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FUZZY PARAMETERIZED FUZZY SOFT MATRICES AND THEIR

APPLICATION IN DECISION-MAKING

SERDAR ENGİNOĞLU1, NAİM ÇAĞMAN2, §

Abstract. In this study, we define the concept of fuzzy parameterized fuzzy soft ma-
trices (fpfs-matrices) and present some of their basic properties. By using fpfs-matrices,
we then suggest a new algorithm, i.e. Prevalence Effect Method (PEM), and apply this
method to a performance-based value assignment, so that we can order noise removal
filters regarding performance. The results show that PEM has a potential for several
areas, such as machine learning and image processing. Finally, we discuss fpfs-matrices
and PEM for further research.
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1. Introduction

The concept of soft sets, the graphic of a function from a parameter set to the power
set of a universal set, was defined by Molodtsov [1] in 1999 to deal with many problems
containing uncertainties and so far a broad range of theoretical and applied studies from
algebra to decision-making have been conducted on this concept [2–43].

In 2010, Çağman et al. [6] introduced the fuzzy parameterized fuzzy soft sets (fpfs-sets)
because back then a more general form was needed for mathematical modelling of some
problems in the event of parameters or objects with uncertainties - today such a need still
exists. However, in the case that a large body of data is processed, computer mathematics
should be employed. To deal with this problem, in Section 2, we propose the concept
of fuzzy parameterized fuzzy soft matrices (fpfs-matrices) and investigate some of their
basic properties. This concept is first mentioned in the first author’s PhD dissertation. In
Section 3, by using fpfs-matrices we describe a fast and simple algorithm named Prevalence
Effect Method (PEM). In Section 4, we apply this method to a performance-based value
assignment problem. Finally, we discuss fpfs-matrices and PEM for further research.
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2. Fuzzy Parameterized Fuzzy Soft Matrices

In this section, we introduce the concept of fpfs-matrices and their basic properties that
are first given in the first author’s PhD dissertation [17].

Throughout this paper, let E be a parameter set, F (E) be the set of all fuzzy sets

over E, and µ ∈ F (E). Here, a fuzzy set is denoted by {µ(x)x : x ∈ E} instead of
{(x, µ(x)) : x ∈ E}.

Definition 2.1. [6, 17] Let U be a universal set, µ ∈ F (E), and α be a function from µ

to F (U). Then, the set {(µ(x)x, α(µ(x)x)) : x ∈ E} being the graphic of α is called a fuzzy
parameterized fuzzy soft set (fpfs-set) parameterized via E over U (or briefly over U).

In the present paper, the set of all fpfs-sets over U is denoted by FPFSE(U). In
FPFSE(U), since the graph(α) and α generate each other uniquely, the notations are
interchangeable. Therefore, unless it causes any confusion, we denote an fpfs-set graph(α)
by α.

Example 2.1. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then,

α = {(0.8x1, {0.9u1,
0.5u4}), (0x2, {0.3u2,

0.5u3}), (0.1x3, {0.7u1,
0.8u3,

0.6u4}), (x4, {u3,
0.9u5})}

is an fpfs-set over U .

Definition 2.2. [17] Let α ∈ FPFSE(U). Then, [aij ] is called the matrix representation
of α (or briefly fpfs-matrix of α) and is defined by

[aij ] :=


a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

. . .


such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · },

aij :=

{
µ(xj), i = 0

α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m− 1 and |E| = n, then [aij ] has order m× n.

From now on, the set of all fpfs-matrices parameterized via E over U is denoted by
FPFSE [U ].

Example 2.2. The fpfs-matrix of α provided in Example 2.1 is as follows:

[aij ] =


0.8 0 0.1 1
0.9 0 0.7 0
0 0.3 0 0
0 0.5 0.8 1

0.5 0 0.6 0
0 0 0 0.9


Definition 2.3. Let [aij ] ∈ FPFSE [U ]. For all i and j, if aij = λ, then [aij ] is called
λ-fpfs-matrix and is denoted by [λ]. Here, [0] is called empty fpfs-matrix and [1] is called
universal fpfs-matrix.
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Definition 2.4. Let [aij ], [bij ], [cij ] ∈ FPFSE [U ], IE := {j : xj ∈ E}, and R ⊆ IE. If

cij :=

{
aij , j ∈ R
bij , j ∈ IE \R

then [cij ] is called Rb-restriction of [aij ] and is denoted by [(aRb)ij ]. Briefly, if [bij ] = [0],
then [(aR)ij ] can be used instead of [(aR0)ij ]. It is clear that

(aR)ij =

{
aij , j ∈ R

0, j ∈ IE \R

Example 2.3. Let R = {1, 3, 4} and S = {2, 4}. Then, the R1- and S-restriction of [aij ]
provided in Example 2.2 are as follows:

[(aR1)ij ] =


0.8 1 0.1 1
0.9 1 0.7 0
0 1 0 0
0 1 0.8 1

0.5 1 0.6 0
0 1 0 0.9

 and [(aS)ij ] =


0 0 0 1
0 0 0 0
0 0.3 0 0
0 0.5 0 1
0 0 0 0
0 0 0 0.9


Definition 2.5. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. For all i and j, if aij ≤ bij, then [aij ]

is called a submatrix of [bij ] and is denoted by [aij ]⊆̃[bij ].

Proposition 2.1. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. Then,

i. [aij ]⊆̃[1]

ii. [0]⊆̃[aij ]

iii. [aij ]⊆̃[aij ]

iv.
(
[aij ]⊆̃[bij ] ∧ [bij ]⊆̃[cij ]

)
⇒ [aij ]⊆̃[cij ]

Definition 2.6. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. For all i and j, if aij = bij, then [aij ]
and [bij ] are called equal fpfs-matrices and is denoted by [aij ] = [bij ].

Definition 2.7. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. If [aij ]⊆̃[bij ] and [aij ] 6= [bij ], then [aij ]

is called a proper submatrix of [bij ] and is denoted by [aij ](̃[bij ].

Proposition 2.2. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. Then,

i. ([aij ] = [bij ] ∧ [bij ] = [cij ])⇒ [aij ] = [cij ]

ii.
(
[aij ]⊆̃[bij ] ∧ [bij ]⊆̃[aij ]

)
⇔ [aij ] = [bij ]

Definition 2.8. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. For all i and j, if cij := max{aij , bij},
then [cij ] is called union of [aij ] and [bij ] and is denoted by [aij ]∪̃[bij ].

Definition 2.9. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. For all i and j, if cij := min{aij , bij},
then [cij ] is called intersection of [aij ] and [bij ] and is denoted by [aij ]∩̃[bij ].

Example 2.4. Assume that two fpfs-matrices [aij ] and [bij ] are as follows:

[aij ] =


0.3 0.7 0.1 1
0.5 0 0.8 0.6
1 0.1 0.6 0
0 0.5 0.1 1
0 0.2 0.7 0.9

0.4 1 0 0.4

 and [bij ] =


0.9 0.5 0.7 0.8
1 0 0.6 0.7

0.8 0.5 0.5 0.2
0.4 0.7 0.6 1
0.6 0.2 0.4 0.5
0.3 0.9 0.8 0.9
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Then,

[aij ]∪̃[bij ] =


0.9 0.7 0.7 1
1 0 0.8 0.7
1 0.5 0.6 0.2

0.4 0.7 0.6 1
0.6 0.2 0.7 0.9
0.4 1 0.8 0.9

 and [aij ]∩̃[bij ] =


0.3 0.5 0.1 0.8
0.5 0 0.6 0.6
0.8 0.1 0.5 0
0 0.5 0.1 1
0 0.2 0.4 0.5

0.3 0.9 0 0.4


Proposition 2.3. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. Then,

i. [aij ]∪̃[aij ] = [aij ] and [aij ]∩̃[aij ] = [aij ]
ii. [aij ]∪̃[0] = [aij ] and [aij ]∩̃[0] = [0]

iii. [aij ]∪̃[1] = [1] and [aij ]∩̃[1] = [aij ]
iv. [aij ]∪̃[bij ] = [bij ]∪̃[aij ] and [aij ]∩̃[bij ] = [bij ]∩̃[aij ]
v. ([aij ]∪̃[bij ])∪̃[cij ] = [aij ]∪̃([bij ]∪̃[cij ]) and ([aij ]∩̃[bij ])∩̃[cij ] = [aij ]∩̃([bij ]∩̃[cij ])

vi. [aij ]∪̃([bij ]∩̃[cij ]) = ([aij ]∪̃[bij ])∩̃([aij ]∪̃[cij ]) and [aij ]∩̃([bij ]∪̃[cij ]) = ([aij ]∩̃[bij ])∪̃([aij ]∩̃[cij ])

Proof.

[aij ]∪̃([bij ]∩̃[cij ]) = [aij ]∪̃[min{bij , cij}]
= [max{aij ,min{bij , cij}}]
= [min{max{aij , bij},max{aij , cij}}]
= [max{aij , bij}]∩̃[max{aij , cij}]
= ([aij ]∪̃[bij ])∩̃([aij ]∪̃[cij ])

�

The proofs of the others can be performed similarly.

Definition 2.10. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. For all i and j, if cij := max{0, aij−
bij}, then [cij ] is called difference between [aij ] and [bij ] and is denoted by [aij ]\̃[bij ].

Proposition 2.4. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. Then,

i. [aij ]\̃[aij ] = [0]

ii. [aij ]\̃[0] = [aij ]

iii. [aij ]\̃[1] = [0]

iv. ([aij ]\̃[bij ] = [0])⇒ [aij ]⊆̃[bij ]

Remark 2.1. It must be noted that the difference operation is non-commutative and non-
associative.

Definition 2.11. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. For all i and j, if bij := 1− aij, then
[bij ] is complement of [aij ] and is denoted by [aij ]

c̃ or [ac̃ij ].

Proposition 2.5. [17] Let [aij ] ∈ FPFSE [U ]. Then,

i. ([aij ]
c̃)c̃ = [aij ]

ii. [0]c̃ = [1]

Proposition 2.6. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. Then, the following De Morgan’s laws
are valid.

i. ([aij ]∪̃[bij ])
c̃ = [aij ]

c̃∩̃[bij ]
c̃

ii. ([aij ]∩̃[bij ])
c̃ = [aij ]

c̃∪̃[bij ]
c̃
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Proof.

([aij ]∪̃[bij ])
c̃ = [max{aij , bij}]c̃

= [1−max{aij , bij}]
= [min{1− aij , 1− bij}]
= [aij ]

c̃∩̃[bij ]
c̃

�

The proof of ii. can be performed similarly.

Definition 2.12. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. For all i and j, if cij := |aij−bij |,
then [cij ] is called symmetric difference between [aij ] and [bij ] and is denoted by [aij ]4̃[bij ].

Definition 2.13. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. If [aij ]∩̃[bij ] = [0], then [aij ] and [bij ]
are called disjoint.

Example 2.5. Let us consider the fpfs-matrices [aij ] and [bij ] provided in Example 2.4.
Then,

[aij ]\̃[bij ] =


0 0.2 0 0.2
0 0 0.2 0

0.2 0 0.1 0
0 0 0 0
0 0 0.3 0.4

0.1 0.1 0 0

 and [aij ]4̃[bij ] =


0.6 0.2 0.6 0.2
0.5 0 0.2 0.1
0.2 0.4 0.1 0.2
0.4 0.2 0.5 0
0.6 0 0.3 0.4
0.1 0.1 0.8 0.5


Definition 2.14. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ], IE := {j : xj ∈ E}, and R ⊆ IE.
If

cij :=

{
max{aij ,mink∈R{bik}}, j ∈ R

aij , j ∈ IE \R

then [cij ] is called R-relative union of [aij ] and [bij ] and is denoted by [aij ]∪̃rR[bij ]. Here,
for the brevity, “relative union” can be used instead of “IE-relative union” and can be
denoted by [aij ]∪̃r[bij ].

Definition 2.15. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ], IE := {j : xj ∈ E}, and R ⊆ IE.
If

cij :=

{
min{aij ,maxk∈R{bik}}, j ∈ R

aij , j ∈ IE \R

then [cij ] is called R-relative intersection of [aij ] and [bij ] and is denoted by [aij ]∩̃rR[bij ].
Here, for brevity, “relative intersection” can be used instead of “IE-relative intersection”
and can be denoted by [aij ]∩̃r[bij ].

Definition 2.16. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ], IE := {j : xj ∈ E}, and R ⊆ IE.
If

cij :=

{
max{0, aij −mink∈R{bik}}, j ∈ R

aij , j ∈ IE \R

then [cij ] is called R-relative difference between [aij ] and [bij ] and is denoted by [aij ]\̃
r

R[bij ].
Here, for brevity, “relative difference” can be used instead of “IE-relative difference” and

can be denoted by [aij ]\̃
r
[bij ].



1110 TWMS J. APP. ENG. MATH. V.10, N.4, 2020

Example 2.6. Let us consider the fpfs-matrices [aij ] and [bij ] provided in Example 2.4
and let R = {2, 3, 4}. Then,

[aij ]∪̃r[bij ] =


0.5 0.7 0.5 1
0.5 0 0.8 0.6
1 0.2 0.6 0.2

0.4 0.5 0.4 1
0.2 0.2 0.7 0.9
0.4 1 0.3 0.4

 and [aij ]∩̃rR[bij ] =


0.3 0.7 0.1 0.8
0.5 0 0.7 0.6
1 0.1 0.5 0
0 0.5 0.1 1
0 0.2 0.5 0.5

0.4 0.9 0 0.4


Proposition 2.7. [17] Let [aij ], [bij ], [cij ] ∈ FPFSE [U ]. Then,

i. [aij ]∪̃rR[0] = [aij ] and [0]∩̃rR[aij ] = [0]
ii. [1]∪̃rR[aij ] = [1] and [aij ]∩̃rR[1] = [aij ]

iii. ([aij ]∪̃
r
R[bij ])∪̃

r
R[cij ] = [aij ]∪̃

r
R([bij ]∪̃

r
R[cij ]) and ([aij ]∩̃

r
R[bij ])∩̃

r
R[cij ] = [aij ]∩̃

r
R([bij ]∩̃

r
R[cij ])

Remark 2.2. It must be noted that the relative intersection and relative union of fpfs-
matrices are non-commutative and non-distributive.

Proposition 2.8. [17] Let [aij ], [bij ] ∈ FPFSE [U ]. Then, the following De Morgan’s laws
are valid.

i. ([aij ]∪̃rR[bij ])
c̃ = [aij ]

c̃∩̃rR[bij ]
c̃

ii. ([aij ]∩̃rR[bij ])
c̃ = [aij ]

c̃∪̃rR[bij ]
c̃

Proof. If j ∈ R ⊆ IE , then

([aij ]∪̃rR[bij ])
c̃ = [max{aij ,mink∈R{bik}}]c̃

= [1−max{aij ,mink∈R{bik}}]
= [min{1− aij , 1−mink∈R{bik}}]
= [min{1− aij ,maxk∈R{1− bik}}]
= [aij ]

c̃∩̃rR[bij ]
c̃

and if j ∈ IE \R, then

([aij ]∪̃rR[bij ])
c̃ = [aij ]

c̃

= [1− aij ]
= [aij ]

c̃∩̃rR[bij ]
c̃

�

The proof of ii. can be made in a similar way.

Definition 2.17. Let [aij ]m×n1 ∈ FPFSE1 [U ], [bik]m×n2 ∈ FPFSE2 [U ], and [cip]m×n1n2 ∈
FPFSE1×E2 [U ] such that p = n2(j − 1) + k. For all i and p, if cip := min{aij , bik}, then
[cip] is called and-product of [aij ] and [bik] and is denoted by [aij ]∧[bik].

Definition 2.18. Let [aij ]m×n1 ∈ FPFSE1 [U ], [bik]m×n2 ∈ FPFSE2 [U ], and [cip]m×n1n2 ∈
FPFSE1×E2 [U ] such that p = n2(j − 1) + k. For all i and p, if cip := max{aij , bik}, then
[cip] is called or-product of [aij ] and [bik] and is denoted by [aij ]∨[bik].

Definition 2.19. Let [aij ]m×n1 ∈ FPFSE1 [U ], [bik]m×n2 ∈ FPFSE2 [U ], and [cip]m×n1n2 ∈
FPFSE1×E2 [U ] such that p = n2(j − 1) + k. For all i and p, if cip := min{aij , 1 − bik},
then [cip] is called andnot-product of [aij ] and [bik] and is denoted by [aij ]∧[bik].

Definition 2.20. Let [aij ]m×n1 ∈ FPFSE1 [U ], [bik]m×n2 ∈ FPFSE2 [U ], and [cip]m×n1n2 ∈
FPFSE1×E2 [U ] such that p = n2(j − 1) + k. For all i and p, if cip := max{aij , 1 − bik},
then [cip] is called ornot-product of [aij ] and [bik] and is denoted by [aij ]∨[bik].
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Example 2.7. Let us consider the fpfs-matrices [aij ] and [bik] provided in Example 2.4.
Then, [aij ]∨[bik] is as follows:

0.3 0.5 0.3 0.3 0.7 0.7 0.7 0.7 0.1 0.5 0.3 0.2 1 1 1 1
0.5 1 0.5 0.5 0 1 0.4 0.3 0.8 1 0.8 0.8 0.6 1 0.6 0.6
1 1 1 1 0.2 0.5 0.5 0.8 0.6 0.6 0.6 0.8 0.2 0.5 0.5 0.8

0.6 0.3 0.4 0 0.6 0.5 0.5 0.5 0.6 0.3 0.4 0.1 1 1 1 1
0.4 0.8 0.6 0.5 0.4 0.8 0.6 0.5 0.7 0.8 0.7 0.7 0.9 0.9 0.9 0.9
0.7 0.4 0.4 0.4 1 1 1 1 0.7 0.1 0.2 0.1 0.7 0.4 0.4 0.4


Proposition 2.9. Let [aij ], [bik], [cil] be three fpfs-matrices over U . Then,

([aij ] ∧ [bik]) ∧ [cil] = [aij ] ∧ ([bik] ∧ [cil]) and ([aij ] ∨ [bik]) ∨ [cil] = [aij ] ∨ ([bik] ∨ [cil])

Remark 2.3. It must be noted that the products mentioned above of fpfs-matrices are
non-commutative and non-distributive.

3. Prevalence Effect Method (PEM)

In this section, we propose a new soft decision-making method called Prevalence Effect
Method (PEM).

Step 1. Construct an fpfs-matrix [aij ]m×n such that i ∈ {0, 1, 2, ...,m−1}, j ∈ {1, 2, ..., n},
m ≥ 2, and n ≥ 1

Step 2. Obtain a matrix [si1] defined by si1:=
∑n

j=1

[(
1

m−1

∑m−1
k=1 akj

) (
1
n

∑n
t=1 ait

)
a0jaij

]
such that i ∈ {1, 2, ...,m− 1}

Step 3. Obtain a decision set
{ sk1

max si1 uk | uk ∈ U
}

Here, aij shows to what extent ith alternative provide the jth parameter such that i 6= 0,

a0j shows how essential jth parameter is for the user, 1
n

∑n
t=1 ait refers to the prevalence

effect value of ith alternative, 1
m−1

∑m−1
k=1 akj to the prevalence effect value of jth parameter,

and si1 to the score value.

4. An Application of PEM

In this section, we apply PEM to a real problem in image denoising. Image denoising
(noise removal), which is a preprocess in image processing, positively affects the success
rate of other procedures. Therefore, a great many studies have been conducted in this
area [44–48].

We, in this study, consider five noise removal methods - Progressive Switching Median
Filter (PSMF) [44], Decision-Based Algorithm (DBA) [45], Modified Decision-Based Un-
symmetrical Trimmed Median Filter (MDBUTMF) [46], Noise Adaptive Fuzzy Switching
Median Filter (NAFSMF) [47], and Different Applied Median Filter (DAMF) [48] - used in
[48] for salt-and-pepper noise removal, which is a kind of impulse noise. We compare these
methods with regard to performance by using 15 traditional images (Cameraman, Lena,
Peppers, Baboon, Plane, Bridge, Pirate, Elaine, Boat, Lake, Flintstones, Living Room,
House, Parrot, and Hill) with 512 × 512 pixels and 40 test images with 600 × 600 pixels
in the TEST IMAGES Database [49], ranging in noise densities from 10% to 90%, and
two image quality metrics: Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM) [50]. The results in Table 1 and 2 show that DAMF outperforms the others in any
noise density.
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Table 1. The mean SSIM results for the 15 traditional images
Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

PSMF 0.9028 0.8715 0.8018 0.6988 0.4903 0.1882 0.0633 0.0318 0.0139

DBA 0.9079 0.8664 0.8097 0.7376 0.6521 0.5552 0.4567 0.3623 0.2937

MDBUTMF 0.8841 0.7994 0.7443 0.7657 0.7963 0.7880 0.7501 0.6443 0.3052

NAFSMF 0.9147 0.8916 0.8669 0.8409 0.8124 0.7796 0.7403 0.6872 0.5736

DAMF 0.9253 0.9113 0.8946 0.8752 0.8523 0.8244 0.7892 0.7398 0.6572

Table 2. The mean SSIM results for the 40 test images
Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

PSMF 0.9444 0.9014 0.843 0.7435 0.5663 0.2822 0.0817 0.0383 0.0171

DBA 0.9798 0.9467 0.8964 0.8247 0.7316 0.6218 0.5002 0.3794 0.2998

MDBUTMF 0.9431 0.8349 0.7724 0.8154 0.8748 0.8813 0.8489 0.7407 0.3730

NAFSMF 0.9790 0.9602 0.9411 0.9209 0.8988 0.8724 0.8385 0.7889 0.6648

DAMF 0.9911 0.9819 0.9705 0.9563 0.9392 0.9174 0.8885 0.8451 0.7595

Suppose that the success in high noise densities is more important than in the others.
In that case, the values in Table 1 can be represented with an fpfs-matrix as follows:

[aij ] :=


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9028 0.8715 0.8018 0.6988 0.4903 0.1882 0.0633 0.0318 0.0139
0.9079 0.8664 0.8097 0.7376 0.6521 0.5552 0.4567 0.3623 0.2937
0.8841 0.7994 0.7443 0.7657 0.7963 0.7880 0.7501 0.6443 0.3052
0.9147 0.8916 0.8669 0.8409 0.8124 0.7796 0.7403 0.6872 0.5736
0.9253 0.9113 0.8946 0.8752 0.8523 0.8244 0.7892 0.7398 0.6572


If we apply PEM to the [aij ], then the score matrix and the decision set are as follows:

[si1] = [0.2160 0.5171 0.7395 0.8957 1]T

and

{0.2160PSMF, 0.5171DBA, 0.7395MDBUTMF, 0.8957NAFSMF, 1DAMF}
The scores show that DAMF outperforms the other methods and the order DAMF,

NAFSMF, MDBUTMF, DBA, and PSMF is valid.
Similarly, the values in Table 2 can be represented with an fpfs-matrix as follows:

[bij ] :=


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9444 0.9014 0.843 0.7435 0.5663 0.2822 0.0817 0.0383 0.0171
0.9798 0.9467 0.8964 0.8247 0.7316 0.6218 0.5002 0.3794 0.2998
0.9431 0.8349 0.7724 0.8154 0.8748 0.8813 0.8489 0.7407 0.3730
0.9790 0.9602 0.9411 0.9209 0.8988 0.8724 0.8385 0.7889 0.6648
0.9911 0.9819 0.9705 0.9563 0.9392 0.9174 0.8885 0.8451 0.7595


If we apply PEM to the [bij ], then the score matrix and the decision set are as follows:

[si1] = [0.2114 0.5026 0.7291 0.8999 1]T

and

{0.2114PSMF, 0.5026DBA, 0.7291MDBUTMF, 0.8999NAFSMF, 1DAMF}
The scores show that DAMF outperforms the other methods and the order DAMF,

NAFSMF, MDBUTMF, DBA, and PSMF is valid.
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5. Conclusion

In this paper, we define the concept of fpfs-matrices. We then suggest a new method
referred to as PEM. Afterwards, we successfully apply PEM to the determination of the
performance of the methods used in [48]. It is clear that PEM, which is a fast and simple
method, can be successfully applied to decision-making problems in various areas, such
as machine learning and image processing. We also believe that the configuration of the
other methods in the literature via fpfs-matrices is worth studying.

References

[1] Molodtsov, D., (1999), Soft set theory−first results, Comput. Math. with Appl., 37,
pp. 19-31.

[2] Atagün, A. O., Kamacı, H. and Oktay, O., (2018), Reduced soft matrices and gener-
alized products with applications in decision making, Neural Comput & Applic, 29,
pp. 445-456.

[3] Atmaca, S., (2017), Relationship between fuzzy soft topological spaces and (X, τe)
parameter spaces, Cumhuriyet Sci. J., 38, pp. 77-85.
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over lattice, Hacettepe J. Math. Stat., 46, pp. 1035-1042.
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[8] Çağman, N. and Deli, İ., (2012), Means of FP-soft sets and their applications,
Hacettepe J. Math. Stat., 41, pp. 615-625.
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Naim Çağman holds a bachelor’s degree in Mathematics from Istanbul University,
Istanbul, Turkey, in 1991. He received his master’s degree in Mathematics from Wales
Swansea University, Swansea, UK, in 1996, and his doctoral degree in Mathematics
from Leeds University, Leeds, UK, in 2000. He is currently the Head of Department
of Fundamentals of Mathematics and Mathematical Logic at Tokat Gaziosmanpaşa
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