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EXTENSION OF M-POLYNOMIAL AND DEGREE BASED

TOPOLOGICAL INDICES FOR NANOTUBE

ABHAY RAJPOOT1, LAVANYA SELVAGANESH1, §

Abstract. The M-polynomial of a graph G(V (G), E(G)) is defined as M(G;u, v) =∑
i≤jmiju

ivj , where mij denotes the number of edges xy ∈ E(G) such that {dx, dy} =

{i, j}, where dx, dy denote degree of the vertex x and y in the graph G(V (G), E(G)). In
this paper, we show how to compute the degree-based indices such as Forgotten index,
Reduced Second Zagreb index, Sigma index, Hyper-Zagreb index and Albertson index
using the M-polynomial. In addition, we present as an application how to quickly and
effectively compute the degree-based topological indices using M-polynomial for two car-
bon nanotube structures, namely HC5C7[p, q] and V C5C7[p, q].

Keywords: M-Polynomial, Carbon Nanotubes, Degree-based topological index, Graph
Polynomials
AMS Subject Classification: 05C07, 05C31, 05C85, 92E10

1. Introduction

In the study of graphs, an invariant of a graph depends only on the topological struc-
ture of graphs and does not depend on its representation, such as the drawing/labelling
of graphs. A graph invariant represents a topological index when a numerical value ex-
presses the structure of the graph. For decades, topological indices have found application
in the field of chemical graph theory. Here, the structure of a molecule/chemical net-
work is analyzed quantitatively for its structure-activity/structure-property relationships
(QSAR/QSPR).

In this paper, we focus on degree-based topological indices, which is a collection of
indices computed using the degree-sequence of a graph. Among many degree-based indices,
we focus on the Zagreb indices and its variations, given by Gutman and Trinajstić in [17].
They were the first to introduce the degree based indices, called the first Zagreb index
M1(G), which was defined by

M1(G) =
∑

x∈V (G)

dx
2 =

∑
xy∈E(G)

(dx + dy),
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where dx denotes the degree of vertex x ∈ V (G). For more study of Zagreb index, we refer
to [12,13,31]. The second Zagreb index M2(G) is given by

M2(G) =
∑

xy∈E(G)

dxdy.

Following this work by Gutman and Trinajstić, there was a plethora of literature published
on Zagreb indices. Further, many modified forms and variants also introduced. For a
recent survey of more degree-based indices, we refer to [14,15].

One of the modified Zagreb index mM2(G) introduced by J. Hao [18], in 2009, is defined
by

mM2(G) =
∑

xy∈E(G)

1

dxdy
.

For chemical graphs, another index proven useful in the study of heat formation of heptanes
and octanes is Augmented Zagreb index [9], which is defined as

AZI(G) =
∑

xy∈E(G)

(
dxdy

dx + dy − 2

)3

.

In similar lines of Zagreb indices another interesting and well studied in the field of drug
design is the Randić index [25] defined by

R(G) =
∑

xy∈E(G)

1√
dxdy

.

A generalized version of Randić index [24] is defined by

Rα(G) =
∑

xy∈E(G)

(dxdy)
α,

where α ∈ R, and for α = −1
2 , we obtain the Randić index.

Another variation of the Randić index was first introduced by Siemion Fajtlowicz [6]
known as Harmonic index is defined as

H(G) =
∑

xy∈E(G)

2

dx + dy
.

Favaron et al. [8] has given the relationship between Harmonic index and eigenvalue of the
graph.

The Inverse sum index introduced by Vukičević and Gašperov [29] in 2010 and shown
to be a significant predictor of the total surface area of octane isomer.The Inverse sum
index ISI(G) is defined as

ISI(G) =
∑

xy∈E(G)

1
1
dx

+ 1
dy

=
∑

xy∈E(G)

dxdy
dx + dy

.

Symmetric division degree index [27,28] SDD(G) is defined as

SDD(G) =
∑

xy∈E(G)

(
min(dx, dy)

max(dx, dy)
+
max(dx, dy)

min(dx, dy)

)
.

Traditionally, the computation of topological indices involved only their definitions. Such
computations are known to be time-consuming. In order to reduce the computation time of
topological indices, several techniques were introduced by many researchers. Among them,
the polynomial representation of indices has received wide attention in the literature. For
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instance, Hosoya polynomial also known as Wiener polynomial [11,21], we used to compute
various indices such as Wiener index [30], Hosoya index [20] and Hyper Wiener index [22]
etc. For example, the derivative of Hosoya polynomial when evaluated at 1, gives the
Weiner index. Hyper Weiner index and Tratch-Zefirov index can be obtained similarly [3].

In 2015, Deutsch and Klavžar introduced a polynomial known as M-polynomial [4]. It is
a general polynomial because, with the help of this polynomial, one can determine at-least
nine degree-based topological indices. For more study of M-polynomial, we refer to [5].

In this paper, we find representations of five degree-based topological indices using
M-polynomial, such as Forgotten index, Reduced Second Zagreb index, Sigma index, Hy-
per Zagreb index and Albertson index. Further, we also determine the value of these
indices with the help of M-polynomial for carbon nanotube structures HC5C7[p, q], and
V C5C7[p.q].

2. Preliminaries

In this section, we will mention some of the definitions and related results required for
this article. Mainly, the five indices that we focus on this paper is listed below.

F-index or Forgotten index [10] of a graph G(V (G), E(G)) is defined as

F (G) =
∑

x∈V (G)

dx
3 =

∑
xy∈E(G)

(dx
2 + dy

2). (1)

Reduced Second Zagreb index [14] of a graph G(V (G), E(G)) is defined as

RM2(G) =
∑

xy∈E(G)

(dx − 1)(dy − 1). (2)

Sigma index [16] of a graph G(V (G), E(G)) is defined as

σ(G) =
∑

xy∈E(G)

(dx − dy)2. (3)

Hyper Zagreb index [26] of a graph G(V (G), E(G)) is defined as

Hyp(G) =
∑

xy∈E(G)

(dx + dy)
2. (4)

Albertson index [1] of graph G(V (G), E(G)) is defined as

Alb(G) =
∑

xy∈E(G)

|dx − dy|. (5)

Definition 2.1. [4] Let G(V (G), E(G)) be a graph, then M-polynomial of G is given by

M(G;u, v) =
∑
i≤j

miju
ivj ,

where mij denotes the number of edges xy of G such that {dx, dy} = {i, j}, where dx, dy
denotes the degree of the vertex x and y in the graph G.

Definition 2.2. [4] A degree based topological index for a graph G is defined as

I(G) =
∑

e=xy∈E(G)

f(dx, dy), (6)

where f(u, v) is a function which is suitable for some degree based topological indices.
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For instance, the first Zagreb index M1(G) is defined with equation (6) by putting
f(u, v) = u + v. Counting edges which have same end-degrees, then we can rewrite
equation (6) as

I(G) =
∑
i≤j

mijf(i, j). (7)

We require some of the operators as defined in [4]. The operators are listed below :

Duf(u, v) = u
∂f(u, v)

∂u
, Dvf(u, v) = v

∂f(u, v)

∂v
. (8)

Suf(u, v) =

∫ u

0

f(t, v)

t
dt, Svf(u, v) =

∫ v

0

f(u, t)

t
dt. (9)

J(f(u, v)) = f(u, u), Qα(f(u, v)) = uαf(u, v). (10)

Now we recall the theorems from which are required for our proofs :

Theorem 2.1. [4] Let G(V (G), E(G)) be a graph and let I(G) =
∑

xy∈E(G)

f(dx, dy), where

f(u, v) is a polynomial in u and v, then I(G) = f(Du, Dv)(M(G;u, v))|u=v=1. �

Theorem 2.2. [4] Let G(V (G), E(G)) be a graph and let I(G) =
∑

xy∈E(G)

f(dx, dy), where

f(u, v) =
∑
i,j∈Z

αi,ju
ivj, αi,j ∈ R for each i, j. Then I(G) can be obtain from M-polynomial

using operators Du, Dv, Su and Sv. �

Theorem 2.3. [4] Let G(V (G), E(G)) be a graph and I(G) =
∑

xy∈E(G)

f(dx, dy), where

f(u, v) =
urvs

(u+ v + α)k
, for all r, s ≥ 0, k ≥ 1 and α ∈ Z. Then I(G) =

SkuQαJD
r
uD

s
v(M(G;u, v))|u=v=1. �

With the help of the above three theorems, the authors in [4], have proved that certain
topological indices can be computed directly from M-polynomial. We summarize these
results in Table 1.

Table 1. Degree based topological indices derived from M-polynomial :

Degree based topological index f(u, v) Derivation from M(G;u, v)

M1(G) u+ v (Du +Dv)(M(G;u, v))|u=v=1

M2(G) uv (DuDv)(M(G;u, v))|u=v=1
mM2(G) 1

uv (SuSv)(M(G;u, v))|u=v=1

For α ∈ N, Rα(G) (uv)α (Dα
uD

α
v )(M(G;u, v))|u = v = 1

For α ∈ N, RRα(G) 1
(uv)α (SαuS

α
v )(M(G;u, v))|u=v=1

SDD(G) u2+v2

uv (DuSv +DvSu)(M(G;u, v))|u = v = 1
H(G) 2

u+v 2SuJ(M(G;u, v))|u=v=1

ISI(G) uv
u+v SuJDuDv(M(G;u, v))|u=v=1

AZI(G) (uv)3

(u+v−2)3 S3
uQ−2JD

3
uD

3
v(M(G;u, v))|u=v=1
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3. Main results

In this section, we present our main results of computing various degree based indices
using the M-polynomial. As the first step, applying the operator Du, Dv on M-polynomial,
we get:

DuM(G;u, v) = u
∂M(u, v)

∂u
= u

∑
i≤j

imiju
i−1vj

 =
∑
i≤j

imiju
ivj . (11)

D2
uM(G;u, v) = u

∂

∂u

{
u
∂

∂u
M(G;u, v)

}
=
∑
i≤j

i2miju
ivj . (12)

Similarly,

DvM(G;u, v) =
∑
i≤j

jmiju
ivj , (13)

and

D2
vM(G;u, v) =

∑
i≤j

j2miju
ivj . (14)

DuDvM(G;u, v) = u
∂

∂u

{
v
∂

∂v
M(G;u, v)

}
=
∑
i≤j

ijmiju
ivj . (15)

Next we derive the five topological indices given by equations (1) to (5) from the M-
polynomial

Theorem 3.1. Let M(G;u, v) be an M -polynomial for a graph G(V (G), E(G)), then the
Forgotten index is given by

F (G) = (D2
u +D2

v)M(G;u, v)|u=v=1.

Proof. Forgotten index of a graph G(V (G), E(G)) is defined as

F (G) =
∑

x∈V (G)

dx
3 =

∑
xy∈E(G)

(dx
2 + dy

2).

Now using equations (6) and (7), we can rewrite the above equation as

F (G) =
∑

xy∈E(G)

(dx
2 + dy

2) =
∑
i≤j

mij(i
2 + j2). (16)

Using equations (12) and (14) in (16), we get F (G) = (D2
u +D2

v)M(G;u, v)|u=v=1.

Theorem 3.2. Let M(G;u, v) be an M -polynomial for a graph G(V (G), E(G)), then the
Reduced Second Zagreb index is given by

RM2(G) = (Du − 1)(Dv − 1)M(G;u, v)|u=v=1.

Proof. Since,

(Du − 1)(Dv − 1)M(G;u, v) = (DuDv −Du −Dv + 1)M(G;u, v)

= DuDvM(G;u, v)−DuM(G;u, v)−DvM(G;u, v) +M(G;u, v). (17)

Using equations (11), (13) and (15) in equation (17), then

(Du − 1)(Dv − 1)M(G;u, v) =
∑
i≤j

(i− 1)(j − 1)miju
ivj . (18)
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Rewriting Reduced Second Zagreb index with the help of equations (6) and (7), we get

RM2(G) =
∑

xy∈E(G)

(dx − 1)(dy − 1) =
∑
i≤j

mij(i− 1)(j − 1). (19)

Hence RM2(G) = (Du − 1)(Dv − 1)M(G;u, v)|u=v=1.

Theorem 3.3. Let M(G;u, v) be a polynomial for a graph G(V (G), E(G)), then Sigma
index is given by

σ(G) = (Du −Dv)
2M(G;u, v)|u=v=1.

Proof. Since,

(Du −Dv)
2M(G;u, v) = (D2

u +D2
v − 2DuDv)M(G;u, v)

= D2
uM(G;u, v) +D2

vM(G;u, v)− 2DuDvM(G;u, v). (20)

Now using equations (12), (14) and (15) in equation (20), then

(Du −Dv)
2M(G;u, v) =

∑
i≤j

(i− j)2miju
ivj . (21)

Sigma index can be rewritten using equations (6) and (7), as

σ(G) =
∑

xy∈E(G)

(dx − dy)2 =
∑
i≤j

mij(i− j)2. (22)

Comparing equations (21) and (22), we get σ(G) = (Du −Dv)
2M(G;u, v)|u=v=1.

Theorem 3.4. Let M(G;u, v) be an M-polynomial for a graph G(V (G), E(G)), then
Hyper-Zagreb index is given by

Hyp(G) = (Du +Dv)
2M(G;u, v)|u=v=1.

Proof. Since,

(Du +Dv)
2M(G;u, v) = (D2

u +D2
v + 2DuDv)M(G;u, v)

= D2
uM(G;u, v) +D2

vM(G;u, v) + 2DuDvM(G;u, v). (23)

Now using equations (12), (14) and (15) in equation (23), then

(Du +Dv)
2M(G;u, v) =

∑
i≤j

(i+ j)2miju
ivj . (24)

With the help of equations (6) and (7), Hyper Zagreb index can be rewritten as,

Hyp(G) =
∑

xy∈E(G)

(dx + dy)
2 =

∑
i≤j

mij(i+ j)2. (25)

Now from equations (24) and (25), we get Hyp(G) = (Du +Dv)
2M(G;u, v)|u=v=1.

Theorem 3.5. Let M(G;u, v) be an M-polynomial for a given graph G(V (G), E(G)), then
Albertson index is given by

Alb(G) = (Dv −Du)M(G;u, v)|u=v=1.

Proof. Since,

(Dv −Du)M(G;u, v) = DvM(G;u, v)−DuM(G;u, v). (26)

Now using equations (11) and (13) in the equation (26), we have

(Dv −Du)M(G;u, v) =
∑
i≤j

(j − i)miju
ivj . (27)



274 TWMS J. APP. AND ENG. MATH. V.11, SPECIAL ISSUE, 2021

By using equations (6) and (7), we can rewrite Albertson index as :

Alb(G) =
∑

xy∈E(G)

|dx − dy| =
∑
i≤j

mij(j − i). (28)

Now from equations (27) and (28), we get Alb(G) = (Dv −Du)M(G;u, v)|u=v=1.
In this section, we have computed the polynomial of five degree based indices other

than those mentioned in Table 1 and we have consolidated these results in Table 2.

Table 2

Degree based topological index f(u, v) derivation from M(G;u, v)

F (G) u2 + v2 (D2
u +D2

v)(M(G;u, v))|u=v=1

RM2(G) (u− 1)(v − 1) (Du − 1)(Dv − 1)(M(G;u, v))|u=v=1

σ(G) (u− v)2 (Du −Dv)
2(M(G;u, v))|u=v=1

Hyp(G) (u+ v)2 (Du +Dv)
2(M(G;u, v))|u=v=1

Alb(G) |u− v| (Dv −Du)(M(G;u, v))|u=v=1

4. Carbon Nanotubes

In this section, we apply the theoretical results proposed in section 3 to a collection of
chemical graphs, namely carbon nanotubes. Carbon nanotubes are a particular type of
fullerenes. It constitutes the carbon allotropes formed with a cylindrical structure. Carbon
nanotubes are known to have outstanding properties such as high Young’s modulus, high
tensile strength, high electronics flow, to name a few. At room temperature, the thermal
conductivity of nanotubes is higher than that of natural diamond and the basal plane of
graphite. Superconductivity has been observed but only at low temperatures [23]. Owing
to such properties, carbon nanotubes are well-suited for virtually any application requiring
high strength, durability, electrical conductivity, thermal conductivity and lightweight
properties compared to conventional materials. For a detailed study on the properties of
nanotubes, we refer to [2].

The structural and physical properties of carbon nanotubes have attracted a wide range
of application in the field of nanotechnology, electronics, material science, architecture, to
name a few. We focus on two nanotubes namely HC5C7 and V C5C7, the structure of
these carbon nanotubes consist of alternating pentagons (C5) and heptagons (C7). A
three-dimensional representation of these carbon nanotubes is given in Figure 1. The two-
dimensional lattice structure of these carbon nanotubes are given in Figure 4, and Figure
7 respectively. For a detailed study of the structural properties of these nanotubes using
topological indices, we refer to [7, 19].

Figure 1. 3-D geometry of nanotubes HC5C7(A) and V C5C7(B).
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4.1. HC5C7[p, q], p, q ≥ 1 Nanotube. In this section, we compute the degree based
indices for graph carbon nanotubes HC5C7[p, q] from the M-polynomial. As stated before,
this nanotube is C5C7 net whose two-dimensional lattice structure consists of alternatively
arranged pentagons C5 and heptagons C7 with a trivalent decoration as shown in Figure
2. In HC5C7[p, q], p denotes the number of heptagons C7 in the first row of its 2 − D
lattice representation and q denotes the number of periods in the whole lattice. Here, a
period consists of the four rows, as shown in Figure 3, which represents the ith period.
The lattice structure consists of 16p vertices in each period along with a set of 2p vertices
joined as pendants at the last row. Thus, the total number of vertices in this lattice is
|V (HC5C7[p, q])| = 16pq+ 2p. Similarly, counting the number of edges, we find that there
are 24p edges in each period with an additional 2p edges which were added (as extra) to
connect the pendant vertices to get a 2−D lattice, that is, |E(HC5C7[p, q])| = 24pq− 2p.

Theorem 4.1. Let G be the graph of the nanotube HC5C7[p, q], for p, q ≥ 1 then its
M-polynomial is given by

M(G;u, v) = 8pu2v3 + (24pq − 10p)u3v3.

Proof. To compute the M-polynomial, we partition the edges of this nanotube based on
the degree of the end vertices. We find that the edges can be partitioned in to exactly two
sets given by:

E1(G) = {xy ∈ E(G)|dx = 2 and dy = 3},
E2(G) = {xy ∈ E(G)|dx = dy = 3}.

Figure 2. 2-D structure of HC5C7[3, 3] nanotube.

Figure 3. ith period of HC5C7 nanotube.

Figure 4. Structure of HC5C7[3, 3] nanotube
Number of edges in E1(G) and E2(G) are 8p and 24pq − 10p respectively. Now we

compute the M-polynomial for given graph G = HC5C7[p, q]. Since, {dx, dy} = {i, j} and
(i, j) ∈ {(2, 3), (3, 3)} then from Definition 2.1, we have

M(G;u, v) = m23u
2v3 +m33u

3v3 = |E1(G)|u2v3 + |E2(G)|u3v3

= 8pu2v3 + (24pq − 10p)u3v3.

Now using the expression for the M-polynomial of HC5C7[p, q], and the polynomial
representations of the 5 degree based indices (given in Table 2) we compute the exact
value of the indices for HC5C7[p, q] nanotube as follows:
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Theorem 4.2. The computed value of the degree based indices for the graph HC5C7[p, q],
p, q ≥ 1, is given by

RM2(G) = 96pq − 24p, Hyp(G) = 864pq − 160p, F (G) = 432pq − 76p, σ(G) = 8p

and Alb(G) = 8p.

Proof. From Theorem 4.1, M-polynomial for the graph G = HC5C7[p, q] is

M(G;u, v) = 8pu2v3 + (24pq − 10p)u3v3,

then

DuM(G;u, v) = 16pu2v3 + 3(24pq − 10p)u3v3, (29)

DvM(G;u, v) = 24pu2v3 + 3(24pq − 10p)u3v3, (30)

DvDuM(G;u, v) = 48pu2v3 + 9(24pq − 10p)u3v3, (31)

D2
uM(G;u, v) = 32pu2v3 + 9(24pq − 10p)u3v3, (32)

D2
vM(G;u, v) = 72pu2v3 + 9(24pq − 10p)u3v3. (33)

Applying these operators values given by (29) to (33) in the expressions given in Table 2,
we get the required results of the theorem.

4.2. V C5C7[p, q], p, q ≥ 1 Nanotubes. In this section, we compute the degree based
indices for graph carbon nanotubes V C5C7[p, q] from M-polynomial. As stated before, this
nanotube is a C5C7 net whose two-dimensional lattice structure consists of alternatively
arranged pentagons C5 and heptagons C7 with a trivalent decoration as shown in Figure
5. In V C5C7[p, q], p denotes the number of pentagons C5 in the first row of its 2 − D
lattice representation and q denotes the number of periods in the whole lattice. Here, a
period consists of the four rows, as shown in Figure 6, which represents the ith period. In
this lattice structure again, there are 16p vertices in each period along with a set of 3p
vertices joined as degree two vertices at the last row. Thus, the total number of vertices in
this lattice is |V (V C5C7[p, q])| = 16pq + 3p. Similarly, counting the number of edges, we
find that there are 24p edges in each period and there are extra 3p edges added to connect
the degree two vertices to get a 2−D lattice, that is, |E(V C5C7[p, q])| = 24pq − 3p.

Theorem 4.3. Let G be the graph of the nanotube V C5C7[p, q], for p, q ≥ 1, then its
M-polynomial is given by

M(G;u, v) = pu2v2 + 10pu2v3 + (24pq − 14p)u3v3.

Proof. To compute the M-polynomial, we partition the edges of this nanotube based on
the degree of the end vertices. We find that the edges can be partitioned in to exactly
three sets given by:

E1(G) = {xy ∈ E(G)|dx = dy = 2},
E2(G) = {xy ∈ E(G)|dx = 2 and dy = 3},
E3(G) = {xy ∈ E(G)|dx = dy = 3}.

The number of edges in E1(G), E2(G) and E3(G) are p, 10p, and 24pq − 14p. Now we
compute the M-polynomial for given graph G = V C5C7[p, q]. Since, {dx, dy} = {i, j}, and
(i, j) ∈ {(2, 2), (2, 3), (3, 3)} then from Definition 2.1, we have

M(G;u, v) = m22u
2v2 +m23u

2v3 +m33u
3v3

= |E1(G)|u2v2 + |E2(G)|u2v3 + |E3(G)|u3v3

= pu2v2 + 10pu2v3 + (24pq − 14p)u3v3.
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Figure 5. 2−D graph of V C5C7[3, 4] nanotube.

Figure 6. Graph of ith period of lattice V C5C7[3, 4]

Figure 7. Structure of V C5C7[3, 4]

Now using the expression for the M-polynomial of V C5C7[p.q], and the polynomial
representations of the 5 degree based indices (given in Table Table 2) we compute the
exact value of the indices for V C5C7[p.q] nanotube as follows:

Theorem 4.4. The computed value of the degree based indices for the graph of V C5C7[p, q],
p, q ≥ 1 are given by

RM2(G) = 96pq − 35p.

Hyp(G) = 864pq − 238p.

F (G) = 432pq − 114p.

σ(G) = 10p.

Alb(G) = 10p.

Proof. From Theorem 4.3, M-polynomial for the G = V C5C7[p, q] is

M(G;u, v) = pu2v2 + 10pu2v3 + (24pq − 14p)u3v3,

then

DuM(G;u, v) = 2pu2v2 + 20pu2v3 + 3(24pq − 14p)u3v3, (34)

DvM(G;u, v) = 2pu2v2 + 30pu2v3 + 3(24pq − 14p)u3v3, (35)

DuDvM(G;u, v) = 4pu2v2 + 60pu2v3 + 9(24pq − 14p)u3v3, (36)

D2
uM(G;u, v) = 4pu2v2 + 40pu2v3 + 9(24pq − 14p)u3v3. (37)

D2
vM(G;u, v) = 4pu2v2 + 90pu2v3 + 9(24pq − 14p)u3v3. (38)

Substitute these values given by (34) to (38) in Table 2 we get the required results of the
theorem.

5. Conclusion

In this paper, we have shown a way to calculate the Reduced Second Zagreb index, Hy-
per Zagreb index, Forgotten index, Sigma index and Albertson index using M-polynomial.



278 TWMS J. APP. AND ENG. MATH. V.11, SPECIAL ISSUE, 2021

Further, we have shown that computation of these topological indices for carbon nanotubes
HC5C7[p, q] and V C5C7[p, q] becomes very simple and easy when using the M -polynomial.

We observe that the Sigma index and Albertson index behave identically to any nan-
otube, and it is independent of the number of periods in the lattice structure of a nan-
otube. Further, the Sigma index of HC5C7 depends only on heptagons while Sigma index
of V C5C7 depends only on pentagons in a period.

In both nanotube structures, the formula obtained for Zagreb indices and the Forgotten
index depend on both the total number of pentagons/heptagons in the lattice as well as
in each of the period. Another interesting observation is that even though these indices
mathematically look dependent, that is, has a similar formulaic pattern, but they differ
significantly and hence are incomparable.

Finally, we see that by the application of M-polynomial we can reduce drastically the
computational effort required to compute most of the degree-based topological indices.
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[17] Gutman, I., and Trinajstić, N., (1972), Graph theory and molecular orbitals. total φ-electron energy

of alternant hydrocarbons, Chemical Physics Letters, (17), 535-538.
[18] Hao, J., (2011), Theorems about zagreb indices and modified zagreb indices, MATCH Commun. Math.

Comput. Chem., (65), 659–670.
[19] Hayat, S., and Imran, M., (2015), Computation of certain topological indices of nanotubes covered by

c 5 and c 7, Journal of Computational and Theoretical Nanoscience, (12), 533–541.
[20] Hosoya, H., (1971), Topological index. a newly proposed quantity characterizing the topological nature

of structural isomer of saturated hydrocarbons, Bulletin of the Chemical Society of Japan, (44), 2332-
2339.

[21] Hosoya, H., (1988), On some counting polynomials in chemistry. Discrete Applied Mathematics, (19),
239–257.



ABHAY RAJPOOT AND LAVANYA SELVAGANESH: EXTENSION OF M-POLYNOMIAL ... 279

[22] Klein, D. J., Lukovits, Gutman, I.,(1995), On the definition of the hyper-wiener index for cycle-
containing structures. Journal of chemical information and computer sciences, (35), 50-52.
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