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PRACTICAL STABILITY AND BOUNDEDNESS CRITERIA OF

IMPULSIVE DIFFERENTIAL SYSTEM WITH INITIAL TIME

DIFFERENCE

PALLVI MAHAJAN 1, 2, SANJAY KUMAR SRIVASTAVA2, RAKESH DOGRA2, §

Abstract. In this paper, an impulsive differential system is investigated for the first
time for practical stability and boundedness criteria with respect to initial time differ-
ence. The investigations are carried out by perturbing Lyapunov functions and by using
comparison results. A generalized Lyapunov function has been used for the investiga-
tion. The present results indicate that the stability criteria significantly depend on the
moment of impulses.
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1. Introduction

Impulsive differential systems have been emerging as an important area of investiga-
tion in many problems of practical significance and has a wider scope in many fields like
population dynamics, ecology, control theory fields and many more [6, 12, 23, 24]. While
studying the qualitative behavior of these impulsive differential systems, apart from sta-
bility, which is one of the most important feature, the investigation of systems within
specified bounds is also of great significance. So far as stability is concerned, there are
various stability criteria like asymptotic stability, exponential stability, weighted stability,
eventual stability, practical stability etc. which are widely studied and available in the
literature [5, 14, 18, 19, 2, 15, 16, 27]. In the study of physical as well as biological phe-
nomenon, it is desired that sometimes the system may be unstable mathematically, but
it is practically acceptable because it fluctuates near the equilibrium. In such cases, the
notion of practical stability is very useful which stabilizes the system into certain subsets
of phase space.
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In the classical stability theory, the solutions of differential equations are studied by keep-
ing the starting time fixed, however, while considering the real world problems, it is
sometimes not possible to investigate the stability of the solutions by taking the initial
time same. Stability with respect to initial time difference (ITD) is a generalization of
the basic concept of stability of solutions. The concept of stability with respect to ITD
was initiated by Lakshmikantham and Vatsala [10] and Lakshmikantham et al. [8]. In
the past, different types of stability criteria as well as boundedness properties are studied
for ordinary differential equations relative to ITD without impulse effects [1, 22, 25]. The
definition of practical stability for differential systems relative to ITD was proposed by
Lakshmikantham and Vatsala [10]. Furthermore, the practical stability and boundedness
criteria with respect to ITD are investigated by many researchers for nonlinear differential
systems without impulses [11, 21, 26]. The investigation of impulsive differential equa-
tions with respect to ITD is at its initial stage and has not been explored much in the
past. Nevertheless, so far to the best of our knowledge, Hristova [4] studied the stability
properties of impulsive differential equations relative to ITD, but both practical stability
and boundedness criteria has not been studied by any researcher for impulsive differential
systems in terms of ITD.

In the present work, for the first time, we study the various practical stability criteria
along with boundedness properties for a system of impulsive differential equation with
ITD by perturbing the Lyapunov function. Lyapunov function is widely recognized as
a tool for investigating the stability properties of nonlinear differential equations. When
a Lyapunov function does not seem to satisfy all the required conditions to obtain the
desired properties, then it becomes worth, perturbing the Lyapunov function rather than
discarding it. The concept of perturbing Lyapunov function to study the nonuniform
properties of solutions of differential equations was firstly given by Lakshmikantham [7] and
further extended to investigate various stability criteria for impulsive differential equations
[13, 28, 20]. The notion of perturbing Lyapunov function was used by McRae and Song
et al. [17, 22] to investigate the stability properties of differential equations without
impulse effect relative to ITD. Hristova [3] derived the practical stability criteria for delay
differential equations with respect to ITD. Song and Li [20] investigated the practical
stability and boundedness properties of nonlinear impulsive systems by using the perturbed
Lyapunov function. Now, in this paper, we are using the technique of perturbing Lyapunov
function for investigating the stability and boundedness criteria of impulsive differential
equations with ITD. A generalized Lyapunov function is used to investigate the qualitative
behavior of impulsive differential system.

The paper is organized as follows. In section 2, we introduce some basic definitions and
notations. Some comparison results are presented in section 3. In section 4, we derive
some criteria to bring the practical stability and boundedness of impulsive differential
equation with respect to ITD. Finally, on the basis of these results, conclusion is drawn
in section 5.

2. Preliminaries

Let Rn denotes the n dimensional Euclidean space and let R+ = [0,∞).
Consider the impulsive differential system:{

ẋ = f(t, x), t 6= ti

x(t+) = x(t) + Ii(x), t = ti, i = 1, 2, 3...
(1)

where f : R+×Rn → Rn is piece-wise continuous function and Ii : Rn → Rn is continuous
function for every i where i = 1, 2, 3... .
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Let x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) be two solutions of the system (1) through
(t0, x0) and (τ0, y0) respectively, where t0, τ0 ∈ R+. Here both x(t) and y(t) are piecewise
continuous having discontinuity of first kind at t = ti where i = 1, 2, 3..., having left
continuity defined as x(t−i ) = x(ti) and x(t+i ) = x(ti) + Ii(x(ti)). In our investigation,
we will study the stability and boundedness criteria with respect to the solution x(t) =
x(t; t0, x0).
Let γ = τ0 − t0 > 0.
Denote S(ρ) = {x ∈ Rn : ‖x‖ < ρ}. Consider the complimentary sets of S(ρ) as Sc(ρ).
Also, consider the following function:

K = {φ ∈ C(R+, R+) : φ is strictly increasing and φ(0) = 0}

CK =
{
ω ∈ C(R2

+, R+) : ω(t, u) ∈ K for each t ∈ R+

}
In order to study the stability and boundedness properties of impulsive differential systems
with respect to ITD, firstly we will discuss some of the definitions as given below:
Definition 2.1 [11]. Let z(t) = x(t; t0, x0)− y(t+ γ; τ0, y0) such that z0 = x0− y0. Then,
the solution x(t) = x(t; t0, x0) of impulsive differential system (1) is:

(S1) practically equistable with respect to the solution y(t) = y(t; τ0, y0) of the system
(1) through (τ0, y0), if for given (µ,A) with 0 < µ < A, there exists a σ = σ(µ,A) >
0 such that ‖z0‖ < µ and |γ| < σ implies ‖z(t)‖ < A, t ≥ t0;

(S2) uniformly practically stable if (S1) holds for all t0 ∈ R+;
(S3) practically quasi- stable, with respect to the solution y(t) = y(t; τ0, y0) of the

system (1) through (τ0, y0), if for given (µ,B, T ), there exists a σ∗ = σ∗(µ,B, T ) >
0 such that ‖z0‖ < µ and |γ| < σ∗ implies ‖z(t)‖ < B, t ≥ t0 + T ;

(S4) uniformly practically quasi- stable, if (S3) holds for all t0 ∈ R+;
(S5) strongly practically stable, if (S1) and (S3) both hold simultaneously ;
(S6) uniformly strongly practically stable, if (S2) and (S4) both hold simultaneously.

Definition 2.2 [11]. Let z(t) = x(t; t0, x0)− y(t+ γ; τ0, y0) such that z0 = x0− y0. Then,
the solution x(t) = x(t; t0, x0) of impulsive differential system (1) is:

(B1) equibounded with respect to the solution y(t) = y(t; τ0, y0) of the system (1)
through (τ0, y0), if for given α > 0, there exist a σ = σ(t0, α) > 0 and β =
β(t0, α) > 0 such that ‖z0‖ < α and |γ| < σ implies ‖z(t)‖ < β, t ≥ t0;

(B2) uniformly bounded if (B1) holds such that both σ and β are independent of t0 ∈
R+;

(B3) quasi- ultimately equibounded, with respect to the solution y(t) = y(t; τ0, y0) of the
system (1) through (τ0, y0), if for given α > 0, there exist β > 0, σ = σ(t0, α) > 0
and T = T (t0, α) such that ‖z0‖ < α and |γ| < σ implies ‖z(t)‖ < β, t ≥ t0 + T ;

(B4) quasi-uniformly ultimately bounded, if (B3) hold such that both σ and T are
independent of t0 ∈ R+;

(B5) ultimately equibounded, if (B1) and (B3) both hold simultaneously;
(B6) uniformly ultimately bounded, if (B2) and (B4) both hold simultaneously.

Definition 2.3 [6]. Let V : R+ ×Rn → R+. Then V is said to belong to class V0 if

(i) V is continuous on each of the sets (ti−1, ti] × Rn and for each x ∈ Rn and i =
1, 2, 3... , lim(t,y)→(t+i ,x)

V (t, y) = V (t+i , x) exists;

(ii) V is Locally Lipschitzian in x.
Define the derivative of the Lyapunov function V ∈ V0 as:

D+V (t, x) = lim
s→0+

sup
1

s
{V (t+ s, x+ sf(t, x))− V (t, x)}
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Consider the nonlinear impulsive differential system (1), for V ∈ PC[R+ × Rn → R+],
we define the generalized derivative [9] depending upon the difference of solutions x(t) =
x(t; t0, x0) and y(t) = y(t; τ0, y0) of the system (1) and a parameter γ, where γ ∈ [0, ρ] for
a fixed number ρ > 0 as follows:

D+V (t, z; γ) = lim
s→0+

sup
1

s

[
V (t+ s, z + sf̃(t, z; γ)− V (t, z))

]
(2)

where f̃(t, z; γ) = f(t+ γ, y(t+ γ))− f(t, x(t)) where z = z(t) = y(t+ γ)− x(t) such that
x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) are two solutions of system (1).

3. Comparison Results

First of all, we will present a comparison Theorem [4] which will be very helpful in our
further investigations.
Lemma 3.1. Let the following conditions holds for t0, τ0, T ∈ R+ where T > t0 and
γ = τ0 − t0 ∈ (0, ρ), for a fixed number ρ:

(1) Let V : [t0, T ]×Rn → R+ and V ∈ V0 such that{
D+V (t, z; γ) ≤ g(t, V (t, z(t)), γ)

V (t+i , z(t
+
i )) ≤ Ji(V (ti, z(ti))

(3)

where g : [t0, T ]×R+× [0, ρ]→ R is continuous and Ji : R→ R is continuous and
non-decreasing.

(2) Let r(t) = r(t; t0, w0, γ) be the maximal solution of the scaler differential equation
such that w ∈ R and

ẇ = g(t, w, γ), t 6= ti,

w(t+i ) = Ji(w(ti)), t = ti, i = 1, 2, 3...

w(t0) = w0, t > t0

(4)

existing for t ∈ [t0, T ].

Then, V (t0, z0) ≤ w0 implies that

V (t, z(t)) ≤ r(t, t0, w0, γ), t ∈ [t0, T ].

Comparison systems: For our investigation, we will use the following two comparison
systems: 

v̇1 = g1(t, v1, γ), t 6= ti,

v1(t
+
i ) = Ji(v1(ti)), t = ti, i = 1, 2, 3...

v1(t0) = v10 ≥ 0

(5)

where v1(t; t0, v10, γ) is any solution of the system (5) whose initial solution at t0 is v10
and 

v̇2 = g2(t, v2, γ), t 6= ti,

v2(t
+
i ) = Fi(v2(ti)), t = ti, i = 1, 2, 3...

v2(t0) = v20 ≥ 0

(6)

where v2(t; t0, v20, γ) is any solution of the system (6) whose initial solution at t0 is v20.
Let the comparison systems (5) and (6) satisfy the following assumptions for a fixed
number ρ > 0:

(C1) g1 : R+×R+× [0, ρ]→ R+ is continuous function and Ji : R+ → R+ is continuous
and non-decreasing.
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(C2) g2 : R+ × R+ × [0, ρ] → R+ is continuous and Fi : R+ → R+ is continuous and
non-decreasing.

Next, will obtain a comparison result for investigating the stability and boundedness
properties of impulsive differential system(1).

Theorem 3.1. Let V1 : R+ × S(ρ)→ R+ and V1(t, x) ∈ V0 such that
D+V1(t, z; γ) + h(t, z(t)) ≤ g1(t, V1(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i ) +

∫ ti

t0

h(s, z(s))ds ≤ Ji(V1(ti, z(ti)), t = ti, i = 1, 2, 3...
(7)

where g1 and Ji satisfy (C1), h(t, x) : R+ × S(ρ)→ R+ is piecewise continuous and inte-
grable such that h(t, x) ≥ b0(‖x‖) where b0 ∈ K. Let r1(t; t0, V1(t0, z0), γ) be the maximal
solution of the comparison system (5).

Then, V1(t0, z0) ≤ v10 implies that V1(t, z(t)) +
∫ t
t0
h(s, z(s))ds ≤ r1(t), t ≥ t0.

Proof. Let x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) be the solutions of the system (1) such
that V (t0, z0) ≤ v10.

Let G(t, z(t)) = V1(t, z(t)) +

∫ t

t0

h(s, z(s))ds (8)

Then, by using inequalities defined in (7), we get

D+G(t, z(t); γ) ≤ g1(t, V1(t, z(t)), γ) and

G(t+i , z(t
+
i )) = V1(t

+
i , z(t

+
i )) +

∫ ti

t0

h(s, z(s))ds

≤ Ji(V1(ti, z(ti))
Therefore, by Lemma 3.1, we have

G(t, z(t)) ≤ r1(t) for t ≥ t0
Hence, we get the desired result. �

4. Main Results

Theorem 4.1. Assume that the following conditions are fulfilled:
(i) 0 < µ < A < ρ;

(ii) Let V1 : R+ × S(ρ)→ R+, V1(t, x) ∈ V0 and V1(t, x) ≤ p1(t, ‖x‖) where p1 ∈ CK such
that {

D+V1(t, z(t); γ) ≤ g1(t, V1(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i )) ≤ Ji(V1(ti, z(ti)), t = ti, i = 1, 2, 3...

(9)

where g1 and Ji satisfy (C1).
(iii) For 0 < η < ρ , there exist a V2 ∈ PC(R+ × S(ρ)

⋂
Sc(η), R+), where V2(t, x) ∈ V0

such that:
q(‖x‖) ≤ V2(t, x) ≤ p2(‖x‖), p2, q ∈ K

and{
D+[V1(t, z(t); γ) + V2(t, z(t), γ)] ≤ g2(t, V1(t, z(t)) + V2(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i )) + V2(t

+
i , z(t

+
i )) ≤ Fi((V1(ti, z(ti)) + V2(ti, z(ti))), i = 1, 2, 3...

where g2 and Fi satisfy (C2).
(iv) p1(t0, µ) + p2(µ) < q(A), for some t0 ∈ R
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(v) For the comparison system (5),
v10 < p1(t0, µ) implies v1(t; t0, v10, γ) < p1(t0, µ)
and for the comparison system (6),
v20 < p1(t0, µ) + p2(µ) implies v2(t; t0, v20, γ) < q(A)
Then, the solution x(t) = x(t; t0, x0) of system (1) is practically equistable.

Proof. Let x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) be two solutions of the system (1) at
different initial times t0 and τ0 respectively.
Let for given 0 < µ < A, there exists a σ(µ,A) ≥ 0, such that ‖z0‖ < µ and |γ| ≤ σ are
satisfied.
We claim that for above conditions, ‖z(t)‖ < A holds for t ≥ t0.
If it is not true, then for the given solutions of the system (1) we have t2 > t1 > t0 such
that

‖z(t1)‖ = µ; ‖z(t2)‖ = A and µ < ‖z(t)‖ < A for t1 < t < t2 (10)

Set v10 = V1(t0, z0).
Since ‖z0‖ < µ, hence by condition (ii) of Theorem 4.1, we have
v10 = V1(t0, z0) ≤ p1(t0, ‖z0‖) ≤ p1(t0, µ) holds.
As all the conditions of Lemma 3.1 are satisfied by using condition ii of Theorem 4.1, we
have

V1(t, z(t)) ≤ r1(t), t ∈ [t0, t1] (11)

where r1(t; t0, V1(t0, z0), γ) is the maximal solution of the comparison system (5).
Thus, from condition (v) of Theorem 4.1 and inequality (11), we have

V1(t0, z0) ≤ p1(t0, µ) implies V1(t1, z(t1)) ≤ p1(t0, µ)

Also, from condition (iii) and (10), we get V2(t1, z(t1)) ≤ p2(‖z(t1)‖) = p2(µ).
Hence, again by using condition (iii) of Theorem 4.1 and Lemma 3.1, V1(t1, z(t1)) +
V2(t1, z(t1)) ≤ p1(t0, µ) + p2(µ), implies

V1(t, z(t)) + V2(t, z(t)) ≤ r2(t), t ∈ [t1, t2] (12)

where r2(t; t1, V1(t1, z(t1)) + V2(t1, z(t1)), γ) is the maximal solution of the comparison
system (6).
Thus, from condition (v) of Theorem 4.1 and inequality (12), we have
V1(t2, z(t2)) + V2(t2, z(t2)) < q(A).
But, as V1(t2, z(t2)) ≥ 0, by condition (iii) and (10), we have
V1(t2, z(t2)) + V2(t2, z(t2)) ≥ V2(t2, z(t2)) ≥ q(‖z(t2)‖) = q(A)
which is a contradiction.
Hence, ‖z(t)‖ < A, t ≥ t0 holds, which proves that the system (1) is practically equistable.

�

Remark 4.1: If in condition (i) of Theorem 4.1, p1 ∈ Ck is replaced as p1 ∈ K and
accordingly take p1 = p1(µ) in condition (iv) and (v), then the system (1) is uniformly
practically stable.

Theorem 4.2. Assume that all the conditions of Theorem 4.1 holds except condition (ii),
which is replaced as follows:
Let V1 : R+ × S(ρ)→ R+, V1(t, x) ∈ V0 and V1(t, x) ≤ p1(t, ‖x‖) where p1 ∈ CK such that

D+V1(t, z(t); γ) + h(t, z(t)) ≤ g1(t, V1(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i )) +

∫ ti

t0

h(s, z(s))ds ≤ Ji(V1(ti, z(ti))), t = ti, i = 1, 2, 3...
(13)
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where g1 and and Ji satisfy (C1) , h(t, x) : R+ × S(ρ)→ R+ is piecewise continuous and
integrable such that h(t, x) ≥ b0(‖x‖) where b0 ∈ K. Then, the solution x(t) = x(t; t0, x0)
of system (1) is strongly practically stable.

Proof. Since, the system (1) is practically stable by Theorem 4.1. In order to prove that
the system (1) is strongly practically stable, it is sufficient to prove its quasi- practical
stability.

Let 0 < µ < B be given and choose T > p1(t0,µ)
b0(B) .

We claim that for given (µ,B, T ) and σ∗ = σ∗(µ,B, T ) > 0, ‖z0‖ < µ and |γ| < σ∗ implies

‖z(t)‖ < B, t ≥ t0 + T (14)

In order to obtain (14), we claim that there exists a t∗ ≥ t0 +T , such that h(t, x) < b0(B)
holds.
If it doesn’t holds, then h(t, x) ≥ b0(B) for all t ∈ [t0, t

∗].
As all the conditions of Theorem 3.1 are satisfied by using inequalities (13), we have

0 ≤ V1 (t∗, z(t∗)) ≤ r1(t∗, t0, z0)−
∫ t∗

t0

h(s, z(s)ds

≤ p1(t0, µ)−
∫ t0+T

t0

h(s, z(s)ds

≤ p1(t0, µ)− b0(B)T

≤ p1(t0, µ)− b0(B)
p1(t0, µ)

b0(B)

< 0

which is a contradiction.
Hence, h(t, x) < b0(B) holds for t ≥ t0 + T .
Thus, b0(‖z(t)‖) ≤ h(t, z(t)) < b0(B) implies

‖z(t)‖ < B for t ≥ t0 + T

Hence, the system (1) is strongly practically stable. �

Remarks 4.2: In Theorem 4.2, if p1 ∈ Ck is replaced as p1 ∈ K, then the system (1)
is uniformly strongly practically stable.
Boundedness

Next, we will discuss the boundedness properties of the impulsive differential system
(1).

Theorem 4.3. Assume that the following conditions are fulfilled:
(I) Let there exists a 0 < ρ0 < ρ, such that V1 : R+×Sc(ρ0)→ R+, where V1(t, x) ∈ V0

is bounded on R+ × Sc(ρ0) and{
D+V1(t, z(t); γ) ≤ g1(t, V1(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i )) ≤ Ji(V1(ti, z(ti)), t = ti, i = 1, 2, 3...

(15)

where g1 and Ji satisfy (C1).
(II) Let there exists V2 : R+ × Sc(ρ)→ R+, where V2(t, x) ∈ V0 such that:

q(‖x‖) ≤ V2(t, x) ≤ p(‖x‖)
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where p, q ∈ K and q(u)→∞ as u→∞ and{
D+[V1(t, z(t); γ) + V2(t, z(t), γ)] ≤ g2(t, V1(t, z(t)) + V2(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i )) + V2(t

+
i , z(t

+
i )) ≤ Fi(V1(ti, z(ti) + V2(ti, z(ti)), t = ti, i = 1, 2, 3...

where g2 and Fi satisfy (C2).
(III) The comparison system (5) and (6) are equibounded and uniformly equibounded re-
spectively.
Then, the solution x(t) = x(t; t0, x0) of system (1) equibounded.

Proof. Let α ≥ ρ be given.
Let α∗ = Sup {V1(t+0 , z0) : ρ0 ≤ z0 ≤ α} and
α∗∗ = Sup {V1(t, z(t) : (t, z) ∈ (R+ × ∂S(ρ0))}
Take α1 = max {α∗, α∗∗}.
Since the comparison system (5) is equibounded, therefore for given α1 > 0, there exists
a β1 = β1(t0, α1) and σ1 = σ1(t0, α1), such that v10 ≤ α1 and |γ| ≤ σ1 implies

v1(t; t0, v10, γ) < β1, t ≥ t0 (16)

As, the comparison system (6) is uniformly equibounded, hence for α2 = p(α) + β1 > 0,
there exists β2(α2) > 0 and σ2 = σ2(α2) > 0 such that v20 ≤ α2 implies

v2(t; t0, v20, γ) < β2(α2), t ≥ t0 (17)

Also, q(u)→∞ as u→∞, choose β = β(t0, α) such that

q(β) > β2 (18)

In order to prove that the solution x(t) = x(t; t0, x0) of system (1) is equibounded, we
need to prove that for ‖z0‖ ≤ α and |γ| ≤ σ, implies ‖z(t)‖ < β, t ≥ t0.
If it is not true, let there exists a solution x(t) = x(t; t0, x0) of system (1) such that
‖z0‖ ≤ α and |γ| ≤ σ holds for some t2 > t1 > t0 with the following conditions:{

‖z(t1)‖ = α; ‖z(t2)‖ = β and α < ‖z(t)‖ < β for t1 < t < t2 (19)

Set v10 = V1(t0, z0) and v20 = V1(t1, z(t1)) + V2(t1, z(t1))
As, v10 ≤ V1(t0, z0), by using condition (I) of Theorem 4.3 and Lemma 3.1, we get

V1(t, z(t)) ≤ r1(t), t ∈ [t0, t1] (20)

where r1(t; t0, V1(t0, z0), γ) is the maximal solution of the comparison system (5).
Hence by using (16) and (20), we have

V1(t1, z(t1)) ≤ β1 (21)

Also, by condition (II) of Theorem 4.3 and (19), we have

V2(t1, z(t1)) ≤ p(‖z(t1)‖ = p(α)

Therefore, v20 = V1(t1, z(t1)) + V2(t1, z(t1)) < β1 + p(α) = α2 (22)

Again, by using (22), condition (II) of Theorem 4.3 and Lemma 3.1, we get

V1(t, z(t)) + V2(t, z(t)) ≤ r2(t), t ∈ [t1, t2] (23)

where r2(t; t1, V1(t1, z(t1)) + V2(t1, z(t1)), γ) is the maximal solution of the comparison
system (6).
Hence, by using inequalities (17) and (23), we have

V1(t2, z(t2)) + V2(t2, z(t2)) < β2 < q(β)

But, as V1(t1, z(t1)) ≥ 0, by condition (III) and (19), we have
V1(t2, z(t2)) + V2(t2, z(t2)) ≥ V2(t2, z(t2)) ≥ q(‖z(t2)‖) > q(β)
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which gives a contradiction.
Hence, ‖z(t)‖ < β, for t ≥ t0 holds provided ‖z0‖ ≤ α and |γ| ≤ σ.
If α < ρ, in that case we can choose β = β(t0, α) = β(t0, ρ) and we get the desired result.
This proves that the system (1) is equibounded. �

Theorem 4.4. Assume that all the conditions of Theorem 4.3 are satisfied except condition
(I), which is replaced as follows:
Let there exists a 0 < ρ0 < ρ, such that V1 : R+ × Sc(ρ0) → R+, where V1(t, x) ∈ V0 is
bounded on R+ × Sc(ρ0) and

D+V1(t, z(t); γ) + h(t, z(t)) ≤ g1(t, V1(t, z(t)), γ), t 6= ti

V1(t
+
i , z(t

+
i )) +

∫ ti

t0

h(s, z(s))ds ≤ Ji(V1(ti, z(ti))), t = ti, i = 1, 2, 3...
(24)

where g1 and Ji satisfy (C1), h(t, x) : R+ × S(ρ) → R+ is piecewise continuous and
integrable such that h(t, x) ≥ b0(‖x‖) where b0 ∈ K.
Then, the solution x(t) = x(t; t0, x0) of system (1) is ultimately equibounded.

Proof. Let α ≥ ρ
Since the system (1) is equibounded by Theorem 4.3.
Hence for given α > 0, let there exists σ = σ(t0, α) and β = β(t0, α) such that |γ| < σ and
‖z0‖ < α implies

‖z(t)‖ < β; t ≥ t0 (25)

In order to prove that the system (1) is ultimately equibounded, it is sufficient to prove
that the system (1) is quasi- ultimately equibounded.

Choose T > β1(t0,α1)
b0(β)

In order to prove the quasi- ultimately equiboundedness of system (1), we claim that for
given |γ| < σ and ‖z0‖ < α implies

‖z(t)‖ < β; t ≥ t0 + T (26)

To obtain (26), firstly we claim that there exist a t′ ≥ t0 + T , such that h(t, x) < b0(β)
holds.
If it doesn’t holds, then h(t, x) ≥ b0(β) for all t ∈ [t0, t

′].
As all the conditions of Theorem (3.1) are satisfied by using inequalities in (24), we have

0 ≤ V1
(
t′, z(t′)

)
≤ r1(t′; t0, z0)−

∫ t′

t0

h(s, z(s)ds

≤ β1(t0, α1)−
∫ t0+T

t0

h(s, z(s)ds

≤ β1(t0, α1)− b0(β)T

≤ β1(t0, α1)− b0(β)
β1(t0, α1)

b0(β)

< 0

which is a contradiction.
Hence, h(t, x) < b0(β) holds for t ≥ t0 + T .
Thus, b0(‖z(t)‖) ≤ h(t, z(t)) < b0(β) implies

‖z(t)‖ < β for t ≥ t0 + T

If α < ρ, in that case we can choose β = β(t0, α) = β(t0, ρ) and we get the desired result.
Hence the system (1) is ultimately equibounded. �



P. MAHAJAN, S. K. SRIVASTAVA, R. DOGRA: PRACTICAL STABILITY AND BOUNDEDNESS.... 511

Remark 4.3: In both Theorems 4.3 and 4.4, if the comparison system (5) is uniformly
equibounded, then the system (1) is uniformly bounded and uniformly ultimately bounded
respectively.

5. Conclusions

In this paper, for the first time, we investigated the practical stability and boundedness
criteria for impulsive differential equations with respect to ITD. The stability criteria for
impulsive differential equation relative to ITD is initiated by Hristova [4] in the past. Sta-
bility and Boundedness criteria are investigated by Li et al. and Song et al. [11, 21] for
differential system in relative to ITD. Song and Li [20] and Song et al. [22] studied differ-
ential system without impulse effect for various stability and boundedness conditions in
relative to ITD by using perturbed Lyapunov function. We have generalized the technique
of perturbing Lyapunov function to obtain the sufficient conditions for practical stability
and boundedness of impulsive differential system with respect to ITD.

Acknowledgement. One of the author, Pallvi Mahajan, would like to thank IKGPTU
for providing the online library facility.
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