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CRITICAL POINT APPROACHES TO SECOND-ORDER

DIFFERENTIAL SYSTEMS GENERATED BY IMPULSES

M. OMIDI1, A. SALARI1, §

Abstract. Using variational methods and critical point theory, we establish multiplicity
results of solutions for second-order differential systems generated by impulses. Indeed,
employing two sorts of three critical points theorems, we establish the multiplicity re-
sults for weak solutions of the problem and verify that these solutions are generated by
impulses.
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The aim of this paper is to investigate the existence of two weak solutions for the
following second-order impulsive differential equqtions; u′′(t) + Vu(t, u(t)) = 0, t ∈ (sk−1, sk),

∆u′(sk) = λfk(u(sk)),
u(0)− u(T ) = u′(0)− u′(T ) = 0,

(1)

where sk , k = 1, 2, . . ., instants in which the impulses occur and 0 = s0 < s1 <
s2... < sm < sm+1 = T , and ∆u′(sk) = u′(sk

+) − u′(sk−) with u′(sk
+) = limt→sk+ u

′(t),

fk(u) = graduFk(u), Fk ∈ C1(RN ,R) such that Fk(0, . . . , 0) = 0 V ∈ C1([0, T ] × RN ,R),
Vu(t, u(t)) = graduV (t, u), λ > 0 is a constant.

Impulsive differential equations emerge from the real world problems and are acclimated
to be employed as handy means for the description of the processes which are endowed
with abrupt discontinuous jumps. As for this, these processes are used in such a vast
array of fields as control theory, biology, impact mechanics, physics, chemistry, chemical
engineering, population dynamics, biotechnology, economics, optimization theory and in-
spection process in operations research. That’s why, the theory of impulsive differential
equations is now highly appreciated as a natural theoretical basis for the mathematical
modeling of the natural phenomena of various kinds. For a comprehensive background in
the theory and the applications of the impulsive differential equations, we hereby refer the
interested readers to [2, 3, 13, 17, 21, 25].
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There is already a large body of research on the notion of impulsive differential equations
in the literature. The findings of most of these studies are mainly achieved through
some such theories as fixed point theory, topological degree theory (including continuation
method and coincidence degree theory) and comparison method (including upper and lower
solutions method and monotone iterative method)(see, for example, [12, 14] and references
therein). Recently, the existence and multiplicity of solutions for impulsive problems have
been thoroughly investigated by [1, 16, 22, 23, 26, 27] using variational methods and the
critical point theory, the whole findings of which can be considered as but generalizations of
the corresponding ones for the second order ordinary differential equations. Put differently,
the aforementioned achievements can be applied to impulsive systems in the absence of the
impulses and still give the existence of solutions in this situation. This is, somehow, to say
that the nonlinear term Vu functions more significantly as compared to the role played by
the impulsive terms fk in guaranteeing the existence of solutions in these results. Based on
the variational methods and the critical point theory, [24] has examined problem (1), by
means of which the authors have proved that such a problem admits at least one non-zero,
two non-zeros, or an infinite number of periodic solutions as yielded by the impulses under
different assumptions, respectively. Most particularly, in [11] using a smooth version of
[8, Theorem 2.1] which is a more precise version of Ricceri’s Variational Principle [20,
Theorem 2.5] under some hypotheses on the behavior of the nonlinear terms at infinity,
under conditions on the potentials of fk and gk, proved that the existence of definite
intervals about λ and µ, in which problem (1) yields an unbounded sequence of solutions
generated by impulses. Moreover, it has been proved that replacing the conditions at
infinity of the nonlinear terms with a similar one at zero admits the same results.

In the present paper, employing two sorts of three critical points theorems obtained
in [5, 7], which we will recall in the next section (Theorems 1.1 and 1.2), establish the
multiplicity results for weak solutions of problem (1). We also verify that these solutions
are generated by impulses; see Theorems 2.1 and 2.2. Along the same lines of reasoning,
these theorems (Theorems 1.1 and 1.2) have been successfully employed by [6] to ensure
the presence of at least three solutions for the perturbed boundary value problems.

The organization of the present paper is as follows. In Section 2 we recall some basic
definitions and preliminary results, while Section 3 is devoted to the existence of multiple
solutions for the impulsive differential problem (1).

1. Preliminaries

Our main tools are Theorems 1.1 and 1.2, consequences of a local minimum theorem
[4, Theorem 3.1] which is inspired by Ricceri’s variational principle (see [20]).

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the following
functions

ϑ(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)

r2 − Φ(v)
,

ρ1(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2, and

ρ2(r) = sup
v∈Φ−1(]r,∞[)

Ψ(v)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(v)− r1

for all r ∈ R.
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Theorem 1.1. [4, Theorem 5.1] Let X be a real Banach space; Φ : X → R be a sequentially
weakly lower semicontinuous, coercive and continuously Gâteaux differentiable function
whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously
Gâteaux differentiable function whose Gâteaux derivative is compact. Assume that there
are r1, r2 ∈ R, r1 < r2, such that ϑ(r1, r2) < ρ1(r1, r2). Then, setting Iλ := Φ − λΨ,
for each λ ∈] 1

ρ1(r1,r2) ,
1

ϑ(r1,r2) [ there is u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u)

∀u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

Theorem 1.2. [4, Theorem 5.3] Let X be a real Banach space; Φ : X → R be a contin-
uously Gâteaux differentiable function whose Gâteaux derivative admits a continuous in-
verse on X∗, Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Fix infX Φ < r < supX Φ and assume that ρ2(r) > 0, and for each
λ > 1

ρ2(r) , the functional Iλ := Φ− λΨ is coercive. Then for each λ ∈] 1
ρ2(r) ,+∞[ there is

u0,λ ∈ Φ−1(]r,+∞[) such that Iλ(u0,λ) ≤ Iλ(u) ∀u ∈ Φ−1(]r,+∞[) and I ′λ(u0,λ) = 0.

For a thorough study on the subject, we also refer the reader to [9, 19].
In order to study the problem (1), the variational setting is the space

X := H1
T = {u : [0, T ]→ RN |u is absolutly continuous,

u(0) = u(T ), u′ ∈ L2([0, T ],Rn)}.

Then H1
T is a Hilbert space with the inner product

〈u, v〉 =

∫ T

0

[
(u(t), v(t)) + (u′(t), v′(t))

]
dt, ∀u, v ∈ H1

T ,

where (., .) denotes the inner product in RN . The corresponding norm is

‖u‖ =

(∫ T

0
[|u′(t)|2 + |u(t)|2]dt

) 1
2

, ∀u ∈ H1
T . (2)

Since (H1
T , ‖.‖) is compactly embedded in C([0, T ],RN ) (see [15]), there exists a positive

constant C such that
‖u‖∞ ≤ C‖u‖, (3)

where ‖u‖∞ = maxt∈[0,T ] |u(t)|. we say that a functional u ∈ X is a weak solution of the
problem (1) if ∫ T

0

[
u′(t)v′(t)− Vu(t, u(t))v(t)

]
dt+ λ

m∑
k=1

fku(sk)v(sk) = 0

for every v ∈ X.
To study problem (1), we consider the functional I define by

I(u) =

∫ T

0

[
1

2
|u′|2 − V (t, u)v

]
dt+ λ

m∑
k=1

Fk(u(sk))v(sk). (4)

Lemma 1.1. Suppose V ∈ C1([0, T ]) × RN −→ R and Fk ∈ C1(RN ,RN ), k = 1, 2, . . .m
Then, I is Frechet differentiable with

I ′(u)v =

∫ T

0

[
u′v′ − Vu(t, u)v

]
dt+ λ

m∑
k=1

fk(u(sk))v(sk) (5)

for any u and v in H1
T . Furthermore, u is a solution of (1) if and only if u is a critical

point of I in H1
T .
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Now assume that
(A1) V is a continuous differentiable and there exist positive constants b1, b2 > 0 such

that b1|u|2 < −V (t, u) ≤ b2|u|2 for all (t, u) ∈ [0, T ]× RN ;

(A′1) V is continuous differentiable and there exist positive constant b > 1 and γ ∈ (1, 2]
such that −V (t, u) ≥ b|u|γ for all (t, u) ∈ [0, T ]× RN ;

(A2) −V (t, u) ≤ −Vu(t, u)u ≤ −2V (t, u) for all (t, u) ∈ [0.T ]× RN ;

And we consider the functionals Φ, Ψ : X → R for each u ∈ X, as follows

Φ(u) =

∫ T

0

[
1

2
|u′(t)|2 − V (t, u(t))

]
dt, (6)

Ψ(u) = −
m∑
k=1

Fk (u(sk)) . (7)

Obviously, X = H1
T is a separable and uniformly convex Banach space. By (A1) and (2),

we have

b3‖u‖2 ≤ Φ(u) ≤ b4‖u‖2 (8)

where b3 = min{1
2 , b1} and b4 = min{1

2 , b2}. Hence Φ is coercive, and bounded on each
bounded sub set of X. Moreover, since V (t, u) is continuous, we see that Φ is continuous.
Furthermore, Φ is sequentially weakly lower semicontinuous. Indeed, let un be a weakly
convergent sequence to u in X. Then, lim infn→+∞ ‖un‖ ≥ ‖u‖ and un → u uniformly on
[0, T ]. Hence

lim
n→+∞

1

2

∫ T

0
[|u′n(t)|2 − V (t, un(t))]dt ≥ 1

2

∫ T

0
[|u′(t)|2 − V (t, u(t))]dt,

namely lim infn→+∞Φ(un) ≥ Φ(u) which means Φ is sequentially weakly lower semicon-
tinuous.

It is well Known that Ψ is a Gâteaux differentiable functional and sequentially weakly
upper semicontinuous whose Gâteaux derivative at the point u ∈ X is the functional
Ψ′(u) ∈ X∗, given by

〈Ψ′(u), v〉 = −
m∑
k=1

fk(u(sk))v(sk). (9)

Let un −→ u ∈ X, then un −→ u ∈ C[0, T ]. Hence Ψ′(un) −→ Ψ′(u) as n −→ ∞
therefore, we have that Ψ′ is a compact operator. Moreover, Φ is a Gateaux differentiable
functional whose Gateaux derivative at the point u ∈ X is the functional Φ′(u) ∈ X∗,
given by

〈Φ′(u), v〉 =

∫ T

0
|
(
u′(t), v′(t)

)
− (Vu(t, u(t)), v(t)) |dt. (10)

for every v ∈ X.
We need the following proposition in the proof of Theorem 2.1.

Proposition 1.1. The operator T : X → X∗ defined by

〈T (u), v〉 =

∫ T

0
|
(
u′(t), v′(t)

)
− (Vu(t, u(t)), v(t)) |dt.

for every v ∈ X admits a continuous inverse on X∗.
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Proof. We have

〈Φ′(u), u〉 =

∫ T

0
|
(
u′(t), u′(t)

)
− (Vu(t, u(t)), u(t)) |dt

≥
∫ T

0

[
(u′(t), u′(t)) + b1|u(t)|2

]
dt ≥ min{1, b1}‖u‖2.

So limu−→∞
〈Φ′(u),u〉
‖u‖ = +∞, that is, Φ′ is coercive. For any u, v ∈ X one has

〈Φ′(u)− Φ′(v), u− v〉 =

∫ T

0
(u′(t)− v′(t), u′(t)− v′(t))dt

−
∫ T

0
(Vu(t, u(t))− Vv(t, v(t)), u(t)− v(t))dt

≥
∫ T

0
(u′(t)− v′(t)), u′(t)− v′(t))dt+

∫ T

0
b1|u(t)− v(t)|2dt

≥ min{1, b1}‖u− v‖2.

So Φ′ is uniformly monotone. Hence, (Φ′)−1 there exists and is continuous on X∗. �

Corresponding to fk we introduce the function Fk ∈ C1(RN ,R), where

fk = graduFk, ∀ k = 1, 2, ...m.

Remark 1.1. We say that a solution of the problem (1) is called a solution generated by
impulses if this solution is nontrivial when impulsive terms fk 6= 0 for some 1 ≤ k ≤ m, but
it is trivial when impulsive term is zero. For example, if the problem (1) does not possess
non-zero weak solution when fk ≡ 0 for all 1 ≤ k ≤ m, then a non-zero weak solution
for problem (1) with fk 6= 0 for some 1 ≤ k ≤ m is called a weak solution generated by
impulses.

2. Main results

In order to introduce our result, for a given non-negative constant θ and a given

positive constant η with θ2b3
C2 6= min{Tη2, bCγ−2(

√
Tη)γ}, put

aη(θ) :=
max|t|≤θ [−

∑m
k=1 Fk(t)− Fk(η)]

min{Tη2, bCγ−2(
√
Tη)γ} − θ2b3

C2

,

and

bη(θ) :=
max|t|≤θ [−

∑m
k=1 Fk(t)− Fk(η)]

θ2b3
C2 − b4Tη2

where C is given in (3). Now, we formulate our main result as follows.

Theorem 2.1. Assume that fk 6= 0 for some 1 ≤ k ≤ m and there exist a non-negative

constant θ1 and two positive constants θ2 and η with θ1
C

√
1
T < η < θ2

C

√
b3
Tb4

such that

(B1) there exist ν > 2 and R > 0 such that

0 < νFk(t) ≤ tfk(t)), for all |t| ≥ R and for all k = 1, . . . ,m;

(B2) bη(θ2) < aη(θ1).

Then, for each λ ∈
]

1
aη(θ1) ,

1
bη(θ2)

[
the problem (1) admits at least two non-trivial weak

solutions u1, u2 ∈ X generated by impulses such that
θ21b3
b4C2 < ‖u1‖ <

θ22
C2 .
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Proof. In order to apply Theorem 1.1 to our problem, we introduce the functionals Φ, Ψ :
X → R for each u ∈ X, as (6) and (7). Let us prove that the functionals Φ and Ψ satisfy
the required conditions. It is clear that, Ψ is a sequentially weakly upper semicontinuous
and differentiable functional, whose differential at the point u ∈ X obtain in (9). we
proved that Ψ′ is strongly continuous on X, which implies that Ψ′ is a compact operator.
Moreover, Φ is continuously differentiable whose differential at the point u ∈ X obtain in
(10), while Proposition 1.1 gives that Φ′ admits a continuous inverse on X∗. Furthermore,
Φ is sequentially weakly lower semicontinuous. Clearly, the weak solutions of the problem

(1) are exactly the solutions of the equation Φ′(u) − λΨ′(u) = 0. Put r1 :=
θ21b3
C2 and

r2 :=
θ22b3
C2 , and

w := (η, 0, . . . , 0). (11)

It is easy to see that w ∈ X and, in particular, one has ‖w‖2 = Tη2. Taking into account
θ1
C

√
1
T < η < θ2

C

√
b3
Tb4

, using (8), we observe that r1 < Φ(w) < r2. Now taking A′2 into

account, it follows that, for each u ∈ X,

Φ(u) =

∫ T

0

[
|u′|2 − Vu(t, u)u

]
dt

≥
∫ T

0

[
|u′|2 + b1|u|γ

]
dt

≥
∫ T

0
|u′|2dt+ b1‖u‖γ−2

∞

∫ T

0
|u|2dt

≥
∫ T

0
|u′|2dt+ b1C

γ−2‖u‖γ−2

∫ T

0
|u|2dt

≥ min{1, b1Cγ−2‖u‖γ−2}‖u‖2 = min{‖u‖2, b1Cγ−2‖u‖γ}
and we have

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

[
−

m∑
k=1

Fk (u(sk))

]
≤ max
|t|≤θ

[
−

m∑
k=1

Fk(t)

]
.

On the other hand since w(x) = (η, 0, . . . , 0), we infer Ψ(w) = −
∑m

k=1 Fk(η). Therefore,
one has

ϑ(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤
max|t|≤θ2 [−

∑m
k=1 Fk(t)]−Ψ(w)

r2 − Φ(w)

≤
max|t|≤θ2 [−

∑m
k=1 Fk(t)− Fk(η)]

θ22b3
C2 − b4Tη2

= bη(θ2).

On the other hand, arguing as before, one has

ρ1(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(w)− r1

≥
Ψ(w)−max|t|≤θ1 [−

∑m
k=1 Fk(t)]

Φ(w)− r1

≥
max|t|≤θ1 [−

∑m
k=1 Fk(t)− Fk(η)]

min{Tη2, bCγ−2(
√
Tη)γ} − θ21b3

C2

= aη(θ1).
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Hence, from Assumption (B2), one has ϑ(r1, r2) < ρ1(r1, r2). Therefore, applying Theorem

1.1, for each λ ∈
]

1
aη(θ1) ,

1
bη(θ2)

[
, the functional Φ− λΨ admits at least one critical point

u1 ∈ X such that r1 < Φ(u1) < r2, that is
θ21b3
b4C2 < ‖u1‖ <

θ22
C2 .

Now we prove the existence of the second local minimum distinct from the first one. To
this purpose, we verify the hypotheses of the mountain pass theorem for the functional
Φ− λΨ.
Clearly the functional Φ − λΨ is of class C1 and (Φ − λΨ)(0, . . . , 0) = 0. The first part
of proof guarantees that u1 ∈ X is a local nontrivial local minimum for Φ − λΨ in X.
Therefore there is s > 0 such that

inf
||u−u1||=s

(Φ− λΨ)(u) > (Φ− λΨ)(u1).

So the condition [18, (I1), Theorem 2.2] is verified. Now choosing u 6= 0, from (B1)
condition, there exist constants a1 and a2 such that Fk(t) ≥ a1|t|ν + a2 for all t ∈ Rn.
Now, choosing any u ∈ X\{0, . . . , 0}, one has

(Φ− λΨ)(tu) =

∫ T

0

[
|tu′|2 − Vu(t, tu)tu

]
dt+ λ

m∑
k=1

Fk (tu(sk))

≤ b4t2‖u‖2 − λa1t
ν

∫ T

0
|u|νdx− Ta2 −→ −∞

as t→∞, since ν > 2. So the condition [18, (I2), Theorem 2.2] is verified. Moreover, by
standard computations Φ − λΨ satisfies (PS) condition. Hence the classical theorem of
Ambrosetti and Rabinowitz ensures a critical point u2 of Φ−λΨ such that (Φ−λΨ)(u2) >
(Φ − λΨ)(u1). So by Remark 1.1 u1 and u2 are distinct weak solutions generated by
impulses of the problem (1). �

An immediate consequence of Theorem 2.1 is the following result.

Corollary 2.1. Assume that fk 6= 0 for some 1 ≤ k ≤ m and there exist two positive
constants η and θ with 0 < η < θ and

θ2b3
TC2(b4 − 1)

< η2 ≤ bCγ−2ηγ

T 1− γ
2

such that Assumption (B1) in Theorem 2.1 hold. Then, for every

λ ∈

]
θ2b3
C2 − b4Tη2

max|t|≤θ [−
∑m

k=1 Fk(t)− Fk(η)]
,

Tη2

−
∑m

k=1 Fk(η)

[

the problem (1) admits at least two non-trivial weak solutions u1, u2 ∈ X generated by
impulses.
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Proof. The conclusion follows from Theorem 2.1 by taking θ1 = 0 and θ2 = θ. Indeed,
owing to our assumptions, one has

bη(θ) =
max|t|≤θ [−

∑m
k=1(Fk(t)− Fk(η))]

θ2b3
C2 − b4Tη2

≤
−
∑m

k=1(Fk(0, . . . , 0)− Fk(η))
θ2b3
C2 − b4Tη2

=
−
∑m

k=1 Fk(η)

b4Tη2 − θ2b3
C2

≤
−
∑m

k=1 Fk(η)

Tη2

≤
−
∑m

k=1 Fk(η)

min{Tη2, bCγ−2(
√
Tη)γ}

= aη(0).

Hence, Theorem 2.1 ensures the desired conclusion. �

Now, we present an application of Theorem 1.2 which we will use to obtain multiple
solutions.

Theorem 2.2. Assume that fk 6= 0 for some 1 ≤ k ≤ m and there exist two positive

constants η and θ with 0 < η < θ and η2 ≤ bCγ−2ηγ

T 1− γ2
such that Assumption (B1) in

Theorem 2.1 holds. Furthermore, suppose that

(B1)′ max|t|≤θ [−
∑m

k=1 Fk(t)] ≤
∑m

k=1 [−Fk(η)] ;

(B2)′ lim sup
|t|→+∞

supmk=1[−Fk(t)]
|t|2

≤ 0.

Then, for each

λ ∈

]
min{Tη2, bCγ−2(

√
Tη)γ} − θ2b3

C2

max|t|≤θ [−
∑m

k=1(Fk(t)− Fk(η))]
,+∞

[
,

the problem (1) admits at least one non-trivial weak solution ū ∈ X generated by impulses
such that ‖ū‖ > θ

C .

Proof. The functionals Φ and Ψ satisfy all regularity assumptions requested in Theorem

1.2. Fix 0 < ε <
b3
C2λ

. From (B2)′ there are constants hk such that

−Fk(t) ≤ ε|t|2 + hk, (12)

for every k = 1, . . . ,m. Now we have, Φ(u) ≥ min{‖u‖2, bCγ−2‖u‖γ} then,

Φ(u)− λΨ(u) =

∫ T

0

[
1

2
|u′|2 − V (t, u)

]
dt− λ

[
−

m∑
k=1

[Fk(u(sk))]

]

≥ min{‖u‖2, bCγ−2‖u‖γ} − λε
m∑
k=1

|u|2 −
m∑
k=1

hk

≥ min{‖u‖2, bCγ−2‖u‖γ} − λC2ε

b3
‖u‖2 − λ

m∑
k=1

hk,

and thus lim‖u‖→+∞(Φ(u)−λΨ(u)) = +∞, which means the functional Φ−λΨ is coercive.

Put r := b3θ2

C2 and choose w as given in (11). Using the same arguments as in the proof of
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Theorem 2.1, one has

ρ2(r) ≥
max|t|≤θ [−

∑m
k=1(Fk(t)− Fk(t))]

min{Tη2, bCγ−2(
√
Tη)γ} − θ2b3

C2

.

So, from our assumptions, it follows that ρ2(r) > 0. Hence from the Theorem 1.2 and
Remark 1.1 the functional Φ − λΨ admits at least one local minimum ū ∈ X generated
by impulses such that ‖ū‖ ≥ θ

C and our conclusion is achieved. �

Example 2.1. we consider the problem: u′′(t) + Vu(t, u(t)) = 0, t ∈ (0, 1),
∆u′(sk) = λf1(u),
u(0)− u(T ) = u′(0)− u′(T ) = 0,

(13)

that V (t, u) = −|u|2 and Vu(t, u) = graduV (t, u). It is easy to see that conditions (A1)
,(A1)′ and (A2) hold. now let T = 1, m = 1 and

F1(u) =

{
2|u|3, |u| < 1,
6|u| − 4, |u| ≥ 1.

(14)

then F is C1 function with f1(u) = graduF1(u). In this example one has b = b1 = b3 =
b4 = 1

2 and b2 = 1 and we can consider C =
√

2. we let η = 0, θ = 1 then by theorem

(3.1) for each λ ∈ (1
8 ,+∞) the problem (13) admits at least two nan-trivial weak solutions

u1, u2 ∈ X generated by impulses such that ‖u1‖ = 1√
2
.
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