn with n+ 1 colors (Theorem 1.1), then
at each vertex v ∈ V (Kn) there will be exactly one color missing and the missing colors
at the vertices are distinct. In this paper, let c(vi) denote the color of the vertex vi and
c(vivj) denote the color of the edge vivj .

2. Core - Satellite Graph

Let c, s and η be positive integers, c > s and η ≥ 2. The core-satellite graph (introduced
by Estrada and Benzi [8]) is Θ (c, s, η) ∼= Kc ∨ (ηKs). That is, they are the graphs
consisting of η copies of Ks (the satellite cliques) meeting in a common clique Kc (the
core clique). This can be generalized in the following way: There are k satellite cliques
Ks1 ,Ks2 , ...,Ksk , each satellite clique Ksi is join with the core clique Kc. It is also denoted
as Θ(c, 1s1 , 1s2 , ..., 1sk).
For example, Θ(6, 15, 14, 13) consists of three satellite cliques K5,K4,K3 and a core clique
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K6, which is shown in Fig. 1. In this section, we prove that the core-satellite graph is
total colorable.

Fig. 1. Θ(6, 15, 14, 13)

Theorem 2.1. The core - satellite graph is total colorable.

Proof. Consider the core-satellite graph Θ(c, 1s1 , 1s2 , ..., 1sk), c > si ≥ 2, i = 1, 2, ..., k.
Here, the maximum degree is ∆(Θ(c, 1s1 , 1s2 , ..., 1sk)) = (c− 1) + s1 + s2 + ...+ sk.
Case (a). c is even.
Subcase (i). Suppose all the satellite cliques are same size k.
From the Theorem (1.1), we know that the core clique Kc requires c+ 1 colors to color its
elements. In this coloring assignment, one color is not assigned to any of the vertices of
Kc, let it be the color a. Assign si colors to the edges between the core clique Kc and the
satellite cliques Ksi , i = 1, 2, ..., k. Since the satellites cliques are disjoint to each other,
color the satellite clique Ksi with sk colors and the color a, 1 ≤ i ≤ k − 1. Since c > sk,
we assign the edge coloring of Ksk from the edge coloring of the core Kc. There will be
exactly one missing color at each vertices in Kc and these missing colors are distinct. Now,
take a set of matching edges (sk edges) between Kc and Ksk and remove the colors of the
matching edges and assign the removed colors to the corresponding vertices in Ksk . Color
the matching edges with the missing colors at the corresponding vertices in Kc. Here, we
used (c+ 1) + s1 + s2 + ...+ sk=∆(Θ(c, 1s1 , 1s2 , ..., 1sk)) + 2 colors.
Subcase (ii). Suppose not all si are same size.
Let sp = max{si|i = 1, 2, ..., k}.
We assign c+1 colors to the element of the core clique Kc (Theorem (1.1)). Assign si colors
to the edges between the core clique Kc and Ksi , i = 1, 2, ..., k. Since the satellites cliques
are disjoint to each other, color the satellite clique Ksi with sp colors, 1 ≤ i ≤ k, i 6= p.
Since c > sp, we assign the edge coloring of Ksp from the edge coloring of the core Kc.
There will be exactly one missing color at each vertices in Kc and these missing colors are
distinct. Now, take a set of matching edges (sp edges) between Kc and Ksp and remove the
colors of the matching edges and assign the removed colors to the corresponding vertices in
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Ksp . Color the matching edges with the missing colors at the corresponding vertices in Kc.

Case (b). c is odd.
From the Theorem (1.1), we know that for odd values of n, Kn requires only n colors
for its total colorings. Here, we give n + 2 colors to the elements of Kn, n is odd, in the
following way:
We embed Kn such that its vertices v1, v2, ..., vn are situated equidistantly on a circle. In
the first step, we color all edges incident with v1 such that the color of c(v1vi) = ci, for
i = 2, 3, ..., n and the vertex v1, c(v1) = c1. Next we consider the vertex v2: one edge
is already colored with c2, so we put c(v2) = c3 and c(v2vi) = ci+1, for i = 3, 4, ..., n.
In general c(vj) = c2j−1 mod (n+2) and c(vjvi) = c(j+i−1) mod (n+2), for i = j + 1, ..., n
(here c0 is the color n + 2). This gives a proper total coloring of Kn with n + 2 col-
ors. Now at each vertex in Kn, we have exactly two distinct missing colors, they are
(cn+1, cn+2), (cn+2, c1), (c1, c2), ..., (cn−2, cn−1) respectively at v1, v2, ..., vn. In general, the
two distinct missing colors at vertex vi are c(n+i) mod (n+2) and c(n+i+1) mod (n+2), 1 ≤
i ≤ n.

Now, we have s1 +s2 + ...+sk−1 remaining colors. We take s1−1 colors and a missing
color at the vertices in Kc to color the edges between Kc and Ks1 . We use the new si
colors to color the edges between Kc and Ksi , i = 2, 3, ..., k. Similar to the previous case,
we color all the satellite cliques with sp colors.
Therefore the core-satellite graph is total colorable.

�

Corollary 2.1. If the core and all the satellite cliques are type -I, then the core-satellite
graph is also type-I.

3. Cocktail Party Graph

Cocktail party graph is a graph consisting of two rows of paired vertices in which all
vertices except the paired ones are connected with an edge and is denoted by Tv. The
cocktail party graph is also called the hyperoctahedral graph [7] or Roberts graph. It is
complement of the ladder rung graph L′n and the dual graph of the hypercube graph Qn.
It is the skeleton of the n-cross polytope. The cocktail party graph of order n is isomorphic
to complement of C2n. It is belonging to the class of claw-free perfect graphs. The n-
cocktail party graph is also the (2n, n)-Turán graph. Vijayalakshmi [18] found the number
of multiplicity of triangles in cocktail party graphs. In [12] Gregory et al. obtained the
clique partitions of the cocktail party. Spectral characterization of generalized cocktail-
party graphs is given by Wang and Huang [20]. The Cocktail party graph T5 is shown
in Fig.2. T2 ∼= C4 is type-II (Theorem 1.2). In the next theorem, we prove that cocktail
party graph with n vertices, n ≥ 3, is type-I.

Theorem 3.1. If G is a cocktail party graph with n vertices, n ≥ 3, then G is type-I.

Proof. Let G be a cocktail party graph with n vertices, n ≥ 3. We know that G ∼= C2n.
The maximum degree of G is ∆(G) = 2(n − 1). We decompose the G into two complete
graphs with n vertices, K1

n and K2
n, and a bipartite graph Hn,n (decomposition of T5 is

shown in Fig.3).
Suppose n is odd then we color the elements of K1

n and K2
n with n colors (by Theorem

1.1). The maximum degree of the bipartite graph Hn,n is n − 1 and we know that n − 1
colors are sufficient for edge colorings of the edges of Hn,n. Therefore, we need only 2n−1
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Fig. 2. Cocktail party graph T5.

colors for the total coloring of G.
Suppose n is even then we color the element of K1

n and K2
n with n+ 1 colors (by Theorem

1.1). When we color the graph Kn with n + 1 colors, at each vertex v ∈ V (Kn), exactly
one color is missing and these missing colors are the vertices are distinct. Now, permute
the colors of K2

n such that ith vertex in K1
n and (i + 1)th vertex in K2

n are having same
missing color, 1 ≤ i ≤ n. Assign the missing color to the edge between ith vertex in K1

n

and (i + 1)th vertex in K2
n, 1 ≤ i ≤ n. We have remaining n − 2 colors and using these

n− 2 colors we color the uncolored edges of Hn,n. �

K1

n

K2

n

2

Hn,n

Fig. 3. Decomposition of cocktail party graph .

4. Modular Product Graph

There are four standard product of graphs namely, cartesian, direct, strong and lex-
icographic product. Strong product is the union of cartesian and direct products. In
this section, we considered the modular product. Modular product is the combination of
strong product edges and edges corresponding to the non-adjacent vertices. The formal
definition as follows:
The modular product [22] G♦H of two graphs G and H is the graph with vertex set

V (G)× V (H), in which a vertex (v, w) is adjacent to a vertex (v
′
, w

′
) if and only if either

(i) v = v
′

and w is adjacent to w
′
, or (ii) w = w

′
and v is adjacent to v

′
, or (iii) v is adja-

cent to v
′
and w is adjacent to w

′
, or (iv) v is not adjacent to v

′
and w is not adjacent to w

′
.
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It is interesting to see that, if either G or H is a complete graph, then G♦H ' G�H.
Fig.4 shows the graph C4♦C4.

Fig. 4. C4♦C4

Let G and H be two connected graphs with m and n vertices, respectively. Let x = (u, v)
be a vertex in G♦H. Let du = degG(u) and dv = degH(v). It is easy to see that the max-
imum degree is ∆(G♦H) = maxu∈G,v∈H {du + dv + dudv + (m− du − 1)(n− dv − 1)}.

Theorem 4.1. The graphs P3♦Pn and P3♦Cn are total colorable graph.

Proof. We know that P2♦P2
∼= C4 and C4 is type-II graph (Theorem 1.2). For n ≥ 3,

Geetha and Somasundaram [10] proved that P2♦Pn
∼= P2 � Pn and P2♦C2

∼= P3 �Cn are
type-I graphs.

Let us consider the graph P3♦Pn, n ≥ 3. The graph P3♦Pn is taken as three layers of
Pn. Here, the maximum degree
∆(P3♦Pn) =maxu∈P3,v∈Pn {du + dv + dudv + (3− du − 1)(n− dv − 1)}.

=

{
8, n = 3, ..., 6,

n+ 2, n ≥ 7.

Let uij be the jth vertex in ith layer, i = 1, 2, 3 and j = 1, 2, ..., n. For n = 3, ..., 6,
the maximum degree attains at the vertices like u22. It is easy to prove the theorem in a
direct way for n = 3, .., 6.

For n ≥ 7, the maximum degree attains at u1j and u3j , where j = 2, 3, ..., n − 1. Let
C = {a, b, c, d, x, y, z, c1, c2, ..., cn−3} be a set of colors with n+ 4 colors.
Color all the edges of the path in the first layer with the colors x and y and color all the
edges in third layer with the colors y and z. At each vertex in the first layer, the color z
is missing and at each vertex in the third layer, the color x is missing. Color the edges
between the corresponding vertices of the first and second layers with z and between the
second and third layers with x. Color the direct product edges between the first and sec-
ond layers with colors a, b and second and third layers with c, d. Now the vertices in the
first layer are colored with c, d and the vertices in the third layer are colored with a, b. The
edge between the vertices u11 and u3n is colored with the color a and the edge between
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the vertices u1n and u31 is colored with the color d. The remaining edges between the first
and third layers (the edges correspond nonadjacent vertices) are colored with the colors
c1, c2, ..., cn−3. The edges and vertices of the path in the second layer is colored with the
colors c1, c2, c3, c4. Therefore, ∆(P3♦Pn) ≤ n+ 4.

Similar way, we can prove P3♦Cn is total colorable graph if n is even. If n is odd,
color all the vertices and edges of the first layer with the colors c, d, x, y and color all the
vertices and edges of the third layer with the colors a, b, y, z. At each vertex in the first
layer, the color z is missing and at each vertex in the third layer, the color x is missing.
Color the edges between the corresponding vertices of the first and second layers with z
and between the second and third layers with x. Color the direct product edges between
the first and second layers with colors a, b and second and third layers with c, d. The edges
corresponding to strong product are colored with the colors a, b, c, d, x, y, z and the edges
corresponding to non-adjacency are colored with the colors c1, c2, ..., cn−3. The edges and
vertices of the path in the second layer are colored with the colors c1, c2, c3 and c4. In this
case also, we have used n+ 4 colors to color the elements of P3♦Cn. Hence P3♦Cn is total
colorable.

�

5. Shrikhande Graph

In the mathematical field of graph theory, the Shrikhande graph is a named graph
discovered by S. S. Shrikhande in 1959 [15]. It is a strongly regular graph with 16 vertices
and 48 edges, with each vertex having degree 6. Every pair of nodes has exactly two
other neighbors in common. The chromatic number of Shrikhande graph is 4 and it is
Hamiltonian. The symmetric structure of Shrikhande graph is shown in Fig.5.
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Fig. 5. Shrikhande graph G.

Theorem 5.1. Shrikhande graph G is type-I.

Proof. Let G be the Shrikhande graph and V (G) = {v1, v2, v3, ..., v16} be the set of vertices.
Let C = {1, 2, 3, 4, 5, 6, 7} be a set of colors. We decompose the graph G in to three cycles
C1 (v9, v11, v13, v15 ), C2 (v10, v12, v14, v16) and C3 (v1 to v8). Based on the decomposition,
we color the elements of cycles with 7 colors. Table 1 shows a total coloring of the
Shrikhande graph.



R. VIGNESH, ET ALL: TOTAL COLORINGS OF CORE-SATELLITE ... 785

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16
v1 1 4 5 - - - 6 3 - 7 - - - - - 2
v2 4 2 1 5 - - - 6 3 - 7 - - - - -
v3 5 1 3 2 6 - - - - 4 - 7 - - - -
v4 - 6 2 4 3 5 - - - - 1 - 7 - - -
v5 - - 6 3 1 4 5 - - - - 2 - 7 - -
v6 - - - 5 4 2 1 6 - - - - 3 - 7 -
v7 6 - - - 5 1 3 2 - - - - - 4 - 7
v8 3 5 - - - 6 2 4 7 - - - - - 1 -
v9 - 3 - - - - - 7 1 - 2 6 - 5 4 -
v10 7 - 4 - - - - - - 2 - 3 5 - 6 1
v11 - 7 - 1 - - - - 2 - 3 - 4 6 - 5
v12 - - 7 - 2 - - - 6 3 - 4 - 1 5 -
v13 - - - 7 - 3 - - - 5 4 - 1 - 2 6
v14 - - - - 7 - 4 - 5 - 6 1 - 2 - 3
v15 - - - - - 7 - 1 4 6 - 5 2 - 3 -
v16 2 - - - - - 7 - - 1 5 - 6 3 - 4

Table 1. Total coloring of Shrikhande graph G

�

6. Conclusions

A total coloring of a graph G is an assignment of colors to the elements of the graph
G such that no two adjacent elements (vertices and edges) receive a same color. Total
coloring problem belongs to NP-Hard classes. The total coloring conjecture is well known
conjecture, which states that for any graph G, ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2, where
∆(G) is the maximum degree of G. In this paper, we proved the conjecture for Core
Satellite graph, Cocktail Party graph, Modular product of paths and Shrikhande graph.
Total colorings of modular product of other classes of graphs are open.
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