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RBF SOLUTION OF MHD STOKES FLOW AND MHD FLOW IN A

CONSTRICTED ENCLOSURE

MERVE GÜRBÜZ1, M. TEZER-SEZGIN2, §

Abstract. This paper presents the radial basis function (RBF) approximation for the
numerical solution of Stokes and Navier-Stokes equations in a constricted enclosure under
the effect of magnetic field with different orientations. RBFs are used for the approx-
imation of the particular solution which becomes also the approximate solution of the
problem satisfying the boundary conditions. Numerical results are obtained for several
values of Hartmann number and constriction ratio. As the strength of the horizontally
applied magnetic field increases, Stokes flow extends covering the whole pipe. Applied
magnetic field in the pipe-axis direction generates the electric potential exhibiting behav-
ior similar to streamlines. When the constriction ratio increases, flow squeezes through
the left wall regardless of the direction of the magnetic field.
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1. Introduction

Magnetohydrodynamic (MHD) is the field which deals with the interaction between
electrically conducting fluids and magnetic fields. It has a widespread applications in
science and technology such as MHD generators, electromagnetic pumps, cooling system
with liquid metals for nuclear reactors, plasma physics, blood flow measurement, etc.
The MHD equations are governed by the Navier-Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetics through the Ohm’s law.

The incompressible, viscous flow in slow motion is called Stokes flow (or creeping flow)
which has many industrial applications such as hydrodynamic lubrication, food-processing
materials, etc. Stokes flow equations are obtained from the momentum equations neglect-
ing the convection terms due to the small values of Reynolds number (Re << 1). Eldho
and Young [3] considered Stokes flow in a lid-driven cavity. They obtained the numeri-
cal results for Re = 0 and Re = 1 by using dual reciprocity boundary element method
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(DRBEM). The behavior of the Stokes flow in square and circular cavities was analyzed
by Young et al. [17]. They used DRBEM based on compactly-supported, positive-definite
radial basis functions to solve the equations in the stream function-vorticity formulation.
In another study of Young et al. [15], method of fundamental solution (MFS) was applied
to the Stokes flow in a lid-driven cavity with wavy bottom and in a cubic cavity. They
showed the effect of source points and their locations on the accuracy of numerical results.
Kolodziej and Grabski [7] considered the viscous, laminar flow in a wavy channel. They
also simulated the flow behavior taking Re = 0 by using MFS and RBF. Vasudeviah and
Balamurugan [13] solved stream function and temperature equations of forced convection
Stokes flow in a wavy channel. In [4], biharmonic form of the Stokes equation was solved
by the method of superposition to study distributive mixing produced by rotating cylinder
in the center of the cavity. Stokes flow equations have been also solved by using RBF ap-
proximation in [16, 1, 8]. In all of these studies, multiquadratic (MQ) RBF is used to solve
Stokes flow in cavities and in a backward-facing step channel. The magnetic field effect on
the Stokes flow past circular cylinder was added by Yosinobu and Kakutani [14]. Gürbüz
and Tezer-Sezgin [5] implemented RBF approximation to obtain the numerical solution
of the slow flow in a lid-driven cavity and in a backward-facing step channel under the
uniform magnetic field with different orientations. The electric potential for the Stokes
flow in the lid-driven cavity was also simulated when the magnetic field is parallel to the
pipe-axis. MHD equations coupled with energy equation are considered in [11, 12].

In the present study, the MHD Stokes flow and MHD incompressible flow are consid-
ered in a constricted enclosure (cross-section of the pipe) with a moving left wall. External
magnetic field is applied from the x−, y− or z−directions. RBF approximation has been
applied for solving the MHD flow equations in terms of the original variables as the ve-
locity components of the fluid, stream function, vorticity, pressure of the fluid and the
electric potential with a considerably low computational expense. The main aim of this
study is to show the effects of both the magnetic field and the constriction ratio on the
Stokes and incompressible flows. The computations are carried out for the several values
of Hartmann number and constriction ratio. As the horizontally applied magnetic field
intensity increases in the Stokes flow, fluid flows in the whole channel. On the other
hand, the effects of the vertical magnetic field and the moving left wall force the fluid to
concentrate through the left wall. When the enclosure is constricted, the magnitude of
the flow decreases regardless of the direction of the magnetic field. The secondary flow
is observed due to the constriction in the case of vertically applied magnetic field. Fluid
moves through the left wall with a further increase in the constriction ratio [6]. Addi-
tionally, MHD flow with a magnetic field in the pipe-axis direction is simulated exhibiting
the electric potential. The effects of magnetic field and constriction ratio on the electric
potential are also analyzed. The constriction effect on the flow is the same as in the case
of the vertically applied magnetic field.

2. Physical problem and mathematical formulation

The steady, laminar fully-developed flow of an incompressible, viscous, electrically con-
ducting fluid in the cross-section (enclosure) of a long pipe is considered. A uniform
magnetic field is applied in the horizontal, vertical or along the pipe-axis directions. The
left wall of the enclosure is moving upwards with a uniform velocity. Figure 1 displays the
problem configuration.
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The middle section of the enclosure is symmetrically constricted using functions fb and

ft. These functions are defined as fb =
1

2
h(1 + cos(2π(x − 1

2
))) , ft = 1 − fb and the

constriction ratio(CR) of the enclosure is defined as CR = 2h× 100.

Figure 1. Problem configuration

The non-dimensional MHD equations [14, 9] are given as

∇ · u = 0 (1)

Re(u · ∇)u = −∇p+∇2u +M2(−∇φ+ u×H)×H (2)

Rem(−∇φ+ u×H) = ∇×H (3)

where u = (u, v, 0), H = (Hx, Hy, Hz), p, J and φ are the fluid velocity, magnetic field,
pressure of the fluid, electric current density and electric potential, respectively. The non-
dimensional parameters are the Reynolds number Re = LU0/ν, the magnetic Reynolds

number Rem = LU0σµ and the Hartmann number M = LµH0

√
σ/ρν. Here, ρ, ν, µ

and σ are the density, the kinematic viscosity, the magnetic permeability and the electric
conductivity of the fluid. The last term in equation (2) is the Lorentz force coming from
the interaction between the electrically conducting fluid and the external magnetic field.
Induced magnetic field is neglected in the equation (3) due to the low magnetic Reynolds
number Rem << 1. Thus, equation (3) is no more used in the solution procedure.

2.1. MHD Stokes flow. Stokes flow approximation considers very small values of Reynolds
number (Re << 1) so that the convective terms in the equation (2) are neglected. Hence,
the MHD Stokes flow equations in terms of primitive variables, the velocity and pressure
are

∇ · u = 0 (4)

−∇p+∇2u +M2(−∇φ×H + u×H×H) = 0 . (5)

When the magnetic field is applied horizontally or vertically, we obtain ∇2φ = 0 from
Ohm’s law J = σ(−∇φ + u× µH) and Ampere law J = ∇×H. With the homogeneous
boundary conditions the solution becomes the zero electric potential, φ = 0, dropping the
gradient of the electric potential in the equation (5), (∇φ = 0).

When the magnetic field applies in the x−direction, H0 = (1, 0, 0), the equations take
the form

∂u

∂x
+
∂v

∂y
= 0, ∇2u =

∂p

∂x
, ∇2v =

∂p

∂y
+M2v. (6)
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In the cross-section of the pipe, the two-dimensional flow allows one to define the stream
function ψ and the vorticity ω as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, ω =

∂v

∂x
− ∂u

∂y
. (7)

Then, the two-dimensional MHD Stokes flow equations are given for all of the problem
variables u, v, ψ, ω, and p

∇2u = −∂ω
∂y
, ∇2v =

∂ω

∂x
, ∇2ψ = −ω (8)

∇2ω = M2 ∂v

∂x
, ∇2p = −M2∂v

∂y
. (9)

When the magnetic field is acted vertically, H0 = (0, 1, 0), the equation (5) converts to

∇2u =
∂p

∂x
+M2u, ∇2v =

∂p

∂y
(10)

which can be also written in terms of all the fluid variables

∇2u = −∂ω
∂y
, ∇2v =

∂ω

∂x
, ∇2ψ = −ω (11)

∇2ω = −M2∂u

∂y
, ∇2p = −M2∂u

∂x
. (12)

2.2. Incompressible MHD flow. The electric potential can be generated in the two-
dimensional cross-section of a pipe (enclosure) only when the external magnetic field ap-
plies along the pipe-axis direction. Then, the equation (2) can be written component-wise

1

N
(u
∂u

∂x
+ v

∂u

∂y
) = − 1

M2

∂p

∂x
+

1

M2
∇2u+

(
−u− ∂φ

∂y

)
(13)

1

N
(u
∂v

∂x
+ v

∂v

∂y
) = − 1

M2

∂p

∂y
+

1

M2
∇2v +

(
−v +

∂φ

∂x

)
(14)

where N is the Stuart number given by N = M2/Re. Using the vorticity definition, and
Ohm’s law and Ampere law, we obtain the electric potential Poisson’s equation ∇2φ = ω.
Thus, the MHD flow together with an electric potential is governed by the equations

∇2u = −∂ω
∂y
, ∇2v =

∂ω

∂x
, ∇2ψ = −ω, ∇2φ = ω (15)

1

M2
∇2ω =

1

N

(
u
∂ω

∂x
+ v

∂ω

∂y

)
,

1

M2
∇2p =

2

N

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
(16)

under the effect of a magnetic field perpendicular to the enclosure.
The boundary conditions for the velocity, stream function and the electric potential are

shown in the Figure 1. The unknown boundary conditions for the vorticity are obtained
from the finite difference approximation of the stream function equation including interior
values of stream function. Pressure boundary values are computed by using the finite
difference scheme for the gradient of pressure and the coordinate matrix for the space
derivatives in the momentum equations.



M. GÜRBÜZ, M. T. SEZGIN: RBF SOLUTION OF MHD STOKES FLOW AND MHD FLOW ... 207

3. RBF approximation

The radial basis function approximation will be shortly described on a boundary value
problem

Lu(x, y) = f(x, y), (x, y) ∈ Ω (17)

Bu(x, y) = g(x, y), (x, y) ∈ ∂Ω (18)

where L and B are linear partial differential and boundary operators, respectively, f and
g are known functions in the domain Ω with the boundary ∂Ω.
In the radial basis function approximation method [2], both f(x, y) and the particular
solution û are written in terms of a finite series of radial basis functions {ϕj} and {ψj} as

f(x, y) =

n∑
j=1

ajϕj(r), û(x, y) =

n∑
j=1

ajΨj(r) (x, y) ∈ Ω (19)

where r = ((x − xj)2 + (y − yj)2)1/2 is the Euclidean distance and n is the number of
unknown coefficients. ψj ’s are linked through LΨj(r) = ϕj(r). û is forced to satisfy the
boundary condition (18) as

n∑
j=1

ajBΨj(r) = g(x, y), (x, y) ∈ ∂Ω . (20)

Since û satisfies both the differential equation and the boundary condition, it becomes the
approximate solution of the equation (17). The coefficients aj in the approximation (19)
are determined by taking Nb + Ni = n collocation points (xi, yi) on the boundary and
interior of the domain, and solving the two linear systems

n∑
j=1

ajBΨj(rk) = g(xk, yk), 1 ≤ k ≤ Nb and
n∑

j=1

ajϕj(rl) = f(xl, yl), 1 +Nb ≤ l ≤ n

(21)

which are combined to give one linear system [A]{a} = {b} for the solution vector {a} =[
a1 · · · an

]t
. The coefficient matrix and the right hand side vector are given as

[A] =



BΨ1(r1) BΨ2(r1) · · · BΨn(r1)
...

...
. . .

...

BΨ1(rNb
) BΨ2(rNb

) · · · BΨn(rNb
)

ϕ1(rNb+1) ϕ2(rNb+1) · · · ϕn(rNb+1)
...

...
. . .

...

ϕ1(rn) ϕ2(rn) · · · ϕn(rn)


n×n

, {b} =



g(x1, y1)
...

g(xNb
, yNb

)
f(xNb+1, yNb+1)

...
f(xn, yn)


n×1

.

The solution of the system gives the coefficients aj , 1 ≤ j ≤ n and then the approximate

solution becomes û(x, y) =
n∑

j=1
ajΨj(r).

In this study, all of the equations (8)-(9), (11)-(12) and (15)-(16) are Poisson’s type
equations, and they are solved iteratively by using RBF approximation. That is, L = ∇2,
the Laplace operator and B = I, the identity boundary operator for all of the equations.
We have used linear, quadratic polynomials and multiquadratic RBFs which resulted in
insignificant differences in the flow behavior. Thus, the computations are carried with

linear RBF for the computational simplicity as ϕ(r) = 1 + r giving Ψ(r) =
r2

4
+
r3

9
. The
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iterative process starts with an initial estimate of the vorticity and solving the equations in
the order for the velocity components, stream function, vorticity and pressure. The electric
potential is obtained when the velocity components are available from the equations (15).
The iteration continues until a preassigned tolerance (ε) is reached between two successive
iterations by using maximum absolute error. In each iteration, all the required space

derivatives of the unknowns are obtained with the use of coordinate matrix ϕ as
∂D

∂x
=

∂ϕ

∂x
ϕ−1D,

∂D

∂y
=
∂ϕ

∂y
ϕ−1D where D denotes u, v and ω.

4. Numerical results

The steady MHD Stokes and incompressible MHD flows in a constricted enclosure with
a moving left wall are analyzed by using RBF approximation. External magnetic field
applies in the x−, y− or z−directions. We take stopping criteria tolerance for the pressure
as 10−3 using maximum absolute error. Relaxation parameters α and β, 0 ≤ α, β ≤ 1 for
the vorticity and pressure values are used to accelerate the convergence. We discretize the
boundary of the enclosure by taking Nb = 96 and Nb = 120 uniformly distributed points
for the MHD Stokes flow and the MHD flow, respectively. The system of equations for
u, v, ψ and p are solved using ’mldivide’ function in MATLAB.

4.1. Magnetic field in the x−direction. The two-dimensional MHD Stokes flow equa-
tions (8)-(9) are solved iteratively when the magnetic field is acted horizontally. To see
the effects of both magnetic field and the constriction of the pipe on the Stokes flow we
take several values of Hartmann number (0 ≤ M ≤ 100) and the constriction ratio of
the enclosure (0% ≤ CR ≤ 75%). The numerical solution is shown in terms of stream
function, vorticity and pressure in Figures 2-4.

Figure 2 shows the effect of magnetic field on the Stokes flow in a non-constricted
enclosure. In the absence of the magnetic field (M = 0), Stokes flow is concentrated in
front of the left moving wall with a similar profile in a cavity with moving top lid as given
in [15]. As the intensity of the magnetic field increases, fluid flows in almost all parts of
the enclosure. Also, the main vortex of the flow shifts through the center of the enclosure.
Further increase in M causes side layers to be formed on the walls parallel to the applied
magnetic field and also Hartmann layers on the vertical walls especially pronounced on the
left wall with the effect of its movement upwards. The vorticity has the expected behavior
due to the movement of the left wall when M is small. But, it forms the boundary layers
leaving the central part almost stagnant as M increases. Pressure is uniformly distributed
with an increasing value between the top and the bottom walls as M increases.

In Figure 3, we fix the constriction ratio to CR = 25% and increase Hartmann number
to analyze the impact of the magnetic field on the Stokes flow in a constricted enclosure.
When the pipe is constricted, pressure tends to be increased at the right corners, the
behavior of the flow does not change significantly, but the flow is mostly concentrated
near the left moving wall and in the constricted area leaving the parts close to the right
corners stagnant. Horizontally applied magnetic field with an increasing intensity retards
the effect of moving left wall as in the case of non-constricted cavity (Figure 2) extending
the flow to the whole enclosure.

The effect of the constriction ratio on the MHD Stokes flow under the effect of horizontal
magnetic field is depicted in Figure 4. When the constriction is further increased, the
fluid completely flows in the left constricted part and the rest of the cavity is stagnant.
Constriction deteriorates the uniform distribution of pressure. Pressure contours are anti-
symmetrically squeezed through the corners of the cavity with respect to y = 0.5 line.
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4.2. Magnetic field in the y−direction. With a uniform magnetic field applied in the
y−direction, MHD Stokes flow equations (11)-(12) are solved for several Hartmann number
values (0 ≤M ≤ 100) and constriction ratios (0% ≤ CR ≤ 75%). The flow characteristics
are shown in Figures 5-7.

M
=

0
M

=
10

M
=

30
M

=
50

M
=

10
0

Figure 2. MHD Stokes flow with CR = 0%, H0 = (1, 0, 0).
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0
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0

Figure 3. MHD Stokes flow with CR = 25%, H0 = (1, 0, 0).
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Figure 4. MHD Stokes flow with M = 10, H0 = (1, 0, 0).

The influence of the vertical magnetic field on the creeping flow in an enclosure with a
moving left lid is shown in Figure 5. The behaviors of the flow and pressure are completely
different from the ones obtained with horizontally applied magnetic field which can be
seen by comparing the results given in Figure 2 and Figure 5. As M increases, the flow is
retarded and completely concentrated through the moving left wall forming boundary side
layer. This is due to the direction of magnetic field which is the same with the moving left
wall. Further increase in M , secondary flow with a small magnitude occurs and the rest
of the cavity is stagnant. As the strength of the vertical magnetic field increases, pressure
is distributed anti-symmetrically with respect to horizontal centerline of the enclosure in
terms of two loops mostly concentrated near the left wall.

Constricted enclosure with the ratio CR = 25% causes secondary flow and pressure
appearance near the right corners when the magnetic field effect is absent. As M increases,
secondary flow near the right wall enlarges first due to the constriction, but a further
increase in M again pushes the flow through the moving left wall contrary to the effect of
horizontally applied magnetic field (Figure 6). It was observed in Figure 3 that magnetic
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field acted in the x−direction retards the effect of moving lid and pushes the fluid to flow
in the whole enclosure.

In Figure 7, we see the influence of further constrictions of the enclosure on the MHD
Stokes flow. Secondary flow in front of the right wall enlarges first when the enclosure
is constricted. Then, the effects of 75% constriction and moving left wall weaken this
secondary flow and move the fluid through the left wall. The vorticity and pressure con-
centrate in front of the left moving lid as in the case of magnetic field acted in x−direction
(Figure 4). Pressure appears at the right corners with an increasing value due to increase
in the constriction showing the anti-symmetric profile again with respect to y = 0.5.

4.3. Magnetic field in the z−direction. The viscous, electrically conducting, incom-
pressible fluid is considered in a constricted pipe under the effect of a magnetic field. The
external magnetic field is applied in the pipe-axis direction, generating also the electric
potential. Thus, the MHD equations (15)-(16) adopting electric potential are solved iter-
atively by taking several values of Hartmann number and the constriction ratios. We fix
first the Stuart number as N = 16 and take Hartmann number values M = 20 and 40
which correspond to Reynolds numbers Re = 25 and 100, respectively, since Re = M2/N
[10]. From the obtained numerical results, the flow, electric potential and pressure are
simulated in Figures 8-10.

M
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0
M

=
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M
=

30
M

=
50

M
=

1
00

Figure 5. MHD Stokes flow with CR = 0%, H0 = (0, 1, 0).
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M
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M
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0

Figure 6. MHD Stokes flow with CR = 25%, H0 = (0, 1, 0).

In Figure 8, the effect of perpendicularly applied magnetic field on the flow is analyzed in
a non-constricted enclosure. As Hartmann number increases, streamlines and equivorticity
lines move through the moving left wall forming boundary layer and the rest of the cavity
is stagnant as in the case of y−direction magnetic field. The electric potential has the
same behavior and magnitude of stream function since ∇2ψ = −ω, ∇2φ = ω and both ψ
and φ vanish on the boundary. Symmetry in the flow and pressure with respect to y = 0.5
line is destroyed. Especially vorticity shows a fluctuation through the top wall and upper
left corner instead of forming boundary layer near the left wall. This behavior is the result
of strong magnetic field applied perpendicular to the cross-section (enclosure) of the pipe.
Increase in the strength of the magnetic field increases the pressure values, but decreases
magnitudes of stream function and electric potential. Pressure is unevenly distributed
in the enclosure and highly concentrated at the moving left corner of the cavity as M
increases.

C
R

=
50

%
C
R

=
75

%

Figure 7. MHD Stokes flow with M = 10, H0 = (0, 1, 0).

Figures 9-10 show the effect of constriction on the incompressible MHD flow. It is
observed that an increase in the constriction ratio of the enclosure leads to the development
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of secondary vortex in the right part of the enclosure for the flow and the electric potential.
When the pipe is constricted further, this secondary vortex moves through the constricted
area. Pressure is pronounced completely in the left part with descending values when the
constriction of the enclosure is increased.

5. Conclusions

The RBF approximations to the MHD Stokes flow and MHD flow are given in a con-
stricted square enclosure with a moving left wall. Flow is subjected to different orientations
(x−, y− or z−directions) of external magnetic field. We analyze the effects of both mag-
netic field and the constriction ratio on the MHD and MHD Stokes flows. For the Stokes
flow an increase in the intensity of horizontal magnetic field overwhelms the effect of the
moving left wall, that is, the fluid flows in the whole channel as M increases. However,
vertically applied magnetic field causes the flow to concentrate in front of the left wall
forming a boundary layer. Magnetic field in the x−direction prevents the formation of
the secondary flow in front of the right part of the cavity which is observed in the case of
vertical magnetic field due to the constriction. When the enclosure is constricted further,
flow is squeezed through the left wall regardless of the direction of the magnetic field. For
the MHD flow in the constricted enclosure, electric potential is generated and included
to the MHD flow equations due to the applied magnetic field in the pipe-axis direction.
Electric potential has the same behavior of the flow. As M increases, the magnitude of the
velocity (flow is flattened) and electric potential decrease but the pressure increases. The
increase in the constriction ratio first causes the secondary vortex of the electric potential
to enlarge in the right part of the enclosure, then it concentrates through the constricted
area. The numerical solutions are obtained with a considerably low computational cost
through the use of radial basis function approximation.

M
=

20
M

=
40

Figure 8. MHD flow with electric potential for CR = 0%, H0 = (0, 0, 1).
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Figure 9. MHD flow with electric potential for M = 20, H0 = (0, 0, 1).
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Figure 10. MHD flow with electric potential for M = 40, H0 = (0, 0, 1).

References

[1] Bustamante, C.A., Power, H., Sua, Y.H. and Florez, W.F., (2013), A global meshless collocation
particular solution method (integrated radial basis function) for two-dimensional Stokes flow problems,
App. Math. Model, 37, pp. 4538-4547.

[2] Chen, C.S., Fan, C.M. and Wen, P.H., (2012), The method of approximate particular solutions for
solving certain partial differential equations, Numer. Methods Partial Differ. Equ., 28, pp. 506-522.

[3] Eldho, T.I. and Young, D.L., (2001), Solution of Stokes flow problem using dual reciprocity boundary
element method, J. Chin. Inst. Chem. Eng., 24 pp. 141-150.

[4] Galaktionav, O.S., Meleshko, V.V., Peters, G.W.M. and Meijer, H.E.H., (1999), Stokes flow in a
rectangular cavity with a cylinder, Fluid Dyn. Res., 24, pp. 81-102.
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