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NONLINEAR DARK SOLITARY SH WAVES IN A HETEROGENEOUS

LAYER

D. DEMIRKUŞ1, §

Abstract. In this study, we consider the nonlinear propagation of shear horizontal
(SH) waves in a layer of finite thickness. The materials of the layer are assumed to be
heterogeneous, isotropic, and generalized neo-Hookean. We assume that heterogeneity
varies only with the thickness and we choose hyperbolic functions for heterogeneity type.
We also assume that the traction is free on the upper surface of the layer. Furthermore,
the lower boundary is rigidly fixed. Using a perturbation method and keeping the balance
of the nonlinearity and the dispersion in the analysis, we show that the self-modulation
of nonlinear SH waves can be given by the nonlinear Schrödinger (NLS) equation. Using
well known solutions of NLS equation, we find that the dark solitary SH waves can
exist depending on the nonlinear constitution of the layer. Consequently, the effects of
the heterogeneity and the nonlinearity on the deformation field are considered for these
waves.
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1. Introduction

In seismology we see some examples of the seismic waves such as body waves, surface
waves, Love waves, and Rayleigh waves. In this study, we consider shear waves which are
one type of body waves. If shear waves are polarized horizontally, then such waves are
called shear horizontal (SH) waves. In general, the seismic waves are not dispersive in an
unbounded homogeneous medium. Using the wave guides it is possible to obtain dispersive
waves. Seismology, geophysics, and electronic signal processing devices are some examples
of application areas for dispersive elastic waves. More information about applications and
for reviews, we refer to [1] and references therein.

This work includes nonlinear elastic waves in a heterogeneous medium, so we need
to overview some nonlinear works such as from [1] to [10]. In these works, the effect of
constitutional nonlinearity on the propagation characteristics of dispersive elastic waves are
studied in a homogeneous medium. Furthermore, for some linear works in a heterogeneous
medium we refer to from [11] to [13]. In [14], we investigate nonlinear bright solitary
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SH waves in a hyperbolically heterogeneous layer; whereas, in this paper we investigate
nonlinear dark solitary SH waves in a hyperbolically heterogeneous layer. Moreover, In
[15, 16, 17], we consider nonlinear SH waves in a plate. Plate case may be considered a
little bit an improved version of a layer in terms of geometry, i.e. a layer may be though
as a half of a plate. Due to different boundary conditions, we need to consider as different
problems.

The present work searches for the propagation of nonlinear SH waves in a heterogeneous,
isotropic, and generalized neo-Hookean layer overlying a rigid substratum. We assume that
heterogeneity varies with the thickness and we choose hyperbolic function of one variable
as a heterogeneity type. Moreover, the traction is free on the upper surface of the layer and
the lower boundary is rigidly fixed. Applying the method of multiple scales and striking a
balance between the weak nonlinearity and the dispersion in the asymptotic analysis, we
derive a nonlinear Schrödinger (NLS) equation describing a self-modulation of nonlinear
SH waves. We claim that the existence of dark solitary SH waves depends on the nonlinear
constitution of the layer, and consider the effects of the heterogeneity and the nonlinearity
on the propagation characteristics of SH waves via NLS equation. Furthermore, the effects
of the heterogeneity and the nonlinearity on the deformation field are considered for these
waves.

2. Formulation of the Problem

The work [14] can be seen for the anti-plane motion of the considered problem. Our
aim is to overcome with the propagation of nonlinear SH waves, so it is necessary to define
SH wave such that

x = X, y = Y, z = Z + u(X,Y, t). (1)

Here, (x, y, z) and (X,Y, Z) are the spatial and material coordinates respectively, u =
u(X,Y, t) is the displacement in the Z-direction, and t is the time. Furthermore, the
thickness of this layer is h, X-axis is for the propagation of the waves, and Z-axis is for
the motion of the particle. The layer is in the region between the planes Y = 0 and Y = h,
and also the semi-infinite substratum occupies the region Y < 0. The displacement in the
Z-direction is zero at the rigid boundary Y = 0 and the boundary Y = h is assumed
to be free of traction. Moreover, we consider heterogeneous, isotropic, and generalized
neo-Hookean materials in such a layer. Under some restriction for more detail see [14],
the governing equation and the boundary conditions can be written as
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Here, the linear shear wave velocity and the nonlinear material function can be denoted
by cT =

√
µ/ρ and nT respectively, and K can be defined by

K(u) = (∂u/∂X)2 + (∂u/∂Y )2 . (4)

Because of the homogeneity, we note that the functions µ, ρ and nT are constants in [10],
but here they are not. The constituent material of the layer softens in shear if nT < 0,
but if nT > 0 it hardens. In this study, nT indicates a continuously differentiable function
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of Y , and also because of heterogeneity we need to put the following conditions on the
functions µ and ρ

µ = µ0 cosh2(αY ), ρ = ρ0 cosh2(αY ). (5)

Here, µ0 and ρ0 are constants, and α is a parameter. We choose condition (5) for simplicity.
In this paper, we consider not only heterogeneity but also nonlinearity. Therefore, it is
not easy to overcome with two difficulties.

3. Nonlinear Self-Modulation of SH Waves

The method of multiple scales [18] is a good method for solving such a nonlinear prob-
lem. For applying the method, it is necessary to introduce new variables as

xi = εiX, ti = εit, y = Y, i = 0, 1, 2. (6)

Here, x1, x2, t1, t2 indicate the slow variables, x0, y, t0 indicate the fast variables, and ε
indicates a small positive parameter. Then, u can be considered as a function of (6), and
u can be expanded in the following asymptotic series in ε;

u =

∞∑
n=1

εnun(x0, x1, x2, y, t0, t1, t2). (7)

If we plug this asymptotic series with (6) into equation (2) and the boundary conditions
(3), then we can get a system of equations and boundary conditions for determining un
successively. Up to the third-order in ε they can be written as follows:

O(ε) : L0u1 = 0, (8)

∂u1

∂y
= 0 on y = h and u1 = 0 on y = 0; (9)
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We emphasize that it is possible to reduce the obtained order problems to the order
problems [10]. We also emphasize that the obtained order problems are linear at each step
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and the solution of the linear case of this problem is identical with the solution of the first-
order problem. Furthermore, we observe that the main analysis is same as the analysis
in [14], but the results are different. So, we consider only the first-order perturbation
problem here, let

u1 = µ
− 1

2
0 sech(αy)
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[
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1 eilksly +B

(l)
1 e−ilksly

]
eilφ + c.c. (15)

be for the solution of equation (8) where

sl = [(c2/c2
0T

)− (α2/(k2l2))− 1]1/2, φ = kx0 − ωt0, c0T =
√
µ0/ρ0, (16)

k, ω, and c = ω/k indicate the wave number, the angular frequency, and the phase
velocity respectively. Moreover, l indicates a positive integer, c.c. indicates the complex

conjugate to the preceding terms, and also A
(l)
1 and B

(l)
1 indicate the first-order amplitude

functions of wave propagation depending on the slow variables x1, x2, t1, and t2. The case
c > c0T [1 + (α2/(k2l2))]1/2 is for the validity of the analysis; otherwise, the propagation
of SH waves is not possible in this layer. Plugging the form of the solution (15) into the
boundary conditions (9) yields

WlU
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1 = 0 (17)

where Wl denotes the dispersion matrix
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For this paper the nonlinear self-modulation is enough to talk, and the harmonic-
resonance phenomena is not included, so the following condition may be assumed

detWl 6= 0 for l 6= 1. (20)

To obtain the nontrivial solution of system (17) for l = 1, the condition detW1 = 0 is
a must step. Then, using the condition detW1 = 0 we can find the dispersion relation as
follows:

kp cos(kph)− αtanh(αh) sin(kph) = 0 (21)

where p = s1. Therefore,

kph = arctan [kp/(α tanh(αh))] + nπ. (22)

Here, the branches of the dispersion relation can be denoted by n (n = 0, 1, 2, ...). We
observe that dispersion relation (22) as α → 0 is the same as the dispersion relation of
[10]. Under the consideration above, we give the solution of system (17) as

U
(l)
1 = A1R for l = 1 and

U
(l)
1 = 0 for l 6= 1 (23)

where A1 is a complex function of the slow variables and R is a vector satisfying

W1R = 0. (24)

Using (24), we get the vector R, as

R = [R1, R2 ]T =

[
1,
−α tanh(αh) + ikp

α tanh(αh) + ikp
e2ikph

]T
. (25)
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Then, the first-order solution can be given by

u1 = µ
− 1

2
0 A1 sech(αy)(R1e

ikpy +R2e
−ikpy)eiφ + c.c.. (26)

For solution (26), it is necessary to find the function A1, explicitly. Using the com-
patibility condition of the second-order problem we can find the function A1 such that
A1 = A1(x1 − Vgt1, x2, t2), but it is not clear exactly. Moreover, using the third-order
problem and defining the following nondimensional variables and constants

τ = ωt2, ξ = k(x1 − Vgt1), A = kA1, Γ = k2Γ̃/ω, ∆ = ∆̃/ωk2 (27)

then we get nonlinear Schrödinger (NLS) equation as follows:

i
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Here, we define the vectors L and F in [14] and the analysis is same as the work [14], so
for more detail we refer to [14]. Using known properties of solutions of the NLS equation
in the following section, we can discuss the existence of dark solitary SH waves in such a
layer.

4. Conclusion

In wave propagation, the NLS equation is a famous characteristic equation. We know
that the sign of Γ∆ behaves as a criteria for determining how a given initial data will
evolve for long times for the asymptotic wave field governed by the NLS equation. For
Γ∆ < 0, a solution of the form

A(ξ, τ) = φ(η)ei[Γ
2∆φ20τ−F (η)], η = ξ − V0τ (30)

which tends to the uniform solution φ0e
iΓ2∆φ20τ as |η| → ∞ exists. The solutions for φ and

F are found to be

φ2 = φ2
0(1− sin2B0 sech2ψ) and F = arctan(tanB0 tanhψ) (31)

where B0 is a constant, ψ and V0 are given as

ψ = (−Γ∆/2)1/2φ0η sinB0 and V0 = ±2−3/2Γ(−Γ∆)1/2φ0. (32)

Solution (30) is called as a dark solitary wave solution, for more details see [19, 20, 21].
In this study, the following limits are valid for all branches of dispersion relation (22)

C →∞, VG → 0 as K → 0 and C → 1, VG → 1 as K →∞ (33)

where C = c/c0T , VG = Vg/c0T , and K = kh denote the nondimensional phase velocity,
the nondimensional group velocity, and the nondimensional wave number, respectively.
Furthermore, W = wh/c0T denotes the nondimensional angular frequency and A = αh.
We depict the changes of W and C versus K for the first three branches of dispersion
relation (22) with the constant A = 0.01 in Fig. 1 and Fig. 2, respectively. Moreover, we
depict the effect of the heterogeneity on the change of W versus K for the first branch of
dispersion relation (22) with the constants A = 0.01, A = 0.03, and A = 0.05 in Fig. 3.

In this study, it is possible to choose the nonlinear material function as

nT = n0T cosh2(γy). (34)
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neous effect on the
change of W versus K
for n = 0.

Here, n0T indicates a constant and γ indicates a parameter. As a result of this study,
we claim that if the layer consists of a hardening material, i.e. n0T > 0, then Γ∆ < 0

for all phase velocities c > c0T [1 + (α2/(k2l2))]1/2; but if the layer consists of a softening
material, i.e. n0T < 0, we refer to [14]. Hence, using the above review, we claim that if
the layer consists of a hardening material, then the dark solitary SH waves will exist and
propagate in such a layer.

We define a nondimensional constant as Λ = γh and depict the changes of Γ, |∆|,
and Γ|∆| versus K for the first branch of dispersion relation (22) with the constants
A = 0.01, Λ = 0.04, n0T = 1 and µ0 = ρ0 = 1 in Fig. 4. Moreover, we depict the effects of
the heterogeneities on the changes of ∆ and Γ∆ versus K for the first branch of dispersion
relation (22) with the constants A = 0.01, A = 0.03, A = 0.05, Λ = 0.04, n0T = 1 and
µ0 = ρ0 = 1 in Fig. 5 and Fig. 6, respectively.

The following specific hardening material is considered

n0T = 1, µ0 = ρ0 = 1, K = 0.01, ε = 0.01, φ0 = 0.01, B0 = 0.01. (35)
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We show the effect of the heterogeneity on the deformation field of the plane Z = 0 of
the layer for dark solitary SH wave solution (30) considering the first branch of dispersion
relation (22) with the constants A = 0.01, A = 0.03, and A = 0.05 in Fig. 7.

We depict the changes of Γ, |∆|, and Γ|∆| versus K for the first branch of dispersion
relation (22) with the constants A = 0.01, Λ = 0.5, n0T = 1 and µ0 = ρ0 = 1 in Fig. 8. We
also depict the effects of the nonlinearities on the changes of ∆ and Γ∆ versus K for the
first branch of dispersion relation (22) with the constants A = 0.01,Λ = 0.5,Λ = 0.7,Λ =
0.9, n0T = 1 and µ0 = ρ0 = 1 in Fig. 9 and Fig. 10, respectively.

Using specific hardening material (35), we show the effect of the nonlinearity on the
deformation field of the plane Z = 0 of the layer for dark solitary SH wave solution (30)
considering the first branch of dispersion relation (22) with Λ = 0.5,Λ = 0.7, and Λ = 0.9
in Fig. 11.
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2.0 2.5 3.0 3.5 4.0
-4.15

-4.10

-4.05

-4.00

K

D

n=0, L=0.04

A=0.05

A=0.03

A=0.01

Figure 5. Heteroge-
neous effect on the
change of ∆ versus K
for n = 0.

0.00 0.02 0.04 0.06 0.08 0.10
-2.255

-2.250

-2.245

-2.240

-2.235

-2.230

-2.225

-2.220

K

GD

n=0, L=0.04

A=0.05

A=0.03

A=0.01

Figure 6. Heteroge-
neous effect on the
change of Γ∆ versus K
for n = 0.

Figure 7. Heteroge-
neous effect on the de-
formation field of the
plane Z = 0 of the la-
yer for (30).
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