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NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL

EQUATIONS BY A FINITE DIFFERENCE METHODS

M. A. BAYRAK1, E. CAN2, §

Abstract. In this study, we consider the concept of under generalized differentiability
for the fuzzy parabolic differential equations. When the fuzzy derivative is considered
as generalization of the H-derivative, for our case, the fuzziness is in the coefficents as
well as initial and boundary conditions. We analysed and applied to numerically solve
a fuzzy parabolic equation by finite difference method. The applicability of presented
algorithm is illustrated by solving an examples of fuzzy partial differential equations.
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1. Introduction

Fuzzy differential equations (FDEs) have been studied entensively in recent years to
model in science and engineering problems [3, 4, 12]. Fuzzy partial differential equations
were introduced by Buckley and Feuring in 1999 to study partial differential equations
with uncertainty [8]. Also, they have studied solutions to elementary fuzzy partial dif-
ferential equations [2]. First order linear fuzzy differential equations under generalized
differentiability concept are studied in [15,16]. Recently, Bertone et al. [7] have considered
fuzzy solutions to some partial differential equations by fuzzification of the deterministic
solution. For instance, in [1,5,13,17,18] the authors proposed difference methods for solv-
ing fuzzy partial differential equations. Chen et al. presented a new inference method to
find fuzzy solutions to PDE’s [10]. See [23] for interpretation of used FPDEs to modeling
hydrogeological systems. Also studying heat, wave and Poisson equations with uncertain
parameters can be found in [23]. Alikhani et al. obtained the fuzzy solutions of hyperbolic
equation with initial values in [25] and [24] studied a linear fuzzy partial differential equa-
tion under generalized Hukuhara differentiability concept. Then, this paper will obtain the
use of finite difference methods for solving fuzzy heat equation. The paper is organized as
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follows. In section 2, we present some basic concepts of fuzzy calculus and useful theoret-
ical information. Fuzzy parabolic differential equation under generalized differentiability,
we study in section 3. Numerical algorithm for solving considered problem is introduced
in section 4. At the end of the paper, we present some conclusions and topics for further
research. To describe the behavior of imprecise phenomena in real world, fuzzy dynamical
systems have been studied frequently in the past twenty years [1–4]. The study of the
existence of solution for fuzzy dynamical equations using fixed point theorems, Banach’s
fixed point principle and monotone iterative method is carried out in [5–9].

2. Preliminaries

We give some definitions and useful results and introduce the necessary notation which
will use throughout the paper see [3]. In the following, the space of fuzzy numbers is
denoted RF .
Given a fuzzy number uεRF and 0 < α ≤ 1, we obtain the α-level set of u by [u]α =
{xεR;u(x) ≥ α} and the support of u as [u]0 = cl{x ∈ R|u(x) > 0}. For any αε[0, 1],
[u]α = [uα, uα] is a bounded closed interval. The length of the α-level set is defined by
len(u) = (uα − uα), ∀αε[0, 1]. In the special case α = 0, len([u]α) = diam(u).

Definition 2.1. A fuzzy number in parametric form is presented by an ordered pair of
functions [3] [uα, uα] to define the parametric form of a fuzzy interval are the followings:
(i) uα is a bounded monotonic increasing left-continuous function in α ∈ (0, 1] and right-
continuous at α = 0.
(ii) uα is a bounded monotonic decreasing left-continuous function in α ∈ (0, 1] and right-
continuous at α = 0.
(iii) uα ≤ uα, 0 ≤ α ≤ 1.

For u, v ∈ RF and λ ∈ R, we define the sum u + v and scalar multiplication λu as
[u+v]α = [u]α+[v]α, [λu]α = λ[u]α, ∀α ∈ [0, 1], where [u]α+[v]α mean the usual addition of
two intervals (subsets) of R and usual product between a scalar and a subset and interval of
R respectively. Hausdorff distance between u and v is given by [11] D : RF×RF → R+∪{0}
D(u, v) = supα∈[0,1] max{|uα−vα|, |uα−vα|}, u, v ∈ RF . The space (RF , D) is a complete
metric space.

Definition 2.2. Let u, v ∈ RF . If there exists w ∈ RF such that u = v + w then w is
called the H-difference of u, v and it is denoted u	 v [11] .

Definition 2.3. Let f : (a, b) −→ RF and fix x0 ∈ (a, b). We say that if there is exists an
element f ′(x0) ∈ RF such that one of the following statements is true:
(1) For all h > 0 sufficiently near to 0, the H-differences f(x0+h)	f(x0), f(x0)	f(x0−h)
exist and the limits (in the metric D)

lim
h→0+

f(x0 + h)	 f(x0)

h
= lim

h→0+

f(t0)	 f(x0 − h)

h
= f ′(x0)

or
(2) For all h < 0 sufficiently near to 0, the H-differences f(x0+h)	f(x0), f(x0)	f(x0−h)
exist and the limits (in the metric D)

lim
h→0−

f(x0 + h)	 f(x0+)

h
= lim

h→0−

f(x0)	 f(x0 − h)

h
= f ′(x0).

for all x ∈ (a, b) [4].
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Theorem 2.1. Let f : (a, b) −→ RF be function where, [f(x)]α = [f
α
(x), fα(x)] for each

α ∈ [0, 1]. The following assertion are valid:

(i) If f is (1)-differentiable in the first form, then fα and f
α

are differentiable functions

and [f ′(x)]α = [(f
α
)′(x), (fα)′(x)], x ∈ (a, b).

(ii) If f is (2)-differentiable in the first form, then f
α
(x) and fα(x) are differentiable

functions and [f ′(x)]α = [(fα)′(x), (f
α
)′(x)], x ∈ (a, b) [3].

Theorem 2.2. Let fuzzy functions f, g : (a, b) −→ RF be (1)-differentiable on (a, b).
1) If the H- differences f(x)	 g(x) and f ′(x)	 g′(x) exist for all x ∈ (a, b), then f 	 g is
(1)-differentiable and (f 	 g)′(x) = f ′(x)	 g′(x),∀x ∈ (a, b).
2) If the H - differences f(x) 	 g(x) and g′(x) 	 f ′(x) exist for all x ∈ (a, b), then f 	 g
is 2-differentiable and (f 	 g)′(x) = (−1)(g′(x)	 f ′(x)), ∀x ∈ (a, b) [4].

Theorem 2.3. Let fuzzy functions f, g : (a, b) −→ RF be (2)-differentiable on (a, b).
1) If the H- differences f(x)	 g(x) and g′(x)	 f ′(x) exist for all x ∈ (a, b), then f 	 g is
(1)-differentiable and (f 	 g)′(x) = f ′(x)	 g′(x),∀x ∈ (a, b).
2) If the H - differences f(x) 	 g(x) and f ′(x) 	 g′(x) exist for all x ∈ (a, b), then f 	 g
is 2-differentiable and (f 	 g)′(x) = ((f ′(x)	 g′(x)),∀x ∈ (a, b).

In the following, according to the previous definition, we present partial generalized
Hukuhara derivatives for fuzzy functions [4, 6, 19,20].

Definition 2.4. Let u : R × (0, l) → RF be a fuzzy function. If there exists an element
Dxu(x0, y0) ∈ RF such that either
(1) for all h > 0 sufficiently near to 0, there exist u(x0 + h, t0)	 u(x0, t0),
u(x0, t0)	 u(x0 − h, t0) and the limits

limh→0+
u(x0+h,t0)	u(x0,t0)

h = limh→0+
u(x0,t0)	u(x0−h,t0)

h = Dxu(x0, t0),
or
(2) for all h < 0 sufficiently near to 0, there exist u(x0, t0)	 u(x0 + h, t0), u(x0 − h, t0)	
u(x0, t0) and the limits

limh→0−
u(x0,t0)	u(x0+h,t0)

h = limh→0−
u(x0−h,t0)	u(x0,t0)

h = Dxu(x0, t0).

We denote by D1
nf(x0) the first derivative of f , if it is (n)-differentiable at x0. (n = 1, 2)

in [24].

Theorem 2.4. Denote [u(x, t)]α = [uα(x, t), uα(x, t)], α ∈ [0, 1], where u : R × (0, T ) →
RF in [24]. Then
(1) If D1

xu exists on R × (0, T ), then uα and uα are differentiable functions with respect
to x on R× (0, T ), and
[D1

xu(x, t)]α = [Dxu
α(x, t), Dxu

α(x, t)], ∀(x, t) ∈ R× (0, T ), α ∈ [0, 1].
(2) If D1

t u exists on R × (0, T ), then uα and uα are differentiable functions with respect
to t on R× (0, T ), and
[D1

t u(x, t)]α = [Dtu
α(x, t), Dtu(x, t)]α, ∀(x, t) ∈ R× (0, T ), α ∈ [0, 1].

(3) If D2
xu exists on R × (0, T ), then uα and uα are differentiable functions with respect

to x on R× (0, T ), and
[D2

xu(x, t)]α = [D2
xu

α(x, t), D2
xu

α(x, t)], ∀(x, t) ∈ R× (0, T ),α ∈ [0, 1].
(4) If D2

t u exists on R × (0, T ), then uα and uα are differentiable functions with respect
to t on R× (0, T ), and
[D2

t u(x, t)]α = [D2
t u

α(x, t), D2
t u

α], ∀(x, t) ∈ R× (0, T ), α ∈ [0, 1].
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3. The fuzzy parabolic differential equation

In this section we present the general form of heat equation in environment by using
the basic concepts of fuzzy properties [21, 22]. Consider the one-dimensional fuzzy heat
equation with the initial and boundary conditions

[D1
t u(x, t)]α = a2[D2

xu(x, t)]α, 0 < x < l, 0 < t < T, (1)

[u(x, 0)]α = [u0(x)]α, 0 < x ≤ l (2)

[u(0, t)]α = [µ1(t)]
α, 0 < t ≤ T (3)

[D1
xu(0, t)]α = [µ2(t)]

α, 0 < t ≤ T (4)

where [u(x, t)]α = [u(x, t)α, u(x, t)α] is a fuzzy function [21] of crisp variables t and x and
all α ∈ [0, 1].
Let the solution domain of the problem need to be partitioned uniformly. For some posi-
tive integers M and N , the grids sizes in space and time directions for the finite difference
algorithm are defined as h = l

N in x-direction and τ = T
M in t-direction. The grid points

are given by xi = ih, i = 0, 1, ..., N and tj = jτ, j = 0, 1, ...,M . The values of the fuzzy
function [u(x, t)]α at the grid points are denoted as [ui,j(x, t)]

α = [u(xi, tj)]
α.

Using the implicit finite difference scheme of Eq. (1) at (xi, tj) = (ih, jτ) for (i)-differentiability
as follows:

ui,j+1 − ui,j
τ

= a2
ui+1,j − 2ui,j + ui,j−1

h2

ui,j+1 − ui,j
τ

= a2
ui+1,j − 2ui,j + ui,j−1

h2
(5)

Eq.(5) can be rewritten as the following

− ui,j−1 =
rui+1,j − (2r + 1)ui,j + rui,j−1

h2
,

−ui,j−1 =
rui+1,j − (2r + 1)ui,j + rui,j−1

h2
,

1 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1, (6)

subject to initial and boundary conditions

ui,0 = [u0(x)]α, 0 < i ≤ N, (7)

u0,m = [µ1(t)]
α, 0 < j ≤M, (8)

u0,m − u0,m−1
h

= [µ2(t)]
α, 0 < j ≤M (9)

where r = τa2

h2
. Based on Eq. (6), it can be solved the tridiagonal linear system con-

structed a matrix form.
Using the implicit finite difference scheme of Eq. (1) at (xi, tj) = (ih, jτ) for (ii)-
differentiability as follows:

ui,j+1 − ui,j
τ

= a2
vi+1,j − 2vi,j + vi,j−1

h2
, 1 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1, (10)

vi,0 = [u0(xi)]
α, 0 < i ≤ N, (11)

v0,m = [µ1(tj)]
α, 0 < j ≤M, (12)
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v0,m − v0,m−1
h

= [µ2(tj)]
α, 0 < j ≤M, (13)

vi,j+1 − vi,j
τ

= a2
ui+1,j − 2ui,j + ui,j−1

h2
, 1 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1, (14)

ui,0 = [u0(xi)]
α, 0 < i ≤ N, (15)

u0,m = [µ1(tj)]
α, 0 < j ≤M, (16)

u0,m − u0,m−1
h

= [µ2(tj)]
α, 0 < j ≤M. (17)

Based on system (10)-(17), it can be solved the tridiagonal linear system (TDMA) con-
structed a matrix form.
We solve the problem (1)-(4) for its derivatives have valid sets according to the type of
differentiability.

4. Numerical Examples

In this section, we implement the implicit finite difference approximations to solve fuzzy
heat equation for different values of α.

Example 4.1. Consider the fuzzy heat equation

[D1
t u(x, t)]α = [D2

xu(x, t)]α, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (18)

subject to the initial condition

[u(x, 0)]α = k̃ex, 0 < x ≤ 1 (19)

and the boundary conditions

[u(0, t)]α = k̃et, 0 < t ≤ 1 (20)

[D1
xu(0, t)]α = k̃et, 0 < t ≤ 1 (21)

where k̃ = [α− 1, 1− α]. At h = τ = 0.1 we have the following results:
Fig. 1-2 show that the len with α = 0.5 by the implicit finite difference scheme for (i)-
differentiability and (ii)-differentiability, respectively. Fig. 3 shows that both the implicit
finite difference and exact solutions satisfy the fuzzy number properties.

Example 4.2. Consider the fuzzy heat equation

[D1
t u(x, t)]α =

1

2
x2[D2

xu(x, t)]α, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (22)

subject to the initial condition

[u(x, 0)]α = k̃x2, 0 < x ≤ 1 (23)

and the boundary conditions

[u(0, t)]α = k̃et, 0 < t ≤ 1 (24)

[D1
xu(0, t)]α = 2k̃xet, 0 < t ≤ 1 (25)

where k̃ = [α− 1, 1− α]. At h = τ = 0.1 we have the following results:
Fig. 4-5 show that the len with α = 0.5 by the implicit finite difference scheme for (i)-
differentiability and (ii)-differentiability, respectively. Fig. 6 shows that both the implicit
finite difference and exact solutions satisfy the fuzzy number properties.
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Figure 1. The approximate solution of Ex. 1 for (i)-differentiability.

Figure 2. The approximate solution of Ex. 1 for (ii)-differentiability.
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Figure 3. The exact solution of Ex. 1 .

Figure 4. The approximate solution of Ex. 2 for (i)-differentiability.
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Figure 5. The approximate solution of Ex. 2 for (ii)-differentiability.

5. Conclusion

In this paper, a numerical procedure for a fuzzy parabolic equation is proposed. Com-
parison of numerical and exact solution at different values of α are also made by finite
difference method. The numerical examples are given to demonstrate the efficiency of the
results.
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Figure 6. The exact solution of Ex. 2 .
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