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SOME PARAMETERS OF THE IDENTITY GRAPH OF MULTIGROUP

M. I. SOWAITY1, B. SHARADA1, A. M. NAJI1, §

Abstract. B. Sharada et. al. [17], have introduced the concept of the identity graph
of a multigroup Γ(G,E), which derived a representation of the multigroup as a graph.
In this paper, we study some parameters of Γ(G,E).
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1. Introduction

A mathematical structure known as multiset (mset, for short) is obtained if the re-
striction of distinctness on the nature of the objects forming a set is relaxed. Unlike
classical set theory which assumes that mathematical objects occur without repetition.
However, the situation in science and in ordinary life is not like that. It is observed that
there is enormous repetition in the physical world. For example, consideration of repeated
roots of polynomial equation, repeated observations in statistical sample, repeated hydro-
gen atoms in a water molecule H2O, etc., do play a significant role. The challenging task
of formulating sufficiently rich mathematics of multiset started receiving serious attention
from beginning of the 1970s.

In set theory, repetition of objects are not allowed in a collection. This perspective
rendered set almost irrelevant because many real life problems admit repetition. To remedy
the handicap in the idea of sets, the concept of multiset was introduced in [13] as a
generalization of set wherein objects repeat in a collection. Multiset is very promising in
mathematics, computer science, website design, etc. For more details see [18, 19].

Since algebraic structures like groupoids, semigroups, monoids and groups were built
from the idea of sets, it is then natural to introduce the algebraic notions of multiset.
In [15], the term multigroup was proposed as a generalization of group in analogous to
some non-classical groups such as fuzzy groups [16], intuitionistic fuzzy groups [3], etc.
Although the term multigroup was earlier used in [5, 14] as an extension of group theory,
it is only the idea of multigroup in [15] that captures multiset and relates to other non-
classical groups. In fact, every multigroup is a multiset but the converse is not necessarily
true and the concept of classical groups is a specialize multigroup with a unit count [6].
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In furtherance of the study of multigroups, some properties of multigroups and the
analogous of isomorphism theorems were presented in [2]. Subsequently, in [1], the idea
of order of an element with respect to multigroup and some of its related properties were
discussed. A complete account on the concept of multigroups from different algebraic
perspectives was outlined in [11]. The notions of upper and lower cuts of multigroups were
proposed and some of their algebraic properties were explicated in [6]. In continuation
to the study of homomorphism in multigroup setting (cf. [2, 15]), some homomorphic
properties of multigroups were explored in [7]. In [12], the notion of multigroup actions on
multiset was proposed and some results were established. An extensive work on normal
submultigroups and comultisets of a multigroup were presented in [8].

The concept of identity graph of a multigroup have been introduced by B. Sharada
et. al., which is so-called identity graph of a multigroup and denoted by Γ(G,E). They
discussed some properties of Γ(G,E). Also, they derived the concept of twin multigroups
and discussed some properties over twin multigroup. For further information about the
identity graph of a multi group see [17].

A graph is a pair of sets Γ(V,E), where V is a finite set called the set of vertices
and E is a set of 2-element subsets of V , called the set of edges. A graph Γ(V,E) is
a simple graph, that is having no loops, no multiple and directed edges. We denote n
and m to be the order and the size of the graph Γ, respectively. The degree of a vertex
d(v), is the number of vertices that adjacent to v ∈ V , where the maximum degree is
∆(Γ) = max{d(v) : v ∈ V } and the minimum degree is δ(Γ) = min{d(v) : v ∈ V }. As
usual we denote Kn and Ka,b for the complete and the complete bipartite graphs, respec-

tively. A graph Γ́ whose vertices and edges form subsets of the graph Γ is said to be a
subgraph and written Γ́ ⊆ Γ. An induced subgraph Γ[H] of a graph Γ is another graph
formed from a subset of the vertices of Γ and all of the edges connecting pair of vertices
in that subset. Let Γ1 and Γ2 have disjoint sets V1, V2 and line sets E1, E2, respectively.
Their union Γ = Γ1 ∪ Γ2 has V = V1 ∪ V2 and E = E1 ∪ E2. Their join is denoted by
Γ1 + Γ2 and consists of Γ1 ∪ Γ2 and all lines joining V1 and V2.

A graph Γ(V,E) is said to be embedded in a surface S when it is drawn on S so that
no two edges intersect. A graph is planar if it can be embedded in the plane. The thickness
θ(Γ) of a graph is the minimum number of planar subgraphs whose union is Γ. A vertex
and an edge are said to cover each other if they are incident. A set of vertices which covers
all the edges of a graph Γ is called a vertex cover for Γ. The smallest number of vertices
in any vertex cover for Γ is called vertex covering number and denoted by α0(Γ) or α0.
A set of vertices in Γ is independent if no two of them are adjacent. The largest number
of vertices in such a set is called the vertex independent number of Γ and is denoted
by β0(Γ) or β0. A coloring of a graph is an assignment of colors to its vertices so that
no two adjacent vertices have the same color. An n-coloring of a graph Γ uses n colors.
The chromatic number χ(Γ) is defined as the minimum n for which Γ has n-coloring. A
clique of a simple graph Γ(V,E) is a subset S of V such that Γ[S] is complete. The clique
number denoted by ω(Γ) is the order of the maximum clique of Γ. All the definitions and
terminologies about the graph in this paragraph available in [4, 10].

Definition 1.1. [9] A multiset M (mset) drawn from the set X is represented by a count
function CM defined as CM : X → N, where N represent the set of non negative integers.

For x ∈ X, CM (x) denotes the number of occurrence of the element x in the mset
M . The representation of the mset M drawn from X = {x1, x2, ..., xn} is

M(X) = [x1, x2, ..., xn]CM (x1), CM (x2), ..., CM (xn) = [x
CM (x1)
1 , x

CM (x2)
2 , ..., xCM (xn)

n ]
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where CM (xi) is the number of times that xi occurs in M .

The set of all msets over X is denoted by MS(X).

Definition 1.2. [15] Let X be a group. A mset G is said to be a multigroup (mgroup)
over X if the count function CG satisfies the following two conditions.

(1) CG(xy) ≥ [CG(x) ∧ CG(y)], ∀x, y ∈ X, where ∧ denotes the minimum.
(2) CG(x−1) = CG(x), ∀x ∈ X.

The set of all mgroups over X is denoted by MG(X).
Easily, we can see that CG(e) ≥ CG(x), ∀x ∈ X, where e is the identity element of X.

The group is represented as a graph in many ways, one of these representations is the
identity graph of group, which is explained in the following definition.

Definition 1.3. [20] Let (X, ∗) be a finite group, we say two elements x, y in the group
are adjacent or can be joined by an edge if x ∗ y = e, where e is the identity element of X.
It is by convention every element is adjoined with the identity of the group X.

The following is to classify the mgroup as a set of msets.

Let (X, ∗) be a finite group where X = {x1, x2, ..., xn}, with x1 = e is the identity
element and let G ∈MG(X). Then we write G as

G = [X1, X2, ..., Xn]

where the mset Xi = [x
CG(xi)
i ] = [xi1, xi2, ..., xiCG(xi)], with xi1 = xi2 = ... = xiCG(xi) =

xi.

Definition 1.4. [17] Let (X, ∗) be a finite group and let G ∈MG(X). If e is the identity
element of X, then the identity graph Γ(G,E) of a mgroup is a simple graph whose vertex
set is the elements of G and satisfies the following

(1) xe ∈ E, for all x ∈ G.
(2) xy ∈ E, if x ∗ y = e, for all x, y ∈ E.

Since Γ(G,E) is simple, then there is no loops for the elements that has the property
x−1 = x, for all x ∈ X.

As usual for any group if we let k = |{xi : x−1
i = xi}|, i = 1, 2, ..., n, then we denote

Y1 = {xi : x−1
i = xi} and Y2 = {xi : x−1

i 6= xi}. The cardinality of Y1, Y2 is |Y1| = k and
|Y2| = n− k respectively.

2. LEMMAS

We state here some previously known results that are needed in the later sections.

Lemma 2.1. [10] Let Γ be a graph with n vertices and m edges. Then

(1) α0(Kn) = n− 1.

(2) α0(Ka,b) = max{a, b}.

(3) α0(Γ) + β0(Γ) = |V (Γ)|.

Lemma 2.2. [10] The chromatic number for the complete graph Kn is χ(Kn) = n. Also,
for the complete bipartite graph Ka,b is χ(Ka,b) = 2.
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Lemma 2.3. [10] Let θ(Γ) be the thickness of the graph Γ. Then

(1) θ(Kn) = bn+7
6 c, n > 2, n 6= 9, 10 and θ(K9) = θ(K10) = 3.

(2) θ(Ka,a) = ba+5
4 c.

Lemma 2.4. [10] Let Γ = Kn be a complete graph. Then Γ is planar if and only if n ≤ 4.

Corollary 2.1. Let Γ = Kn be a complete graph. Then θ(Γ) = 1 if and only if n ≤ 4.
Also, if n > 4, then Γ is not planar, thus θ(Γ) ≥ 2.

Theorem 2.1. [17] Let (X, ∗) be a finite group and let G ∈ MG(X). Then Γ(G,E) is
complete if and only if X contains at most two elements, or X = {x1, x2, x3}, such that
CG(x2) = CG(x3) = 1 and x−1

2 = x3.

Theorem 2.2. [17] Let (X, ∗) be a finite group and let G ∈MG(X). Then Γ(G,E) is a
star if and only if CG(x1) = 1 and x−1

i = xi, for all i = 2, 3, ..., n.

3. SOME PARAMETERS OF Γ(G,E)

There are a lot of parameters of the graph, in this section we will study some of these
parameters for Γ(G,E).

Theorem 3.1. Let (X, ∗) be a finite group and let G ∈MG(X). Then the clique number
ω(Γ) of the identity graph of the mgroup G is

ω(Γ) =

{
CG(x1) +max{CG(xi)}, x−1

i = xi for some i = 2, 3, ..., n and CG(xi) ≥ 2,
CG(x1) + 2, x−1

i 6= xi or CG(xi) = 1 for all i = 2, 3, ..., n.

Proof. Let G be a mgroup over the finite group X. Then we have the following two cases.
Case 1: There exists x−1

i = xi, for some i = 2, 3, ..., n. Since Γ[X1] is complete and
Γ[Xi] is also complete, then by using the fact that the join of two complete graphs is
complete, we get Γ[X1] + Γ[Xi] is complete. So the maximum induced complete subgraph
is Γ[X1] +max{Γ[Xi]} for some i = 2, 3, ..., n. Thus

ω(Γ) = |Γ[X1] +max{Γ[Xi]}|
= CG(x1) +max{CG(xi)},

for i = 2, 3, ..., n.
Case 2: If x−1

i 6= xi for all i = 2, 3, ..., n, then Γ[X1] is complete and since the vertices

in Γ[X1] is adjacent to all the vertices in Γ−Γ[X1], then Γ[X1] +xij +xkg, with x−1
i = xk

is complete. If we assume that there exists another vertex xit ∈ Γ[Xi], then xit is not
adjacent to xij , so it is not complete, thus

ω(Γ) = |Γ[X1] + xij + xkg|
= CG(x1) + 2,

which completes the proof. �

Example 3.1. Let G ∈MG(Zn,
⊕

n) and let Γ(G,E) be the identity graph of the mgroup
G. Then

ω(Γ) =

{
CG(0) + 2, n is odd,
CG(0) + CG(n2 ), n is even.



1078 TWMS J. APP. ENG. MATH. V.10, N.4, 2020

It is clear that if n is odd, then x−1
i = xi, i = 2, 3, ..., n and if n is even, then x−1

i = xi
if and only if i = 1 and n

2 + 1 which holds at xi = 0 and n
2 , respectively.

Theorem 3.2. Let G be a mgroup over the finite group (X, ∗) and let Γ be the identity
graph of the mgroup G. Then the chromatic number of Γ is given by

χ(Γ) =

{
CG(x1) +max{CG(xi)}, x−1

i = xi for some i = 2, 3, ..., n and CG(xi) ≥ 2,
CG(x1) + 2, x−1

i 6= xi, for all i = 2, 3, ..., n or CG(xi) = 1, for all x−1
i = xi.

Proof. Let (X, ∗) G be a finite group and let G ∈MG(X). Assume that Γ is the identity
graph of the m group G. Then we have three cases.
Case 1: There exists x−1

i = xi for some i = 2, 3, ..., n; with CG(xi) ≥ 2; then by using
Theorem 3.1, we get that

Γ[X1 ∪Xi],

where CG(xi) ≥ CG(xj), j = 2, 3, ..., i − 1, i + 1, ..., n, is the maximum complete
induced subgraph of Γ.
Hence, by Lemma 2.2, we get

χ(Γ[X1 ∪Xi]) = CG(x1) + CG(xi)

where CG(xi) ≥ CG(xj), j = 2, 3, ..., i− 1, i+ 1, ..., n.
Since all the induced subgraphs Γ[Xj ], j = 2, 3, ..., i − 1, i + 1, ..., n are independent
than Γ[Xi], then we have two subcases.
Subcase 1.1: Γ[Xi] is complete, then CG(xi) ≥ CG(xj), and since they are independent,
we can use same colors from the set of colors that used in Γ[Xi].
Subcase 1.2: Γ[Xj ∪ Xk] is not complete, then Γ[Xj ∪ Xk] is complete bipartite graph.
Thus, by Lemma 2.2, we get

χ(Γ[Xj ∪Xk]) = 2.

Since Γ[Xj ∪ Xk] is independent from Γ[Xi], then we can use two colors from the set of
the colors that used in Γ[Xi].
Hence

χ(Γ) = CG(x1) +max{CG(xi)}, x−1
i = xi and CG(xi) ≥ 2.

Case 2: x−1
i = xi for all i = 2, 3, ..., n, then Γ[Xj ∪ Xk] is regular complete bipartite

graph, so by using Theorem 3.1 and Lemma 2.2, we get

χ(Γ) = CG(x1) + 2.

Case 3: CG(xi) = 1 for all x−1
i = xi, then by using Theorem 3.1 and from the above case

we get that

χ(Γ) = CG(x1) + 2.

�

Theorem 3.3. Let G be a mgroup over the finite group (X, ∗) and let Γ be the identity
graph of the mgroup G. Then the covering number of Γ is

α0(Γ) =

k∑
i=1

CG(xi) +

n∑
i=k+1

CG(xi)

2
− (k − 1),

where k = |Y1|.



SOWAITY M. I., SHARADA B., NAJI A. M.: SOME PARAMETERS OF THE IDENTITY ... 1079

Proof. Let G be a mgroup over the finite group (X, ∗) and let Γ be the identity graph of
the mgroup G. We divide Γ into induced subgraphs Γ[Xi], i = 1, 2, ..., n. As |Y1| = k
and |Y2| = n − k, so we have k of complete induced subgraphs KCG(xi), i = 1, 2, ..., k

and n−k
2 induced regular complete bipartite subgraphs KCG(xi),CG(xi), i = k + 1, ..., n.

Using Lemma 2.1, parts 1,2, and since each vertex in Γ[X1] is adjacent to all other vertices
in Γ, we get

α0(Γ) = CG(x1) +
k∑

i=2

(CG(xi)− 1) +

n∑
i=k+1

CG(xi)

2

= CG(x1) +

k∑
i=2

CG(xi)− (k − 1) +

n∑
i=k+1

CG(xi)

2

=
k∑

i=1

CG(xi) +

n∑
i=k+1

CG(xi)

2
− (k − 1).

�

Theorem 3.4. Let G be a mgroup over the finite group (X, ∗) and let Γ be the identity
graph of the mgroup G. Then the vertex matching of Γ is

β0(Γ) =

n∑
i=k+1

CG(xi)

2
+ k − 1,

where k = |Y1|.

Proof. Let G be an mgroup over the finite group (X, ∗), Γ be the identity graph of the
mgroup G and β0(Γ) be the vertex matching of Γ. Then by using Lemma 2.1 part 3, we
get

β0(Γ) =
n∑

i=1

CG(xi)− (
k∑

i=1

CG(xi) +

n∑
i=k+1

CG(xi)

2
− (k − 1))

=

n∑
i=k+1

CG(xi)−

n∑
i=k+1

CG(xi)

2
+ k − 1

=

n∑
i=k+1

CG(xi)

2
+ k − 1.

�

Theorem 3.5. Let G be a mgroup over the finite group (X, ∗) and let Γ be the identity
graph of the mgroup G. If Γ is complete graph, then the thickness θ(Γ) is given by

θ(Γ) =

 b
CG(x1)+CG(x2)+7

6 c, X contains at most two elements and CG(x1) + CG(x2) 6= 9, 10,

bCG(x1)+9
6 c, X = {x1, x2, x3}, x−1

2 = x3, CG(x2) = CG(x3) = 1 and CG(x1) + 2 6= 9, 10,
3, CG(x1) + CG(x2) = 9, 10 in first axiom and CG(x1) + 2 = 9, 10 in second axiom.
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Proof. Let Γ be a complete graph, by using Lemma 2.3 and Theorem 2.1, we have three
cases.
Case 1: X contains at most two elements and CG(x1) + CG(x2) 6= 9, 10. Then we have
two subcases.
Subcase 1.1: X contains only one element. Then Γ is complete by Theorem 2.1, moreover
Γ = KCG(x1).
Thus by Lemma 2.3, we get

θ(Γ) = bCG(x1) + 7

6
c.

Subcase 1.2: X contains two elements i.e.X = {x1, x2}. Then by Theorem 2.1, Γ is
complete, moreover Γ = KCG(x1)+CG(x2).
Thus by using Lemma 2.3, we get

θ(Γ) = bCG(x1) + CG(x2) + 7

6
c.

So if we assume by default that CG(x2) = 0, then we can generalize the formula for the
two subcases 1.1, 1.2 as

θ(Γ) = bCG(x1) + CG(x2) + 7

6
c.

Case 2: X = {x1, x2, x3}, x−1
2 = x3 with CG(x2) = CG(x3) = 1 and CG(x1) + 2 6= 9, 10.

Then by using Lemma 2.3, we get that Γ is complete with Γ = KCG(x1)+CG(x2)+CG(x3) =
KCG(x1)+2.
Thus by using Lemma 2.3, we get

θ(Γ) = bCG(x1) + 2 + 7

6
c

= bCG(x1) + 9

6
c.

Case 3: CG(x1)+CG(x2) = 9 or 10, in the first case or CG(x1)+2 = 9 or 10 in the second
case. Then it is clear by employing Lemma 2.3 that

θ(Γ) = 3.

�

Theorem 3.6. Let (X, ∗) be a finite group and let G ∈MG(X). Then

θ(Γ) ≥ max{bCG(x1) + 7

6
c, bCG(xi) + 5

4
c},

where xi ∈ Y2.

Proof. Since the graph Γ can be derived into independent induced subgraphs; which is
complete is xi ∈ Y1 or complete bipartite if xj , xk ∈ Y2 with x−1

j = xk; then by using
Lemma 2.3, we get

θ(Γ[Xi]) =

{
bCG(xi)+7

6 c, xi ∈ Y1 and CG(xi) 6= 9, 10,
3, CG(xi) = 9 or 10.

And θ(Γ[Xj ∪Xk]) = bCG(xj)+5
4 c if xj , xk ∈ Y2.

Also, each Γ[Xi], xi ∈ Y1 and Γ[Xj ∪ xk], xj , xk ∈ Y2 is independent than each other, so
we can treat the proper induced subgraphs Γ[Xi], Γ[Xj ∪Xk], separately.
The thickness of any graph is greater than or equal the thickness of any proper induced
subgraph of the graph itself. Thus, we will compute the maximum thickness of an induced
subgraph of Γ.
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Since Γ[Xi], xi ∈ Y1 is a complete graph and CG(x1) ≥ CG(xi), xi 6= x1 and xi ∈ Y1 and
since the function g(x) = x+7

6 is increasing function, then

θ(Γ[X1]) ≥ θ(Γ(Xi)), i = 2, 3, ..., h,

where h = |Y1|.
Also, the induced subgraph Γ[Xj ∪ xk], xj , xk ∈ Y2 is regular complete bipartite. So, by
using Lemma 2.3, we get

θ(Γ[Xj ∪ xk]) = bCG(xi) + 5

4
c.

Hence,

θ(Γ) ≥ max{bCG(x1) + 7

6
c, bCG(xi) + 5

4
c},

where xi ∈ Y2. �

Theorem 3.7. Let (X, ∗) be a finite group, G ∈MG(X), and let Γ be the identity graph
of G. If Γ is not complete graph and CG(x1) ≥ 3, then Γ is not planar graph.

Proof. Let (X, ∗) be a finite group and let G ∈ MG(X), assume that Γ is the identity
graph of G, and let Γ be not complete graph with CG(x1) ≥ 3. Take the least number for
CG(x1) = 3.
Since Γ is not complete, then there exist at least two vertices outside Γ[X1]. If the two
vertices lies in Γ[X2] with x−1

2 = x2, then Γ is not complete, which contradict that Γ is

not complete, so we assume that the two vertices lies in Γ[X2] and Γ[X3], with x−1
2 = x3,

respectively.
Since all the vertices in Γ[X1] is adjacent to all the vertices in Γ−Γ[X1], and x21 is adjacent
to x31, then Γ = K5, so by using Corollary 2.1, we get that Γ is not planar.
Hence, if CG(x1) ≥ 3, then Γ is not planar. �

The above theorem explain the case, if CG(x1) ≥ 3, then Γ is not a planar graph.
Here the following question directly bring to mind,
Q : What about the cases if CG(x1) = 1, 2?
A : In fact, the case, if CG(x1) = 1, then by using Theorem 2.2, we have two cases.
Case 1: If X is a 2-group (a group (X, ∗) that have x−1

i = xi for all xi ∈ X), then Γ is a
star, which is planar.
Case 2: If X is not a 2-group, then there exists xj , xk ∈ X such that x−1

j = xk, and since

CG(x1) = 1 ≥ CG(xi), i = 2, 3, ..., n, then CG(xj) = CG(xk) = 1, so Γ contains pendant
vertices and triangles, so easily we can get that Γ is planar.
The second case, if CG(x1) = 2, then Γ is not necessary to be planar, so the following
theorem explain some cases at which Γ is planar.

Theorem 3.8. Let (X, ∗) be a finite group, G ∈MG(X) and let Γ be the identity graph
of the mgroup G. If CG(x1) = 2 and CG(xi) = 1, for all i = 2, 3, ..., n, then Γ is planar
graph.

Proof. Let (X, ∗) be a finite group, G ∈ MG(X) and let Γ be the identity graph of the
mgroup G. Suppose that CG(x1) = 2 and CG(xi) = 1, for all i = 2, 3, ..., n, then Γ[X1]
consists of x11 and x12, hence Γ − x11 is a star or consists from pendent vertices and
triangles which is independent, thus Γ− x11 is planar.
So we want to show that the graph Γ ∼= Γ− x11 + x11 is a planar graph.
Easily we can connect all the pendent vertices of the star to the vertex x11 without
intersection; which is also do not make a closed cycle around x11 and x12; hence, easily
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we can connect the vertices x11 and x12 by an edge that is not intersect any other edges.
thus Γ is a planar graph. The following figure explain the proof.

u u u u u
u u

u u u u u

B
B
B
B
B

x12x11

Figure : 1

Note in the figure that the two vertices that makes triangle with x12 is the vertices that
liess in Y2 and that not makes triangle lies on Y1. �
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