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OPTICAL SOLITON SOLUTIONS OF THE FRACTIONAL

PERTURBED NONLINEAR SCHRÖDINGER EQUATION

KHALID KARAM ALI1, SEYDI BATTAL GAZI KARAKOC2, HADI REZAZADEH3, §

Abstract. This paper is interested in a set of conformable fractional derivative for
constructing optical soliton solutions to the fractional perturbed nonlinear Schrödinger
equation. The powerful Kudryashov method is the integration scheme that has been im-
plemented to retrieve the solitary wave solutions. After converting equation to integer-
ordered ordinary differential equations, replacing the suggested form for the solution into
the integer-ordered ordinary differential equations, the nonzero coefficients in solutions
are detected. Some graphical illustrations of the obtained solutions for the different cases
are drawn. Our results prove the correctness and durableness of the method which can
be further used for solving such problems appearing in plasma physics, optical fibers,
fluid dynamics, nonlinear optics etc.

Keywords: The fractional perturbed nonlinear Schrödinger equation, Kudryashov method,
optical solutions, soliton.
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1. Introduction

The theory of nonlinear differential equations (PDEs) has made a significant develop-
ment during the last decade especially in nonlinear optics, optical fibers, chemical physics,
capillary-gravity, fluid dynamics and mechanics, plasmas, condensed matter, electro mag-
netics and any more. The study of exact solutions of nonlinear PDEs featuring fractional
order derivative in space or time variable or both (space-time) is very significant in the un-
derstanding of many phenomena in different science and has progressively become one of
the most prominent topic both for physicists and mathematicians. As yet, many efficacious
and operative method to getting exact solutions of nonlinear PDEs have been presented.
There are various schemes have been used to handle like problems besides conventional
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ones for instance the Kudryashov methods (KMs) [1-4] for time fractional KdV-KZK equa-
tion, modified extended tanh method for fractional equal width wave equations by Raslan
et al. [5], G′/G-expansion method for nonlinear fractional differential equations by Bekir
and Guner [6] and for another methods see [7-34].
Schrödinger equations play fundemental roles in characterizing the variable dynamical
manners of light pulses. These equations have been studied for more than 40 years and
there exist a plethora of results in the literature in regards to these models. It is an
influential and plain method and is largely used. The principal goal of this paper is to
govern the KM to determine new types of optical soliton solutions to fractional perturbed
nonlinear Schrödinger equation defined in terms of conformable fractional derivative [35].
Khalil et al. illustrated this new definition extends the classical limit definition. The
conformable fractional derivative of order α is describe as

Dα
t f(t) = lim

ε→0

f(t+ εt1−α)− f(t)

ε
,

for all t > 0, α ∈ (0, 1].
The remainder of this study is arranged as follows. In Section 2 we describe Kudryashov
method for finding optical soliton solutions of nonlinear fractional evolution equations.
In Section 3, we illustrate this method in detail with the fractional perturbed nonlinear
Schrödinger equation. Some graphical exemplifications of the obtained solutions are given
in Section 4. The last section is a brief conclusion.

2. The properties of the Methodology of Solution

To explain the main mentality of the scheme, take into consideration the following
nonlinear fractional differential equation

F
(
u, Dα

t u, D
β
xu, D

2α
t u, . . .

)
= 0, 0 < α, β ≤ 1, t ≥ 0. (1)

Applying the following transformation

u (x, t) = f (ξ) exp (i ϕ(ξ)) , ξ = k
tα

α
− a x

β

β
, 0 < α, β ≤ 1,

where f (ξ) and φ (ξ) are real functions of ξ, k and a are nonzero constants, transforms
(1) into an integer order nonlinear ordinary differential equations as follows

H(f ′, f ′′, f ′′′, . . . ) = 0, (2)

where the derivatives are with respect to ξ. It is supposed that the solutions of (2) is
offered as a finite series,

f (ξ) =

N∑
n=0

anQ
n (ξ) , (3)

where an, n = 0, 1, 2, . . . . . . , N(aN 6= 0) are constants can be calculated and Q (ξ) is the
following function:

Q (ξ) =
1

1 + d exp (ξ)
,

which supplies the following first-order equation

Q′ (ξ) +Q (ξ) = Q2 (ξ) .
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It can be referred that the value of N is usually determined by balancing the linear and
nonlinear terms of highest orders in (1). Substituting Eq. (3) and its necessary derivatives,
for example

f ′ =
∑N

n=1 annQ
n (Q− 1) ,

f ′′ =
∑N

n=1 an n Q
n (Q− 1) ((1 + n)Q− n) ,

into (3) gives
P (Q (ξ)) = 0, (4)

where P (Q (ξ)) is a polynomial in Q (ξ). By equating the coefficient of each power of
Q (ξ) in (4) to zero, a system of algebraic equations can be acquired whose solution yields
the exact solutions of (1).

3. Construction and Implementation of the method

Now, the exact solutions of the perturbed nonlinear Schrödinger equation have been
built using Kudryashov method.

3.1. The fractional perturbed nonlinear Schrödinger equation. Consider the frac-
tional perturbed nonlinear Schrödinger equation in the form [34],

iDα
xu(x, t) +

1

2
D2α
tt u(x, t) + γ1|u(x, t)|2u(x, t) + γ2|u(x, t)|4u(x, t)+

pu(x, t)− τRu(x, t)Dα
t |u(x, t)|2 + isDα

t |u(x, t)|2u(x, t) = 0,
(5)

where u (x, t) is the normalized slowly varying amplitude, x and t stands for the nor-
malized dispersion distance variable and the normalized time variable. γ1, γ2, p, τR, and
s are the Kerr law (cubic) nonlinear coefficient, the saturation of the nonlinear refractive
index (quintic) coefficient, the debasing parameter [36], the Raman effect coefficient, and
the self-steepening coefficient, respectively [37]. We use the following fractional complex
transformation

u (x, t) = f (ξ) exp (i ϕ(ξ)) , ξ = k
tα

α
− a x

β

β
. (6)

Substituting the above ansatz (6) into (5), we converts (5) into an integer order nonlinear
ordinary differential equation as the following

a f φ′ +
1

2
k 2f ′′ − 1

2
k2f φ′2 + γ1f

3 + γ2f
5 + p f − 2τR k f

2f ′ − s k f3φ′ = 0, (7)

−a f ′ + k 2f ′ φ′ +
1

2
k2f φ′′ + 3s k f2f ′ = 0. (8)

Assuming that
φ′ = b+ c f2, (9)

where b and c are real constants. Adding the above ansatz (9) into (8), to do the right-
hand side of (8) zero, we must take b = a

k2
and c = −3 s

2k , then the statement of φ(ξ) is
got

φ(ξ) =

∫ [
a

k2
− 3 s

2k
f2 (ξ)

]
dξ. (10)

Substituting (10) into Eq.(7), we have

k2f ′′ + µ0 f
2f ′ + λ0f + δ0f

3 + q0f
5 = 0, (11)

where

µ0 = −4kτR, λ0 =
a2

k2
+ 2p,
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δ0 = 2γ1 −
2s a

k
, q0 = 2γ2 +

3s2

4
.

Balancing f ′′ and f5 in (11) results N +2 = 5N , and so N = 1
2 , but we know that N must

be positive integer number, so we choose the transformation function f (ξ) = g
1/2 (ξ) and

substituting into (11), we get

−k2g′2 + 2k2g g′′ + 2µ0 g
2g′ + 4λ0g

2 + 4δ0g
3 + 4q0g

4 = 0. (12)

Now, we make balancing g g′′ and g 4 in (12) results N +N + 2 = 4N , and so N = 1. This
presents a truncated series as the following form

g (ξ) = a0 + a1Q (ξ) . (13)

By substituting (13) into (12) and equating the coefficient of each power of Q (ξ) to zero.
A system of algebraic equations are generated as follows

a2 a02

k2
+ 2p a0

2 − 2a s a03

k + 3
4s

2 a0
4 + 2 γ1a0

3 + 2 γ2a0
4 = 0,

2a2 a0 a1
k2

+ 1
2k

2a0 a1 + 4p a0 a1 − (6a s a02 a1)
k + 3s2a0

3a1 + 6γ1a0
2a1

+ 8γ2a0
3a1 + 2ka0

2a1 τR = 0,

−3
2k

2a0 a1 + a2 a12

k2
+ 1

4k
2a1

2 + 2p a1
2 − (6a s a12 a0)

k + 9
2s

2a0
2a1

2 + 6γ1a1
2a0

+ 12γ2a0
2a1

2 − 2k a0
2a1 τR + 4k a1

2a0τR = 0,

k2a0 a1 − k2a12 − (2a s a13 )
k + 3s2a0a1

3 + 2γ1a1
3 + 8γ2a1

3a0 − 4k a1
2a0 τR

+ 2k a1
3 τR = 0,

3
2k

2a1
2 + 3

4s
2a1

4 + 2γ2a1
4 − 2k a1

3 τR = 0.

Solving the above system, following cases are obtained:
Case 1. When we take

a0 = − 3k

4 τR
, a1 = 0,

p =
−27 k4s2 − 72 k4γ2 − 96ak2s τR + 96k3γ1 τR − 64 a2 τR

2

128 k2 τR2
,

and substituting them into (13) we have,

g (ξ) = − 3 k

4τR
.

Sincef (ξ) = g
1/2 (ξ), then the corresponding solution to (11) is

f (ξ) =

√
− 3 k

4 τR
. (14)

Using (14) and (10), we get

φ(ξ) =

∫ [
a

k2
+

9s k

8 k τR

]
dξ =

(
a

k2
− 9s k

8 k τR

)
ξ + C1, (15)

where C1 is a constant of integration. Substituting (14) and (15) into (6), then the solution
of (5) is formed as:

u1 (x, t) =

√
− 3 k

4 τR
exp

(
i

[(
a

k2
+

9s k

8 k τR

)
ξ + C1

])
, ξ = k

tα

α
− a x

β

β
.

Case 2. When we choose

a1 = 0 , p = 1
8

(
−4 a2
k2

+ 2k2 + 3s2a0
2 + 8a0

2γ2 + 8ka0 τR

)
,

γ1 =
−k2+ 4a s a0

k
−3s2a02−8a02γ2−4 ka0 τR

4 a0
,
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and substituting them into (13) we have,

g (ξ) = a0 .

Sincef (ξ) = g
1/2 (ξ), then the corresponding solution to equation (11) is

f (ξ) =
√
a0. (16)

Using (16) and (10), we get

φ(ξ) =

∫ [
a

k2
− 3sa0

2 k

]
dξ =

(
a

k2
− 3sa0

2 k

)
ξ + C2, (17)

where C2 is a constant of integration.
Substituting (16) and (17) into (6), hence, the solution of (5) is composed as:

u2 (x, t) =
√
a0 exp

(
i

[(
a

k2
− 3sa0

2 k

)
ξ + C2

])
, ξ = k

tα

α
− a x

β

β
.

Case 3. If we take

p =
−4a2 − k4

8 k2
, a0 = 0 , γ1 =

1

2

(
2a s

k
+
k2

a1
− 2 k τR

)
,

γ2 =
−3k2 − 3 s2a1

2 + 8k a1 τR
8 a12

,

and substituting them into (13) we have,

g (ξ) = a1 Q (ξ) =
a1

1 + d exp (ξ)
.

Since f (ξ) = g
1/2 (ξ), then the corresponding solution to (11) is

f (ξ) =

√
a1

1 + d exp (ξ)
. (18)

Using (18) and (10), we get

φ(ξ) =

∫ [
a

k2
− 3s a1

2 k (1 + d exp (ξ))

]
dξ =

a

k2
ξ−

3s a1
2 k

[ξ − log (1 + d exp (ξ))] + C3,

(19)

where C3 is a constant of integration.
Substituting (18) and (19) into (6), hence, the solution of (5) is composed as:

u3 (x, t) =
√

a1
1+d exp(ξ) exp

(
i
(
a
k2
ξ − 3s a1

2 k [ξ − log (1 + d exp (ξ))] + C3

) )
,

ξ = k tα

α − a
xβ

β .

Case 4. If we choose

a1 = 0, a0 = −3 k
4 τR

, p = 1
128

(
−64 a2
k2
− 64 k2 + 27 k2 s2

τR2 + 72 k2 γ2
τR2

)
,

γ1 = 1
12

(
12 a s
k + 27 k s2

4τR
+ 18 k2 γ2

τR
− 8 k τR

)
,

and substituting into (13) we have,

g (ξ) = a0 .
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Sincef (ξ) = g
1/2 (ξ), then the corresponding solution to (11) is

f (ξ) =
√
a0. (20)

Using (16) and (10), we get

φ(ξ) =

∫ [
a

k2
− 3sa0

2 k

]
dξ =

(
a

k2
− 3sa0

2 k

)
ξ + C4, (21)

where C4 is a constant of integration.
Substituting (20) and (21) into (6), so, the solution of (5) is composed as:

u4 (x, t) =
√
a0 exp

(
i

((
a

k2
− 3sa0

2 k

)
ξ + C4

) )
, ξ = k

tα

α
− a x

β

β
.

Case 5. When we take into considerstion

a1 = −a0, γ1 = 1
2

(
2 a s
k + k2

a0
+ 2k τR

)
, p = −4 a2−k4

8 k2

γ2 = −3 k2−3 s2a02−8 k a0 τR
8 a02

,

and substituting into (13) we have,

g (ξ) = −a1 + a1 Q (ξ) = −a1 +
a1

1 + d exp (ξ)
.

Since f (ξ) = g
1/2 (ξ), then the corresponding solution to (11) is

f (ξ) =

√
−a1 +

a1
1 + d exp (ξ)

. (22)

Using (22) and (10), we get

ϕ(ξ) =
∫ [

a
k2
− 3s

2 k

(
−a1 + a1

1+d exp(ξ)

)]
dξ =

a
k2
ξ − 3s

2 k [−a1 ξ + a1 (ξ − log (1 + d exp (ξ)))] + C5,
(23)

where C5 is a constant of integration.
Substituting (22) and (23) into (6), thus, the solution of (5) is composed as:

u5 (x, t) =
√
−a1 + a1

1+d exp(ξ)

exp
(
i
(
a
k2
ξ − 3s

2 k [−a1 ξ + a1 (ξ − log (1 + d exp (ξ)))] + C5

) )
,

ξ = k tα

α − a
xβ

β .

4. Some graphical illustrations

We depict in this section some graphical illustrations of the obtained solutions for the
perturbed nonlinear Schrodinger equation. To reveal the clear picture of the obtained
solutions, both the two and three dimensional plots for the solutions are given.

5. Conclusion

In this study, optical soliton solutions for the fractional perturbed nonlinear Schrödinger
equation is obtained by Kudryashov method. For this purpose we use the fractional
complex transformation. After reducing equation to integer-ordered ordinary differential
equations, substituting the proposed form for the solution into the integer-ordered ordinary
differential equations, the nonzero coefficients in solutions are determined. This paper
shows that the proposed method is effective and can be used for many other nonlinear
PDEs in mathematical physics and nonlinear sciences.
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Figure 1. Graph of case (1) of the perturbed nonlinear Schrodinger equa-
tion using Kudryashov method.

Figure 2. Graph of case (2) of the perturbed nonlinear Schrodinger equa-
tion using Kudryashov method.

Figure 3. Graph of case (3) of the perturbed nonlinear Schrodinger equa-
tion using Kudryashov method.
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Figure 4. Graph of case (4) of the perturbed nonlinear Schrodinger equa-
tion using Kudryashov method.
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