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EXISTENCE OF FIXED POINT AND BEST POINT OF PROXIMITY

FOR MULTIFUNCTIONAL NON SELF MAPPINGS IN A PARTIAL

METRIC SPACE

MOSTEFA DJEDIDI1, ABDELOUHAB MANSOUR1, §

Abstract. In this paper we give some theorems of existence of best points of proximity
for a multifunctional non-self-mapping in a partial metric space and some approxima-
tions on the sets of the best points of proximity. Other results are also given.
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1. Introduction

Let A,B be two nonempty subsets of a metric space (X, d). The aim of this paper
is to establish the existence theorems of a best proximity point x ∈ A, which satisfies
inf{p(x, y) : y ∈ F (x)} = dist(A,B) for a non-self-mapping multifunction F : A→ 2B.
In this article, we prove that the results obtained in [3] can be enhanced and managed on
partial metric spaces. We define

d(x,B) = inf
y∈B

d(x, y), e(A,B) = sup
x∈A

d(x,B)

and

D(A,B) = max(e(A,B), e(B,A)).

Here e(A,B) is the excess of A over B and D(A,B) is the Pompeiu-Hausdorff distance
between A and B. And let

A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B), for somex ∈ A}.
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of Mathematics, 2021; all rights reserved.
The authors are partially supported by operator laboratory, Eloued, Algeria.

319



320 TWMS J. APP. ENG. MATH. V.11, N.2, 2021

Definition 1.1. [3] Let (X, d) be a partial metric space and (A,B) a pair of nonempty
subsets of X, and A 6= ∅.
We say that the pair (A,B) satisfies the P-property if and only if{

d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)
⇒ d(x1, y1) = d(x2, y2).

Where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Theorem 1.1. [3] Let (X, d) be a complete metric space and A,B two closed and nonempty
subsets of X such that A0 6= ∅ and the pair (A,B) satisfies the P-property. We assume
that F : A→ 2B a multifunction with bounded and closed value. If there exists a constant

θ ∈ (0, 1) such that
[
D(F (x), F (y)) ≤ θd(x, y), ∀x, y ∈ A

]
and F (x) ⊆ B0 for all

x ∈ A0. Then F has a best proximity point x in A.

Definition 1.2. We say that the function p : X ×X → [0,+∞[ is a partial metric on X
if the following conditions are satisfied:

(a) p(x, x) = p(y, y) = p(x, y) if and only if x = y for all x, y ∈ X,
(b) p(x, x) ≤ p(x, y) for all x, y ∈ X,
(c) p(x, y) = p(y, x) for all x, y ∈ X,
(d) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y) for all x, y, z ∈ X.

Then (X, p) is called a partial metric space.

For a partial metric p on X, the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1)

and

pw(x, y) = p(x, y)−min{p(x, x), p(y, y)} (2)

are metrics on X. Each partial metric p on X Generates a T0-topology τp with a basis the
families of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 1.3. [17]

(i) A sequence {xn} in a partial metric space (X, p) converges to x ∈ X if and only if
p(x, x) = limn→∞ p(x, xn).

(ii) A sequence {xn} in a partial metric space (X, p) is called Cauchy sequence if and
only if limn,m→∞ p(xn, xm) exists and finite.

(iii) A partial metric space (X, p) est is complete if any Cauchy sequence {xn} in X
converges to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Lemma 1.1. [17]

(a1) A sequence {xn} is Cauchy in a partial metric space (X, p) if and only if {xn} is
Cauchy in the space (X, ps).

(a2) A partial metric space (X, p) is complete if and only if the space (X, ps) Is complete.
Morewer

lim
n→∞

ps(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm). (3)
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Let A,B be two nonempty subsets of a partial metric space (X, p), the partial surplus
ep(A,B) from A to B and Dp(A,B) are the partial distance of Pompeiu-Hausdorff between
A and B defined as follows:

p(x,B) = inf
y∈B

p(x, y),

p(A,B) = sup
x∈A

p(x,B)

and

p(A,B) = max(ep(A,B), ep(B,A)).

Remark 1.1. [6] Let (X, p) be a partial metric space and A a nonempty subset of X, then
a ∈ A⇔ p(a,A) = p(a, a).

Lemma 1.2. [7] Let (X, p) be a partial metric space and A,B two closed, nonempty and
bounded subsets of X, and h > 1. Then for each a ∈ A, there exists b ∈ B, such that
p(a, b) ≤ hDp(A,B).

We next apply the notations

A0 = {x ∈ A : p(x, y) = p(A,B), for some y ∈ B}

and

B0 = {y ∈ B : p(x, y) = p(A,B), for somex ∈ A}.

Definition 1.4. Let (X, p) be a partial metric space and (A,B) a pair of nonempty subsets
of X, and A 6= ∅.
We say that the pair (A,B) satisfies the P-property if and only if{

p(x1, y1) = p(A,B)

p(x2, y2) = p(A,B)
⇒ p(x1, y1) = p(x2, y2).

Where x1, x2 ∈ A0 and y1, y2 ∈ B0.

2. Main results

2.1. Existence of best proximity point for non-self mapping multifunction.

Theorem 2.1. Let (X, p) be a complete partial metric space and A,B two closed and
nonempty subsets of X such that A0 6= ∅ and the pair (A,B) satisfies the P-property . We
assume that F : A→ 2B a multifunction with bounded and closed values. If there exists a
constant θ ∈ (0, 1) such that

Dp(F (x), F (y)) ≤ θp(x, y), ∀x, y ∈ A.

And F (x) ⊆ B0 for each x ∈ A0. Then F has a best proximity point x in A.
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Proof. Let x0 ∈ A0, and y0 ∈ F (x0) ⊆ B0. Then there exists x1 ∈ A0, such that
p(x1, y0) = p(A,B). On the other hand, by lemma 1.2 we obtain y1 ∈ F (x1) ⊆ B0 such that

p(y0, y1) ≤ Dp(F (x0), F (x1)) + θ.

Futher more, there exists x2 ∈ A0, such that p(x1, y1) = p(A,B), and y2 ∈ F (x2) ⊆ B0

such that

p(y1, y2) ≤ Dp(F (x1), F (x2)) + θ2.

One continues for getting xn ∈ A0, such that p(xn, yn−1) = p(A,B), and yn ∈ F (xn) ⊆ B0

such that

p(yn−1, yn) ≤ Dp(F (xn−1), F (xn)) + θn.

Since p(xn+1, yn) = p(A,B) and p(xn, yn−1) = p(A,B), by the P-property, we obtain
p(xn, xn+1) = p(yn−1, yn). Which gives

p(xn, xn+1) = p(yn−1, yn) ≤ Dp(F (xn−1), F (xn)) + θn

≤ θp(xn−1, xn) + θn

≤ θp(yn−2, yn−1) + θn)

≤ θ(Dp(F (xn−2), F (xn−1)) + θn−1) + θn

≤ θ2p(xn−2, xn−1) + 2θn

...

≤ θnp(x0, x1) + nθn → 0, whenn→ +∞.

Next by definition of ps, we get ps(xn, xn+1) ≤ 2p(xn, xn+p)→ 0, when n→ +∞. We now
prove that (xn) is a Cauchy sequence in (X, ps). Suppose that there exist an ε > 0 and
k ∈ N, there exist mk, nk ∈ N such that mk > nk > k and p(xmk

, xnk
) > ε. We have

p(A,B) ≤ p(ynk−1, xmk
)

≤ p(ynk−1, xnk
) + p(xnk

, xmk
)− p(xnk

, xnk
)

≤ p(ynk−1, xnk
) + p(xnk

, xmk
)

≤ p(ynk−1, xnk
) + p(xnk

, xnk+1) + ...+ p(xmk−1, xmk
).

Taking the limits on k we get

lim
k→∞

p(ynk−1, xnk
) + lim

k→∞
p(xnk

, xmk
) = p(A,B).

Which gives lim
k→∞

p(xnk
, xmk

) = 0. Since ps(xnk
, xmk

) < 2p(xnk
, xmk

) → 0, then (xn) is a

Cauchy sequence in (X, ps), and since (X, p) is complete then by lemma 1.1, (X, ps) is a
complete metric space and so the sequence (xn) converges in X. Let x = lim

n
xn. Since A

is closed, we have x ∈ A.
Now, since p(xn, xn+1) = p(yn−1, yn), the sequence (yn) is convergent in X. Let y = lim

n
yn.
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Sine B is closed, we have y ∈ B. On the other hand, by lemma 1.1, we have

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm) = 0

and

p(y, y) = lim
n→+∞

p(yn, y) = lim
n,m→+∞

p(yn, ym) = 0

and p(x, y) = p(A,B). Hence,

0 ≤ p(yn, F (x))

≤ Dp(F (xn), F (x))

≤ θp(xn, x).

We take the limit n → +∞, we obtain p(y, F (x)) = 0 which gives p(y, F (x)) = p(y, y),

using remark 1.1, to get y ∈ F (x) = F (x). One obtains that x is a best proximity point
in A which satisfies p(x, F (x)) = p(A,B). �

As a direct result of Theorem 2.1, we have the following result.

Corollary 2.1. [7] Let (X, p) be a complete partial metric space and F : X → 2X be a
multifunction with bounded and closed values. If there exists a constant θ ∈ (0, 1) such
that

Dp(F (x), F (y)) ≤ θp(x, y), ∀x ∈ X and ∀y ∈ X.
Then F has a fixed point x in X.

In the following, let PFi be the set of best proximity points for a multifunction Fi.

Theorem 2.2. Let (X, d) be a complete metric space and A,B two closed nonempty
subsets of X such that A0 6= ∅ and the pair (A,B) satisfies the P-property. Let Fi :
A→ 2B, i = 1, 2 be two multifunctions with compact non empty values. If there exist two
constants θ1, θ2 ∈ (0, 1) such that

D(F1(x), F1(y)) ≤ θ1d(x, y) ∀x ∈ Aand ∀y ∈ A,
D(F2(x), F2(y)) ≤ θ2d(x, y) ∀x ∈ Aand ∀y ∈ A

and Fi(x) ⊆ B0, i = 1, 2, for each x ∈ A0. Then

D(PF1, PF2) ≤
1

1−max{θ1, θ2}
[sup
x∈A

D(F1(x), F2(x))].

Proof. Let ε > 0, we choose β > 0 such that β
∑
nθn2 < 1 and α =

βε

(1− θ2)
. Let

x0,1 = x0 ∈ PF1, there exists y0,1 ∈ F1(x0) ⊆ B0 such that d(x0, y0,1) = d(A,B). On
the other hand, there exist y0 ∈ F2(x0) ⊆ B0 and x1 ∈ A0 such that d(x1, y0) = d(A,B).
By the P-property, we get d(x0, x1) = d(y0,1, y0). Which gives

d(x0, x1) ≤ D(F1(x0), F2(x0)) + ε.

We take y1 ∈ F (x1) ⊆ B0 such that

d(y0, y1) ≤ D(F2(x0), F2(x1)) + θ2α.
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Furthermore, there exists x1 ∈ A0, such that d(x1, y1) = d(A,B), and there exists
y2 ∈ F2(x2) ⊆ B0 such that

d(y1, y2) ≤ D(F2(x1), F2(x2)) + θ22α.

We continue to find xn ∈ A0, such that d(xn, yn−1) = d(A,B), and there exists yn ∈
F2(xn) ⊆ B0 such that

d(yn−1, yn) ≤ D(F2(xn−1), F2(xn)) + θn2α.

Since d(xn+1, yn) = d(A,B) and d(xn, yn−1) = d(A,B), by the P-property, we get d(xn, xn+1) =
d(yn−1, yn). Which gives

d(xn, xn+1) = d(yn−1, yn) ≤ D(F2(xn−1), F2(xn)) + θn2α

≤ θ2d(xn−1, xn) + θn2α

≤ θ2d(yn−2, yn−1) + θn2α

≤ θ2(D(F2(xn−2), F2(xn−1)) + θn−12 ) + θn2α

≤ θ22d(xn−2, xn−1) + 2θn2α

...

≤ θn2 d(x0, x1) + nθn2α→ 0, whenn→ +∞.
(4)

On the other hand, we prove that (xn) is a Cauchy sequence in A. One suppose that
there exists ε > 0 and for all k ∈ N, there exist mk, nk ∈ N such that mk > nk > k and
d(xmk

, xnk
) > ε. We have

d(A,B) ≤ d(ynk−1, xmk
)

≤ d(ynk−1, xnk
) + d(xnk

, xmk
)

≤ d(ynk−1, xnk
) + d(xnk

, xmk
)

≤ d(ynk−1, xnk
) + d(xnk

, xnk+1) + ...+ d(xmk−1, xmk
).

(5)

Taking the limit, we get

lim
k→∞

d(ynk−1, xnk
) + lim

k→∞
d(xnk

, xmk
) = d(A,B).

Which gives lim
k→∞

d(xnk
, xmk

) = 0. We get (xn) a Cauchy sequence in a complete metric

space and so the sequence (xn) is convergent in X. Let x2 = lim
n
xn. Since A is closed, we

get x2 ∈ A.
Since d(xn, xn+1) = d(yn−1, yn), the sequence (yn) converges in X. Let y = lim

n
yn. Since

B is closed, we get x2 ∈ B and

0 ≤ d(yn, F2(x2))

≤ D(F2(xn), F2(x2))

≤ θ2d(xn, x2).
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Taking the limit, n → +∞, we get d(y, F2(x2)) = 0. We obtain x2 as the best proximity
point in A which satisfies d(x2, F2(x2)) = d(A,B). Then we get

d(x0, x2) ≤
∞∑
n=0

d(xn, xn+1)

≤
∞∑
n=0

(θn2 d(x0, x1) + nθn2α)

≤ 1

1− θ2
d(x0, x1) +

∞∑
n=1

nθn2α)

≤ 1

1− θ2
(d(x0, x1) + ε)

≤ 1

1− θ2
(D(F1(x0), F2(x0)) + 2ε)

(6)

We obtain for all ε > 0,

d(x0,1, x2) ≤
1

1− θ2
(D(F1(x0,1), F2(x0,1)) + ε).

As previously, let x0,2 ∈ PF2, there exists x1 ∈ PF1 such that

d(x0,2, x1) ≤
1

1− θ1
(D(F1(x0,1), F2(x0,1)) + ε), ∀ε > 0.

�

Theorem 2.3. Let (X, p) a complete partial metric space and A,B two closed nonempty
subsets of X such that A0 6= ∅ and the pair (A,B) satisfies the P-property. Let Fi :
A → 2B, i = 1, 2 two multifunctions with compact values. If there exist two constants
θ1, θ2 ∈ (0, 1) such that

Dp(F1(x), F1(y)) ≤ θ1p(x, y) ∀x ∈ A , ∀y ∈ A,
Dp(F2(x), F2(y)) ≤ θ2p(x, y) ∀x ∈ A , ∀y ∈ A,

and Fi(x) ⊆ B0, i = 1, 2, for each x ∈ A0. Then

Dp(PF1, PF2) ≤
1

1−max{θ1, θ2}
[sup
x∈A

Dp(F1(x), F2(y))].

Proof. Let ε > 0, we choose β > 0 such that β
∑
nθn2 < 1 and α =

βε

(1− θ2)
. Let

x0,1 = x0 ∈ PF1, there exist y0,1 ∈ F1(x0) ⊆ B0 such that d(x0, y0,1) = d(A,B). Other-
wise, there exist y0 ∈ F2(x0) ⊆ B0 and x1 ∈ A0 such that p(x1, y0) = p(A,B). By the
P-property, we get p(x0, x1) = p(y0,1, y0), which gives

p(x0, x1) ≤ Dp(F1(x0), F2(x0)) + ε.

We take y1 ∈ F (x1) ⊆ B0 such that

p(y0, y1) ≤ Dp(F2(x0), F2(x1)) + θ2.

Else, there exists x1 ∈ A0, such that p(x1, y1) = p(A,B), and there exists y2 ∈ F2(x2) ⊆ B0
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such that

p(y1, y2) ≤ Dp(F2(x1), F2(x2)) + θ22.

We continue to find xn ∈ A0, such that p(xn, yn−1) = p(A,B), and yn ∈ F2(xn) ⊆ B0 such
that

p(yn−1, yn) ≤ Dp(F2(xn−1), F2(xn)) + θn2 .

Since p(xn+1, yn) = p(A,B) and p(xn, yn−1) = p(A,B), by the P-property, we get p(xn, xn+1) =
p(yn−1, yn). Which gives

p(xn, xn+1) = p(yn−1, yn) ≤ Dp(F2(xn−1), F2(xn)) + θn2
≤ θ2p(xn−1, xn) + θn2

≤ θ2(Dp(F2(yn−2), F2(yn−1)) + θn−12 )

≤ θ2(Dp(F2(xn−2), F2(xn−1)) + θn−12 ) + θn2

≤ θ22p(xn−2, xn−1) + 2θn2
...

≤ θn2 p(x0, x1) + nθn2 → 0, whenn→ +∞.

By definition of ps, we get ps(xn, xn+1) ≤ 2p(xn, xn+p)→ 0, when n→ +∞. On the other
hand, we prove that (xn) is a Cauchy in (X, ps). One suppose that there exist ε > 0 and
for all k ∈ N, there exists mk, nk ∈ N such that mk > nk > k and p(xmk

, xnk
) > ε. We

have

p(A,B) ≤ p(ynk−1, xmk
)

≤ p(ynk−1, xnk
) + p(xnk

, xmk
)− p(xnk

, xnk
)

≤ p(ynk−1, xnk
) + p(xnk

, xmk
)

≤ p(ynk−1, xnk
) + p(xnk

, xnk+1) + ...+ p(xmk−1, xmk
).

Taking the limit we get

lim
k→∞

p(ynk−1, xnk
) + lim

k→∞
p(xnk

, xmk
) = p(A,B).

Which gives lim
k→∞

p(xnk
, xmk

) = 0. Since ps(xnk
, xmk

) < 2p(xnk
, xmk

) → 0, we get (xn) a

Cauchy sequence in (X, ps), and since (X, p) is complete then by lemma 1.1, (X, ps) is a
complete metric space and the sequence (xn) converges in X. Let x2 = lim

n
xn. Since A is

closed we have x2 ∈ A. Next, since p(xn, xn+1) = p(yn−1, yn), the sequence (yn) converges
in X. Let y = lim

n
yn. Since B is closed we have y ∈ B.

Otherwise, by lemma 1.1, we have

p(x2, x2) = lim
n→+∞

p(xn, x2) = lim
n,m→+∞

p(xn, xm) = 0,
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p(y, y) = lim
n→+∞

p(yn, y) = lim
n,m→+∞

p(yn, ym) = 0,

and p(x2, y) = p(A,B). As result,

0 ≤ p(yn, F2(x2))

≤ Dp(F2(xn), F2(x2))

≤ θ2p(xn, x2).

Taking the limit n → +∞, we get p(y, F2(x2)) = 0 which gives p(y, F2(x2)) = p(y, y),

using remark 1.1, to get y ∈ F2(x2) = F2(x2). Then we obtain x2 as a best proximity
point in A which satisfies p(x2, F2(x2)) = p(A,B). Then we get

p(x0, x2) ≤
∞∑
n=0

p(xn, xn+1)−
∞∑
n=1

p(xn, xn)

≤
∞∑
n=0

p(xn, xn+1)

≤
∞∑
n=0

(θn2 p(x0, x1) + nθn2α)

≤ 1

1− θ2
p(x0, x1) +

∞∑
n=1

nθn2α)

≤ 1

1− θ2
(p(x0, x1) + ε)

≤ 1

1− θ2
(Dp(F1(x0), F2(x0)) + 2ε).

(7)

We obtain for all ε > 0,

p(x0,1, x2) ≤
1

1− θ2
(Dp(F1(x0,1), F2(x0,1)) + ε).

As previously, let x0,2 ∈ PF2, there exists x1 ∈ PF1 such that

p(x0,2, x1) ≤
1

1− θ1
(Dp(F1(x0,1), F2(x0,1)) + ε), ∀ε > 0.

�

3. Conclusions

In this paper, we have proved some results of best points of proximity for a multifunc-
tional non-self-mapping in a partial metric space and some approximations on the sets of
the best points of proximity.
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