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ON GENERALIZATION OF SOME INTEGRAL INEQUALITIES FOR
MULTIPLICATIVELY P-FUNCTIONS

HURIYE KADAKAL, §

ABSTRACT. In this paper, by using Hélder—Ecan, Hoélder and power-mean integral in-
equality and an general identity for differentiable functions we can obtain new estimates
on generalization of Hadamard, Ostrowski and Simpson type inequalities for functions
whose derivatives in absolute value at certain power are multiplicatively P-functions. In
addition, It is proved that the result obtained Holder-Igcan integral inequality is better
than the result obtained Hoélder integral inequality. Some applications to special means
of real numbers are also given.
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1. INTRODUCTION

Integral inequalities have played an important role in the development of all branches
of Mathematics and the other sciences. The inequalities discovered by Hermite and
Hadamard for convex functions are very important in the literature. The classical Hermite-
Hadamard integral inequality provides estimates of the mean value of a continuous convex
function f : [a,b] — R. Firstly, let’s recall the Hermite-Hadamard integral inequality.

Let f: I CR — R be a convex function defined on the interval I of real numbers and
a,b € I with a < b. The following inequality

f<“+b><b1aa/bf<x>dx<w. 1)

2 2

holds. This double inequality is known in the literature as Hermite-Hadamard integ-ral
inequality for convex functions [1]. Note that some of the classical inequalities for means
can be derived from (1) for appropriate particular selections of the mapping f. Both
inequalities hold in the reversed direction if the function f is concave.
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Let f: I C R — R be a mapping differentiable in I°, the interior of I, and let a,b € I°
with a < b. If | f'(z)| < M, x € [a,b], then we the following inequality holds

; —CL2 —562
f(x)—bia/f(t)dt gbf‘_4a[(:c )—;(b )]

for all z € [a, b] . The constant i is the best possible in the sense that it cannot be replaced
by a smaller one. This result is known in the literature as the Ostrowski inequality [3].
The following inequality is well known in the literature as Simpson’s inequality .
Let f : [a,b] — R be a four times continuously differentiable mapping on (a,b) and
H f® HOO = sup ’ f® (x)| < 00. Then the following inequality holds:
z€(a,b)

b
[P 2 (050)] - it e < g ] oo

In recent years many authors have studied error estimations for Simpson’s inequality;
for refinements, counterparts, generalizations and new Simpson’s type inequalities, see
[12, 13] and therein.

Definition 1.1. A nonnegative function f : I C R — R is said to be P-function if the
mequality

flz+ 1 =t)y) < f(@)+f )

holds for all x,y € I and t € (0,1).

We will denote by P(I) the set of P-function on the interval I. Note that P(I) contain
all nonnegative convex and quasi-convex functions.

In [2], Dragomir et al. proved the following inequality of Hadamard type for class of
P-functions.

Theorem 1.1. Let f € P(I), a,b € I witha <b and f € L[a,b]. Then

() <% [r@a <@ son.

It should be noted that the concept of log-P-convex, which we consider in our study
and given below, was first defined by Noor et al in 2013. Then, the algebraic properties of
this definition with the name of multiplicatively P-function are examined in detail by us.

Definition 1.2 ([6],[10]). Let I # () be an interval in R. The function f : I — [0,00) is
said to be multiplicatively P-function (or log-P-function), if the inequality

flte+ (1 =t)y) < f)f(y)
holds for all z,y € I and t € [0,1].

We will denote by M P (I) the class of all multiplicatively P-convex functions on interval
I. Clearly, f : I — [0,00) is multiplicatively P-function if and only if log f is P-function.
We state that the range of the multiplicatively P-functions is greater than or equal to 1.
In recent years many authors have studied P-functions and multiplicatively P-function,
see [2, 5, 8, 9, 11] and therein.

[6], Kadakal proved the following inequalities of Hermite-Hadamard type integral in-
equalities for class of multiplicatively P-functions.



H. KADAKAL: INTEGRAL INEQUALITIES FOR MULTIPLICATIVELY P-FUNCTIONS 1025

Theorem 1.2. Let the function f : I — [1,00) be a multiplicatively P-function. If
f € L]a,b], then the following inequalities hold:

) f<a—|—b> <

a b
i) 1(%57) < sy, [ e < @

Lemma 1.1 ([4]). Let the function f: I CR — R be a differentiable mapping on I° such
that ' € Lla,b], where a,b € I with a < b and 6, \ € [0,1]. Then the following equality
holds:

©)f (a+b—=z)dz < [f(a)f (D))

(1—6) (\f(a) + (1— ) () +0F((1— A)a+ Ab) —/f

1
— (b-a) —AZ/(t—H)f'(taJr(l—t)[(l—/\)a+)\b])dt
0

1
+(1—)\)2/(t—9)f’(tb+(1 C ) [(1= A)a+ b)) dt
0
An refinement of Holder integral inequality better approach than Hélder integral inequality

can be given as follows:

Theorem 1.3 (Holder-Igcan Integral Inequality [7]). Let p > 1 and % + % =1. If f and
g are real functions defined on interval [a,b] and if |f|’, |g|? are integrable functions on

[a,b] then

[1seena < (/abw—m)\f(x)rpdm);(/j(b—xng(a:)rqczx);
+(f " a) If(:r)l”dw>; (/ - a) \g(chzx);

Our aim is to obtain the general integral inequalities giving the Hermite-Hadamard,
Ostrowsky and Simpson type inequalities for the multiplicatively P-function in the special
case using the Holder, Holder-Iscan, power mean integral inequalities and above lemma.

2. MAIN RESULTS

Theorem 2.1. Let the function f: 1 C [1,00)— R be a differentiable mapping on I° such
that f' € Lla,b], where a,b € I° with a < b and O, X € [0,1]. If |f'|? is multiplicatively
P-function on [a,b], ¢ > 1, then the following inequality holds:

(1—6) (\f(a) + (1= A) F(B) + 6£((1 — A)a+ Ab) —/f (2)

< (b= a)a®) |7 (A)] (R [F @]+ (1= |1 0)])
where A1(0) = 0> — 0+ 3 and Ay = (1 — X)a+ Ab.
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Proof. Suppose that ¢ > 1 and Ay = (1 — A\) a + Ab. From Lemma 1.1 and using the well
known power mean integral inequality, we have
b
1

(1) (M) + (1= ) £(8) + 0 (40) — [ Fladde| < (b a)

o

1
[)\Q/tﬁf'(ta—{—(lt)AA)dt%—(l)\)2
0

1 -3 /1
< (b—a){ )\ (/t@dt) (/t@‘f/(t(l—f-(lt)A)\)th)
0 0

1 -4 /1
ﬁ(1M2</t0ﬁ> (/t@f@b%ﬂﬂAUVﬁ) : (3)
0 0

Since |f’|? is multiplicatively P-function on [a, b], we know that for ¢ € [0, 1]

it—0||f (tb+ (1 t)A,\)dt]

q

|f' (ta+ A @ =t)|T < |F @] [f (A (4)
|f b+ Ay (1 =t)|* < |F @) (A]". (5)
Hence, by simple computation
1 1
Jie=ollr tas a-nagfa < |7 @[ |f @] [ I ol (6)
o1 0 1
/It—el!f’(tb+(1—t)Ax)\th < | (@] (A’ [92—9+2} (7)
’ 1
!/H—Mﬁ =0y (8)
0

Thus, using (6), (7) and (8) in (3), we obtain the inequality (2). This completes the
proof. O

Corollary 2.1. Under the assumptions of Theorem 2.1 with @ = 1, then we have following
generalized midpoint type inequality

1

b
F((L =N a+Ab) - b_a/f(rv)dm <2207 A (V17 @] + (- 22 0)])

Corollary 2.2. Under the assumptions of Theorem 2.1 with 0§ = 1, if |f'(x)] < M,
x € |a,b], then we have the following Ostrowski type inequality

<M [(m—a)2+(b—az)2] ©)

b

f@)~ 5 [

a

2(b—a)

for each z € |a,b].
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Proof. For each x € [a, b], there exist A, € [0, 1] such that z = (1 — \;) a + A\yb. Hence, we
have A, = =% and 1 — \, = 2=, Therefore for each z € [a, ], from the inequality (2) we
obtain the inequality (9). O

Corollary 2.3. Under the assumptions of Theorem 2.1 with @ = 0, then we have following
generalized trapezoid type inequality

b
M@+ (1= 2 F0) ~ [ fa)do

IN

(2 1f @]+ @ =227 @)])-

Corollary 2.4. Under the assumptions of Theorem 2.1 with A = % and 6 =
have the following Simpson type inequality

@ (450) + o) -

5 ’(a;b>'A(‘f’(a)

< R
- 36(
where A is arithmetic mean.
Corollary 2.5. Under the assumptions of Theorem 2.1 with A\ = % and 0 = 1, then we
have following midpoint type mequalz’ty
a+b a+b
f< > /f dx<4‘f’< 5 )'A(!f’(a){,|f’<b>

where A is arithmetic mean.

, then we

OO\N)

b—a)

£ ()

)

Corollary 2.6. Under the assumptions of Theorem 2.1 with A = 5 , and 8 = 0, then we
get the following trapezoid type nequality

fla )—;f b_a/f ) <4‘f/(a;b>’A(\f’(a)\»\f’(b)\),

where A s arithmetic mean.

Using Lemma 1.1 we shall give another result for multiplicatively P-functions as follows.

Theorem 2.2. Let f: I C [1,00)— R be a differentiable mapping on I° such that f’ €
Lla,b], where a,b € I° with a < b and 6,\ € [0,1]. If | f'|? is multiplicatively P-function
on [a,b], ¢ > 1, then the following inequality holds:

(1= 0) (\f(a) + (1= A) (b)) + 0£((1 — \)a + Ab) —/f
0p+1+ p+1 . -
<o (0 ) I[Pl @l- a2 o

where Ay = (1 — X a+ \b and L +f:
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Proof. Suppose that Ay = (1 — \)a + Ab. From Lemma 1.1 and by well-known Holder’s
integral inequality, we have

b
(1) (\F(@) + (1= ) £(8) + 0 (40) ~ 5 [ fladde| < (b a)

1
X !)\Q/tﬁf'(ta—l—(lt)AA)dt

0

+(1)\)Q/tﬁf’(tb+(1t)A>\)dt]
0

1 1
< (b—a)d (/tepdt) (/f’(ta—i—(lt)A,\)th)
0

0

1 % 1 é
+(1-=X)? (/t@%lt) (/f’(thr(lt)AA)th) . (11)

0 0

q

B =

Since | f/|? is multiplicatively P-function on [a, b], the inequalities (4) and (5) holds. Hence,
by simple computation

1

/|f’<ta+<1—t>AA>\th < 1f @] |F () (12)
01
/ F @At A)Td < |F O A (13)
0
! p+1 _ p\ptl
/|t—9|pdt _ ! +p(i16) (14)
0

thus, using (12)-(14) in (11), we obtain the inequality (10). This completes the proof. O

Corollary 2.7. Under the assumptions of Theorem 2.2 with 8 = 1, then we have the
following generalized midpoint type inequality

b
FIL =N a+\b) — bla/f(x)da: (15)

RS

where Ay = (1 =X a+ b and%+%:1.

=

P A [ @]+ =227 )]
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Corollary 2.8. Under the assumptions of Theorem 2.2 with 6 = 0, then we have the
following generalized trapezoid type inequality
b
— [ s
x)dz
b—a
a

\f D21 @]+ (=22 (b

Af(a) + (1 =X) f(b) -

(b—a)
(p+1)
where Ay =(1—XN)a+ b and};—l—a:l.

<

)]

Corollary 2.9. Under the assumptions of Theorem 2.2 with 8 = 1, if |f'(z)] < M,
x € [a,b], then we have the following Ostrowski type inequality

(w—a)2+(b—w)2
b—a

M2
1
(p+1)»

b
1
oo [ T <

a

fz) -

(16)

for each z € |a,b].

Proof. For each z € [a,b], there exist Az € [0,1] such that z = (1 — \;) a + Azb. Hence we

have A\, = =9 and 1 — A\, = b . Therefore, for each x € [a,b], from the inequality (10)
we obtain the inequality (16). O
Corollary 2.10. Under the assumptions of Theorem 2.2 with \ = % and 0 = % then we

have the following Simpson type inequality

é[f( )+ 4f(““’> +f<b>] -

_ b-a <1+2P+1>§
- 6 \3(p+1)

where A s the arithmetic mean.

/<C‘2H)>’A(\f’(a)\ 1),

Corollary 2.11. Under the assumptions of Theorem 2.2 with \ = % and 0 = 1, then we
have the following midpoint type inequality
a+b
(5|0 @iy

b 1
a+b 1 b—a 1 P
1(%57) ot [ 1) <25 ()

where A is the arithmetic mean.
Corollary 2.12. Under the assumptions of Theorem 2.2 with \ = % and 0 = 0, then we
have the following trapezoid type inequality
1
1 P
(p + 1)

fla)+ f(b / fla
2 —a

Using Lemma 1.1 we shall give another result for multiplicatively P-functions as follows

using the Holder-Iscan integral inequality:

)

f(““’)‘ (' @17 ®)).

where A is the arithmetic mean.
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Theorem 2.3. Let f: I C [1,00)— R be a differentiable mapping on I° such that f’ €

Lla,b], where a,b € I° with a < b and 6,\ € [0,1]. If | f'|? is multiplicatively P-function
on [a,b], ¢ > 1, then the following inequality holds:

(17)

(1—6) (Af(a) + (1= X) F(8) +6F((1— A)a+ Ab) —/f

< (b-a)|f (4] (;) {€7 0.+ D7 (0.0} V2[f (@] + (1= N |7 0]

where Ay =(1—=X)a+ b and%+%:1.

Proof. Suppose that Ay = (1 — A\)a 4 Ab. From Lemma 1.1 and by Holder-Iscan integral
inequality, we have

b
(1) (M) + (1= ) £(8) + 6£(A3) = = [ f(a)is

1

(b—a)\? |:/t0|f’(ta+(1t)A,\)dt

0

IA

1
2/|zt 0| f (tb+ (1 —t) Ay)| dt
0

1 % 1 q
{(/1t tepdt) (/(1t){f’(ta+(lt)A,\)th)
0 0
1 % 1
+</tt9pdt) (/tf’(ta—l—(lt)A)\)th) }

IN

Qe

0 0

1 5
+(ba)(1)\)2{(/(1t) té?pdt)
0

X (/(lt)f’(tb—i—(lt)A)\)}th)

0

1 5o/ 7
+(O/tt9”dt) (O/tf’(tbju(lt)AA)th) }

l)q {er .0 +Dr 0.0} 217 @]+ =227 0]

o-alr ) (5

IA



H. KADAKAL: INTEGRAL INEQUALITIES FOR MULTIPLICATIVELY P-FUNCTIONS 1031
Since | f’|? is multiplicatively P-function on interval [a, b], the following inequalities holds.

1

b/U%m+%1—ﬂA9Vﬁ
0
1

/ﬂf@b+(r—ﬂA9Pdt
0

IN

[ @[ (AN (19)

IN

[F O [ (AN (20)

Here, by simple computation we obtain

1
1
(1—t)d tdt =
fia-ua- [}
0

1
C,p) = /1—t )|t — 6P dt (21)
0
Rl R
p+1 p+2

tlt— 0P dt (22)

o

=

=

I
o _

or+l 4 (1 — 9)p+1
p+1

[9p+2 (- 9)p+2]

p+2

Thus, using (19)-(22) in (18), we obtain the inequality (17). This completes the proof. [

Corollary 2.13. Under the assumptions of Theorem 2.3 with 0 = 1, then we have the
following generalized midpoint type inequality

F((1—=X)a+ Ab) —/f (23)

< G-a)lf (A @) {er (p)+ D5 (L)} 27 (@) + (1= 2|1 B)]]-

where Ay = (1 =X a+ b and%%—%:l.

Remark 2.1. The inequality (23) is better than the inequality (15). For this, we need to

show that
o= () (o) () 1) <o o)
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p+2 p+2
using concavity of the function ¢ : [0,00) — R ¢(z) = 2°,0 < s < 1, we have

1 1

11 1 \» 1 1\»

X)) = 27 |5 (—= ) +5 (=)
2\p+2 2\p+2

1
14 ptlND
< 97 <p+2+p+2>

If we write as M (p) = N (p) X (p), then X (p) = (%)% [( : ); + (pH);} . Therefore, by

2

Hence, M (p) < N (p).

Corollary 2.14. Under the assumptions of Theorem 2.3 with 8 = 0, then we have the
following generalized trapezoid type inequality

b—a

{<pi1> " (pi2>} LS @+ =22 o)

where Ay = (1 =X a+ b and%+%:1.

b
Af(a) + (1= \) f(b) = — / f(@)dz

Q|

< e-alral(3)

Corollary 2.15. Under the assumptions of Theorem 2.3 with 0 = 1, if |f'(z)| < M,
x € [a,b], then we have the following Ostrowski type inequality

b
f@) = 5 [

for each x € [a,b].

Proof. For each z € [a,b], there exist A\, € [0, 1] such that x = (1 — A\;) a + A\;b. Hence we

have A\, = =2 and 1 — A\, = Zi—g. Therefore, for each x € [a,b], from the inequality (17)
we obtain the desired inequality. O
Corollary 2.16. Under the assumptions of Theorem 2.3 with A = % and 0 = %, then we
have the following Simpson type inequality

1 b 1 /

a+
s [@var (50 +sw)] - 2 [ e
1 45 1 /2 1,2 a+b
< o-a(3) ot (Go) ot Go)} 7 (450407 @l 1r o)

where A s the arithmetic mean.
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Corollary 2.17. Under the assumptions of Theorem 2.8 with \ = % and 0 = 1, then we
have the following midpoint type inequality

f<a+b>
'(a‘;b)\(;)“{c o+ DAL

where A is the arithmetic mean.

< (b-a)

()

)

Corollary 2.18. Under the assumptions of Theorem 2.8 with A = % and 8 = 0, then we
have the following trapezoid type inequality

f(a)-; b—a/f

oo () () ) )

where A is the arithmetic mean.

3. SOME APPLICATIONS FOR SPECIAL MEANS

Let us recall the following special means of arbitrary real numbers a,b with a # b and
acl0,1]:

(1) The weighted arithmetic mean
Ay (a,b) == aa+ (1 — a)b, a,beR.
(2) The weighted geometric mean
G (a,b) :==a®'™®, a,b>0.
(3) The Logarithmic mean
b—

lnb—lna

L(a,b) := , a#b, a,b>0.

Now, using the results of Section 2, some new inequalities are derived for the above
means.

Proposition 3.1. Let a,b € R with 0 < a < b and A\, 0 € [0,1] we have the following

inequality:
((1 —0) Ay (e“, eb> +0G) (e“, eb> ) (e“, eb)‘
< (b—a)A(0)eMrad (A%a + (-2 eb)
where Ay(8) is defined as in Theorem 2.1.

Proof. The assertion follows from Theorem 2.1 for the function f(t) = ef, t € [0,00). O
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Proposition 3.2. Let a,b € R with 0 < a < b, p,q > 1, % —I—% =1 and \,0 € [0,1] we
have the following inequality:

‘(1 —0) A, (e“, eb) + 0G, (ea, eb> — L (ea, eb>‘

1
gr+1 4 (1 _ 0)P+1 P eAA(a,b)

= (b_a) p+1

(Vea 4 (12 eb) .

Proof. The assertion follows from Theorem 2.2 for the function f(t) =e€f, t € [0,00). O

Proposition 3.3. Let a,b € R with 0 < a < b, p,q > 1, % —I—% =1 and X\, 0 € [0,1] we
have the following inequality:

‘(1 —0) Ay (e“,eb> + 0G), (e“,eb) —L (e“,eb)‘

< (b—a)eMa@d <;>; {C% (6,p) + D¥ (e,p)} [Ve“ F (12 eb] .

Proof. The assertion follows from Theorem 2.3 for the function f(t) =€, t € [0,00). O

1]
2]
3]

[4]

[5]
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