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A NUMERICAL TREATMENT OF BLOCK NUCLEAR MAGNETIC

RESONANCE FLOW EQUATION

P. REIHANI ARDABILI1, §

Abstract. The time-dependent Bloch nuclear magnetic resonance flow equation in one
dimensional space is investigated numerically. To investigate some physiological and bi-
ological properties of living tissues NMR plays pivotal role. In this paper, an applicable
approach is used to solve the proposed equation with appropriate initial and bound-
ary conditions. This method is a kind of regularization approaches based on the finite
difference and mollification methods. The numerical algorithm is well supported with
stability and convergence results and the numerical results for two test problems confirm
the ability of the numerical method.
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1. Introduction

Many industrial and medical processes involve the flow of fluids through porous media.
For instance the flow of blood through organ tissues and the transfer of gases to blood
within the lung occur through porous materials. Usually the description of media even on
a limit basis is not easy. Today it is explored that these flow processes are very important
and considerable research activities have been conducted for designing and controlling
them [1, 2, 3]. The mathematical simulation plays a pivotal role for making decisions
and designing processes with regards to the operation and control of fluids flow through
porous environments. Regardless of the applications, many of the issues regarding the
mathematical modelling of flow in porous media are similar. In this disciplines, the main
challenge is the determination of appropriate properties of these equations in order to
predict the process states [2, 3].

Typically the properties of porous media are determined by measuring fluid states
outside of the porous media and within porous media [1, 2, 3]. During last decades
some methods such as the eradiation, electrical and sonic methods have been used to
obtain information regarding fluid states and properties within the media. Although these
methods are applicable in many situations but they have significant limitations. Using
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nuclear magnetic resonance (NMR) can cover many limitations and determine the states
of fluids and porous media properties very well. Due to the abilities of NMR, this method
known as a powerful tool to detect and solve various problems in different directions of
medicine [2].

For description of the nuclear motion of the substances, Felix Bloch [1] developed a
set of coupled differential equations. A modification of Bloch equations has proposed by
Torrey [3] to describe the diffusion phenomena observed in all flow systems. Recently it has
been explored that determination of diffusion coefficients in the Ficks and Bloch–Torrey
equations may gives useful information regards to the structure of the pore. Awojoyogbe
et. al. [4, 5, 6, 7, 8, 9, 10] conducted a series of valuable studies on modification and
solution of the Bloch NMR flow equations for the analysis of fluid flows through the
porous media. The Bloch NMR flow equations, represented as a set of coupled differential
equations, model the behavior of the macroscopic magnetization. The effects of the field
inhomogeneity, relaxation and precession can be analyzed using these equations. If the
magnetization considered as a function of space and time, one may investigate the effects
of gradients and diffusion [1, 3, 9].

In this study the coupled Bloch NMR equations proposed by Awojoyogbe is considered
in a general form as a parabolic initial-boundary value problem. One may find some
theoretical and numerical results regard to these equations in spacial cases in the literature
[4, 5, 6, 11, 12]. A numerical approach using marching finite difference and mollification
methods will be developed to solve this problem. The mollification method has been
used for the stable numerical solution of a wide range of problems in partial differential
equations [9, 10, 13, 14, 15, 16, 17, 18]. This paper is organized as follows:

In section 2, the Bloch NMR equation is briefly reviewed. Section 3 contains some
results regard to the discrete mollification. In Section 4, a marching mollification approach
is established to solve Bloch NMR equation. Section 5 contains some numerical results.

2. Problem description

In this section the mathematical modelling of NMR is briefly reviewed. The objective
is to allow us to understand and describe the MR signal and image generation in order to
introduce them to processing analysis. One may note that a sample is magnetized when
it is placed in a magnetic field. Suppose M0 denotes the component of magnetization of

a sample at equilibrium and
−→
M = (Mx,My,Mz) be the magnetization vector when it is

reached its equilibrium along the field (the z−axis). In the presence of the field
−→
B1, the

magnetization vector
−→
M variations can be stated as a system of equations known as Bloch

equations as follows [7, 8]

dMx

dt
= V (x, t)gradMx +

∂Mx

∂t
= −Mx

T2
, (1)

dMy

dt
= V (x, t)gradMy +

∂My

∂t
= γMzB1(x, t)− My

T2
, (2)

dMz

dt
= V (x, t)gradMz +

∂Mz

∂t
= −γMyB1(x, t)− M0 −Mz

T1
. (3)

The parameters in these equations defined as
γ: the gyromagnetic ratio of fluid spins,
M0: the equilibrium magnetization,
T1: the spin-lattice (longitudinal) relaxation time,
T2: the spin-spin (transverse) relaxation time,
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V : the flow velocity as a result of neuronal activity.
Generally M0 6= Mz, especially when B1(x) field is strong. In this situation from

equations (2) and (3) one can drive the following equation [7, 8, 9]

V 2(x, t)
∂2My

∂x2
+ 2V (x, t)

∂2My

∂x∂t
+
∂2My

∂t2
+ (

1

T1
+

1

T2
)V (x, t)

∂My

∂x

+(
1

T1
+

1

T2
)
∂My

∂t
+ (γ2B2

1(x, t) +
1

T1T2
)My =

γM0B1(x, t)

T1
. (4)

Suitable initial and boundary conditions may be available using the real-time experimental
arrangements. In this study we consider (4) in one dimensional space. In addition it is
supposed that the following initial and boundary conditions are at hand

My(0, t) = ϕ1(t), t ≥ 0, (5)

∂My

∂x
(0, t) = ϕ2(t), t ≥ 0, (6)

My(x, 0) = ψ(x), x ≥ 0, (7)

where ϕ1(t), ϕ2(t) and ψ(x) are known functions. The main goal of these study is to
establish a reliable numerical procedure to solve the foregoing problem. We suppose that
the initial and boundary functions are only known approximately as ψε(x), ϕε1(t) and ϕε2(t)
respectively such that ‖ψ(x)− ψε(x)‖∞ ≤ ε and ‖ϕi(t)− ϕεi (t)‖∞ ≤ ε, i = 1, 2. Because
of the presence of the noise in the problem’s data, implying a regularization process seems
to be necessary. Here first we use mollification method to stabilize the problem. To this
end let us recall some fundamental results associate with discrete mollification.

3. Method of solution

3.1. Discrete mollification. Let δ > 0, p > 0, Ap = (
∫ p
−p e

−s2ds)−1, I = [0, 1] and

Iδ = [pδ, 1− pδ]. It is clear that for p < 1
2δ, the interval Iδ is nonempty set. Furthermore

suppose K = {xj : j ∈ Z, 1 ≤ j ≤ M} ⊂ I, satisfying xj+1 − xj > d > 0, j ∈ Z,
and 0 ≤ x1 < x2 < · · · < xM ≤ 1, where Z assumed to be the set of integers and d
consider as a positive constant. If G = {gj}j∈Z be a discrete function defined on K and
sj = (1/2)(xj + xj+1), j ∈ Z, Then the discrete δ−mollification of G is defined by [13]

JδG(x) =
M∑
j=1

(∫ sj

sj−1

ρδ(x− s)ds

)
gj ,

where

ρδ,p(x) =

{
Apδ

−1 exp
(
−x2

δ2

)
, |x| ≤ pδ,

0, |x| > pδ.

Notice that
∑M

j=1(
∫ sj
sj−1

ρδ(x − s)ds) =
∫ pδ
−pδρδ(s)ds = 1. Let ∆x = supj∈Z(xj+1 − xj),

some useful results of the consistency, stability, and convergence of discrete δ-mollification
are as follows [13, 14, 15, 16]

Theorem 3.1. (1) For uniformly Lipschitz function g(x) in I and it’s discrete version
G = {gj = g(xj) : j ∈ Z}, there exists a constant C, independent of δ, such that

‖ JδG− g ‖∞,Iδ≤ C(δ + ∆x).

Moreover, if g′(x) ∈ C(I) then,

‖ (JδG)′ − g′ ‖∞,Iδ≤ C
(
δ +

∆x

δ

)
.



P. REIHANI ARDABILI: A NUMERICAL TREATMENT OF BLOCK NUCLEAR MAGNETIC ... 619

(2) If the discrete functions G = {gj : j ∈ Z} and Gε = {gεj : j ∈ Z}, which are

defined on K, satisfy ‖ G−Gε ‖∞,K≤ ε, then we have

‖ JδG− JδGε ‖∞,Iδ≤ ε,

‖ (JδG)′ − (JδG
ε)′ ‖∞,Iδ≤

Cε

δ
.

(3) For uniformly Lipschitz function g(x) in I and it’s discrete version G = {gj =
g(xj) : j ∈ Z}, if Gε = {gεj : j ∈ Z} be the perturbed discrete version of g

satisfying ‖ G−Gε ‖∞,K≤ ε, then

‖ JδGε − Jδg ‖∞,Iδ≤ C(ε+ ∆x),

and

‖ JδGε − g ‖∞,Iδ≤ C(ε+ δ + ∆x).

Moreover, if g′(x) ∈ C(I) then,

‖ (JδG
ε)
′ − (Jδg)

′ ‖∞,Iδ≤
C

δ
(ε+ ∆x),

‖ (JδG
ε)′ − g′ ‖∞,Iδ≤ C

(
δ +

ε

δ
+

∆x

δ

)
.

Denoting the centered difference operator by D, i.e., Df(x) = f(x+∆x)−f(x−∆x)
2∆x . Then

we have the following results [13, 15, 16]

Theorem 3.2. (1) If g′ ∈ C1(R1), and G = {gj = g(xj) : j ∈ Z} is the discrete
version of g, with G, Gε satisfying ‖ G−Gε ‖∞,K≤ ε, then,

‖ D(JδG
ε)− (Jδg)′ ‖∞≤

C

δ
(ε+ ∆x) + Cδ(∆x)2,

‖ D(JδG
ε)− g′ ‖∞≤ C

(
δ +

ε

δ
+

∆x

δ

)
+ Cδ(∆x)2.

(2) Suppose G = {gj : j ∈ Z} is a discrete function defined on a set K, and Dδ
0 is a

differentiation operator defined by Dδ
0(G) = D(JδG)(x) |K , then

‖ Dδ
0(G) ‖∞,K≤

C

δ
‖ G ‖∞,K .

It should be pointed out that concern with the mollification method, one may deal with
some limitations. For instance, the implementation of δ−mollification for a noisy function
in an interval such as [0, 1] usually requires to extend the values of proposed noisy function
to a slightly bigger interval such as [−pδ, 1+pδ] or to restrict that function to a subinterval
such as [pδ, 1 − pδ]. Extension to a bigger interval needs an extrapolation technique in
conjunction with a minimization processes. On the other hand any limitation on the
mail interval may cause one loses some important information of the proposed function.
In addition to these limitations, one deals with the challenge of determination of the
mollification parameters.



620 TWMS J. APP. ENG. MATH. V.11, N.2, 2021

3.2. Regularized problem and marching scheme. To establish our interest a numer-
ical procedure, first we consider the regularized form of the problem (4)-(7) as follows

V 2(x, t)uxx(x, t) + 2V (x, t)utx(x, t) + utt(x, t) + λV (x, t)ux(x, t) + λut(x, t)

+(γ2B2
1(x, t) + µ)u(x, t) = γµM0B1(x, t), x > 0, t > 0,

(8)

u(0, t) = Jδ0(ϕε1(t)), t ≥ 0, (9)

ux(0, t) = Jδ∗0 (ϕε2(t)), t ≥ 0. (10)

u(x, 0) = Jδ′(ψ(x)), x ≥ 0, (11)

where λ =
(

1
T1

+ 1
T2

)
and µ = 1

T1T2
. Generalized Cross Validation (GCV) method is used

to find the radii of mollification such as δ′, δ0 and δ∗0 [13, 14, 17].
In the the problem (8)-(11) it is assumed that 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. Suppose M

and N are two positive integers and h = ∆x = 1/M and k = ∆t = 1/N are the length of
mesh sizes of the finite differences discretization of time and space domains ([0, 1]). Now
if one consider the following discrete functions
Ui,n: the discrete computed approximations of u(ih, nk),
Wi,n: the discrete computed approximations of ut(ih, nk),
Qi,n: the discrete computed approximations of ux(ih, nk),
Vi,n: the discrete computed approximations of V (ih, nk),
Bi,n: the discrete computed approximations of B1(ih, nk),
then the algorithm of space marching scheme may be written as follows

(1) Select δ0,δ∗0 .
(2) Perform mollification of αε,βε and f(x)ε in the interval [0, 1]

U0,n = Jδ0ϕ
ε
1(nk), Q0,n = Jδ∗0ϕ

ε
2(nk), n 6= 0, Ui,0 = Jδ′ψ

ε(ih), i ∈ {0, 1, . . . ,M}
(3) Perform mollified differentiation in time of Jδ0ϕ

ε
1(nk). Set

W0,n = Dt(Jδ0ϕ
ε
1(nk)) (n 6= 0), W0,0 = Dt(Jδ′ψ

ε(0)).

(4) Initialize i = 0. Do while i ≤M − 1,

Ui+1,n = Ui,n + hQi,n, (12)

Qi+1,n = Qi,n +
h

V 2
i,n

[γµM0Bi,n − 2Vi,nDx(JδiWi,n)−Dt(JδiWi,n)

− λVi,nQi,n − λWi,n − (γ2Bi,n + µ)Ui,n], (13)

Wi+1,n = Wi,n + hDt(Jδ∗iQi,n). (14)

From now on, if Xi,n is a discrete function, we denote |Xi| = maxn |Xi,n|. We also consider
a smoothing assumption u(x, t) ∈ C2,2(I× [0,∞)) to discuss the stability and convergence
of the scheme.

3.3. Stability and Convergence Analysis. In this section, we analyze the stability
and convergence of the proposed marching scheme.

Theorem 3.3 (Stability of the Algorithm). One may find a constant C, such that

max{|HM |, |QM |, |WM |} ≤ C max{|U0|, |Q0|, |W0|}

Proof. Let |δ|−∞ = mini(δi, δ
∗
i ) and

m = min
(x,t)∈[0,1]×[0,1]

{|V (x, t)|, |B1(x, t)|}, M = max
(x,t)∈[0,1]×[0,1]

{|V (x, t)|, |B1(x, t)|}.
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Applying Theorem 3.2 yields

|Dt(Jδ∗iQi,n)| ≤ C

|δ|−∞
|Qi,n|, |Dt(JδiWi,n)| ≤ C

|δ|−∞
|Wi,n|,

|Dx(JδiWi,n)| ≤ C

|δ|−∞
|Wi,n|. (15)

Now by using (13) and (15) we have

|Qi+1,n| ≤|Qi,n|+
h

m2
[γµM0M + 2M

C

|δ|−∞
|Wi,n|+

C

|δ|−∞
|Wi,n|+ λM |Qi,n|

+ λ|Wi,n|+ (γ2M + µ)|Ui,n|]

≤
(

1 + h
C1

m2

)
max{C0, |Ui|, |Qi|, |Wi|}, (16)

where C0 = γM0M
T1T2

, C1 = 1 + (2M + 1) C
|δ|−∞ + λ(M + 1) + (γ2µM + d),

similarly form (14) and (15) we have

|Wi+1,n| ≤
(

1 + h
C

|δ|−∞

)
{|Qi,n|, |Wi,n|} ,

and finally from (12) we have

|Ui+1,n| ≤ (1 + h) max{|Ui,n|, |Qi,n|}, (17)

Letting Cδ = max
{

1, C1,
C
|δ|−∞

}
, from (16)-(17) we obtain

max{C0, |Ui+1|, |Qi+1|, |Wi+1|} ≤ (1 + hCδ) max{C0, |Ui|, |Qi|, |Wi|},
by iterating this last inequality M times, we have

max{C0, |UM |, |QM |, |WM |} ≤ (1 + hCδ)
M max{C0, |U0|, |Q0|, |W0|},

which implies

max{C0, |UM |, |QM |, |WM |} ≤ (expCδ) max{C0, |U0|, |Q0|, |W0|}.
This complete the proof of this statement. �

Theorem 3.4 (Formal convergence). Suppose δ is fixed and h, k and ε tend to zero, then
restricted to the grid points, the discrete mollified solution converges to the mollified exact
solution.

Proof. From the definitions of discrete error functions, it follows that

∆Ui,n = Ui,n − u(ih, nk), ∆Qi,n = Qi,n − ux(ih, nk), ∆Wi,n = Wi,n − ut(ih, nk).

Using Taylor series, we obtain some useful equations satisfied by the mollified solution u,
namely,

u((i+ 1)h, nk) = u(ih, nk) + hux(ih, nk) +O(h2),

ux((i+ 1)h, nk) = ux(ih, nk) +
h

V 2(ih, nk)
[γµM0B1(ih, nk)

−2V (ih, nk)
d

dx
ut(ih, nk)− d

dx
ut(ih, nk)

−λV (ih, nk)ux(ih, nk)− λut(ih, nk)

−(γ2B1(ih, nk) + µ)ui,n] +O(h2)

ut((i+ 1)h, nk) = ut(ih, nk) + h
d

dt
ux(ih, nk) +O(h2).
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Also,

∆Ui+1,n = ∆Ui,n + (Ui+1,n − Ui,n)− (u((i+ 1)h, nk)− u(ih, nk))

= ∆Ui,n + h(Qi,n − ux(ih, nk)) +O(h2)

= ∆Ui,n + h∆Qi,n +O(h2). (18)

∆Qi+1,n = ∆Qi,n + (Qi+1,n −Qi,n)− (ux((i+ 1)h, nk)− ux(ih, nk))

= ∆Qi,n +
h

V 2
i,n

[γµM0Bi,n − 2Vi,nDx(JδiWi,n)

−Dt(JδiWi,n)− λVi,nQi,n − λWi,n − (γ2Bi,n + µ)Ui,n]

− h

V 2(ih, nk)
[γµM0B1(ih, nk)− 2V (ih, nk)

d

dx
ut(ih, nk)

− d

dx
Vt(ih, nk)− λV (ih, nk)ux(ih, nk)− λut(ih, nk)

−(γ2B1(ih, nk) + µ)ui,n] +O(h2), (19)

∆Wi+1,n = ∆Wi,n + (Wi+1,n −Wi,n)− (ut((i+ 1)h, nk)− ut(ih, nk))

= ∆Wi,n +
h

K(ih)
Dt(Jδ∗iQi,n)− hut(ih, nk) +O(h2)

= ∆Wi,n + h(Dt(Jδ∗iQi,n)− ut(ih, nk)) +O(h2). (20)

Now from equalities (17)-(20), using the error estimates of discrete mollification from
theorem 3.1

|Ui+1,n| ≤ |∆Ui,n|+ h|∆Qi,n|+O(h2),

|∆Qi+1,n| ≤ |∆Qi,n|+
h

m2

(
2M

(
C|∆Wi,n|+ h

|δ|−∞
+ Cδh

2

)
+

(
C|∆Wi,n|+ k

|δ|−∞
+ Cδk

2

)
+ λM |∆Wi,n|+ λ|∆Wi,n|

+ µ|∆Ui,n|
)

+O(h2),

|∆Wi+1,n| ≤ |∆Wi,n|+ h

(
C
|∆Qi,n|+ k

|δ|−∞
+ Cδ∗k

2

)
+O(h2).

Suppose

∆i = max {|∆Ui,n|, |∆Wi,n|, |∆Qi,n|} ,

C0 = max

{
1,

1

m2

(
(C + 1)M

|δ|−∞
+ λ(M + 1) + µ

)
,

C

|δ|−∞

}
,

C1 = max

{
1

m2

(
h

|δ|−∞
+ Cδh

2

)
+

(
k

|δ|−∞
+ Cδk

2

)
,
Ck

|δ|−∞
+ Cδ∗k

2

}
.

Then we obtain

∆i+1 ≤ (1 + hC0)∆i + hC1 +O(h2)

≤ (1 + hC0)(∆i + C1) +O(h2), (21)



P. REIHANI ARDABILI: A NUMERICAL TREATMENT OF BLOCK NUCLEAR MAGNETIC ... 623

Table 1. Relative l2 error norms for Example 4

M N ε u ut ux
64 64 0.0001 0.0043119 0.0779168 0.0561945
128 128 0.0001 0.0042946 0.0759839 0.0543272
256 256 0.0001 0.0042752 0.0655975 0.0536547
512 512 0.0001 0.0042553 0.0654142 0.0530131
64 64 0.001 0.0058916 0.0829729 0.0683256
128 128 0.001 0.0058134 0.0861485 0.0661293
256 256 0.001 0.0056368 0.0856221 0.0643106
512 512 0.001 0.0054368 0.0854795 0.0635646
64 64 0.01 0.0075976 0.0977476 0.0762271
128 128 0.01 0.0075222 0.0968234 0.0734151
256 256 0.01 0.0074203 0.0964474 0.0713976
512 512 0.01 0.0063785 0.0962375 0.0699437

and after L iterations

∆L ≤ exp(C0)(∆0 + C1). (22)

Moreover from

|∆U0,n| = |U0,n − u(0, nk)| = |Jδ0αε(nk)− u(0, nk)| ≤ C(ε+ k),

|∆Q0,n| = |Q0,n − ux(0, nk)| = |Jδ∗0β
ε(nk)− ux(0, nk)| ≤ C(ε+ k),

|∆W0,n| = |Dt(Jδ0α
ε(nk))− ut(0, nk)| ≤ C

δ0
(ε+ k) + Cδk

2,

we see that when ε, h, and k tend to 0, ∆0 and C1 tend to 0. Consequently (∆0 + C1)
tends to 0 and so does ∆L and this complete the proof of this theorem. �

Remark. The numerical algorithm and the stability and convergence results reported
in this section can be easily extended for a more general case when in the equation (4),
the right hand side contains another source term such as F (x, t).

4. Numerical experiments

The main goal of this section is to investigate the robustness and ability of the proposed
mollified marching approach. To this end we examine two standard test problems in
general form with a source term function in the right hand side of equation (4). In this
problems we consider p = 3. Perturbed boundary data are obtained by adding random
errors to the exact data functions. For example, for the boundary data function h(x, t),
its perturbed version is generated as [13]

hεj,n = h(xj , tn) + εj,n, j = 0, 1, . . . , N, n = 0, 1, . . . , T, (23)

where the (εj,n)’s are Gaussian random variables with variance ε2.
The relative l2 error norm defined as follows is used to evaluate the errors between exact

and numerical results

E =

[
(1/(M + 1)(N + 1))ΣM

i=0 ΣN
j=0|u(ih, jk)− Ui,j |2

]1/2

[
(1/(M + 1)(N + 1))ΣM

i=0 ΣN
j=0|u(ih, jk)|2

]1/2
. (24)
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Furthermore let R denotes the absolute error norm between the exact and numerical solu-
tions. Using R we approximate the convergence order of numerical results using following
formula

p ' logβ
‖Eh‖
‖Eh

β
‖
.

Example 1. As the first test problem, consider [10]

γ = 43, µ = 1.5, λ = 2.5, V = 4, M0 = 1.5, ω = 85,

B1(x, t) = cosωt, ψ(t) = sinωt, φi(x) = 0, i = 1, 2,

F (x, t) = cosωt(−96.75 + cos
3π

2
x(212.5 + 1849 sinωt)

−3204.42 sin
3π

2
x) + sinωt(−7578.81 cos

3π

2
x− 47.1239 sin

3π

2
x).

Figure 1. The relative l2 error norm for v for three different noise levels
against mesh point numbers in Example 4.

Figure 2. The relative l2 error norm for vx for three different noise levels
against mesh point numbers in Example 4.

The exact solution for this problem may be found as u(x, t) = sinωt cos 3π
2 x. The

relative l2-errors between the numerical and analytical results are shown in Table 1 in
three different noise levels for M, N = 64, 128, 256, 512.

Figures 1, 2 and 3 demonstrate the behavior of l2 error norm of u, ux and ut associate
with three different noise levels. It can be observed that decreasing the mash sizes with
respect to space and time variables can decrease the l2 errors.
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Figure 3. The relative l2 error norm for vt for three different noise levels
against mesh point numbers in Example 4.

Table 2. Relative l2 error norms for Example 4

M N ε u ut ux
64 64 0.0001 0.0018592 0.0332585 0.0092144
128 128 0.0001 0.0016542 0.0313251 0.0090013
256 256 0.0001 0.0013465 0.0247875 0.0086951
512 512 0.0001 0.0012353 0.0114142 0.0085301
64 64 0.001 0.0039254 0.0522583 0.0099145
128 128 0.001 0.0035345 0.0492568 0.0098985
256 256 0.001 0.0035123 0.0425681 0.0098126
512 512 0.001 0.0033543 0.0358945 0.0097003
64 64 0.01 0.0165914 0.0658947 0.0852459
128 128 0.01 0.0135222 0.0682314 0.0732551
256 256 0.01 0.0098423 0.0548719 0.0689542
512 512 0.01 0.0091375 0.0501252 0.0485962

Example 2. As another test problem we consider the following assumptions [10]

γ = 0, µ = 3, λ = 4.5, V = 5, M0 = 2, ω = 8,

B1(x, t) = e−ω
2t, ψ(t) = sinπx, φ1(x) = 0, φ2(x) = πe−ω

2t,

F (x, t) = e−2ω2t(20eω
2t + 1939.93eω

2t) cosπx

−(900 + 3564.26eω
2t) sinπx.

In this case the exact solution can be derived as u(x, t) = sinπxe−ω
2t. Table 2 reports

the relative l2-error norms between the numerical and analytical solutions in three different
noise levels for M, N = 64, 128, 256, 512. The behaviors of relative l2-errors norms of u,
ux and ut are shown in figures 4, 5 and 6. The numerical results show a good agreement
between the exact and numerical solutions.

The numerical results for Examples 1 and 2 explored that for the different values of M
and N , when ε = 0.01, the order of convergence of the numerical results (p) varies between
0.35 and 0.75. For ε = 0.001, p varies between 0.55 and 0.95 and for ε = 0.0001, p varies
between 0.80 and 1.
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Figure 4. The relative l2 error norm for v for three different noise levels
against mesh point numbers in Example 4.

Figure 5. The relative l2 error norm for vx for three different noise levels
against mesh point numbers in Example 4.

Figure 6. The relative l2 error norm for vt for three different noise levels
against mesh point numbers in Example 4.

5. Conclusion

A stable numerical approach is developed to solve NMR Block Equation in one dimen-
sional case. The numerical approach is based on mollification method as a procedure for
filtering the input data noises and space marching method. The convergence and stability
results support the applicability of the proposed approach. The numerical results are in
good agreement with the analytical solutions for two test cases.



P. REIHANI ARDABILI: A NUMERICAL TREATMENT OF BLOCK NUCLEAR MAGNETIC ... 627

References

[1] Freeze, R.A. and Cherry, J.A., (1979), Groundwater. Prentice-Hall, Englewood Cliffs, NJ.
[2] Ted Watson, A. and Philip Chang, CT., (1997), Characterizing porous media with NMR methods,

Prog. Nucl. Mag. Res. Spect. 31, pp. 343–386.
[3] Torrey, HC., (1956), Bloch equations with diffusion terms, Phys. Rev. 104 (3), pp. 563–565.
[4] Awojoyogbe, OB. and Boubarker, K., (2008), A solution to Bloch NMR flow equations for the analysis

of hemodynamic functions of blood flow system using m-Boubaker polynomials, Curr. Appl. Phys.,
Doi:10 1016/j.cap.2008.01.019.

[5] Awojoyogbe, OB., (2007), A quantum mechanical model of the Bloch NMR flow equations for electron
dynamics in fluids at the molecular level, Phys. Scr., 75, pp. 788–794.

[6] Awojoyogbe, OB., (2004), Analytical solution of the time dependent Bloch NMR equations: a trans-
lational mechanical approach, Physica A., 339, pp. 437–460.

[7] Awojoyogbe, OB., (2002), A mathematical model of Bloch NMR equations for quantitative analysis
of blood flow in blood vessels with changing crosssection I, Physica A., 303, pp. 163–175.

[8] Awojoyogbe, OB., (2003), A mathematical model of Bloch NMR equations for quantitative analysis
of blood flow in blood vessels with changing crosssection II, Physica A., 323, pp. 534–550.

[9] Awojoyogbe, OB., Faromika, OP., Dada, OM., Boubaker, K. and Fuwape, IA., (2010), Mathematical
model of the Bloch NMR flow equations for the analysis of fluid flow in restricted geometries using
the Boubaker polynomials expansion scheme, Current. Appl. Phys., 10, pp. 289–293.

[10] Dada, OM., Awojoyogbe, OB. and Ukoha, AC.,(2015), A computational analysis for quantitative
evaluation of petrol–physical properties of rock fluids based on Bloch–NMR diffusion model for porous-
media, J. Petrol. Sci. Engin., 127, pp. 137–147.

[11] Lin, G. (2018), General pulsed-field gradient signal attenuation expression based on a fractional inte-
gral modified-Bloch equation, Commun. Nonlinear. Sci. Numer. Simul., 63, pp. 404 –420.

[12] Liu, F., Feng, L., Anh, V. and Li, J. (2019), Unstructured-mesh Galerkin finite element method for the
two dimensional multiterm time-space fractional Bloch-Torrey equations on irregular convex domains,
Comput. Math. Appl., 78, pp. 1637 –1650.

[13] Murio, DA. (2002), Mollification and space marching, in: K. Woodbury (Ed.), Inverse Engineering
Handbook, CRC Press.

[14] Garshasbi, M., (2019), Determination of unknown functions in a mathematical model of ductal carci-
noma in situ, Numer. Meth. Part. Diff. Eq., 35, pp. 2000–2016

[15] Acosta, CD. and Mejia, CE., (2008), Stabilization of explicit methods for convection diffusion equa-
tions by discrete mollification, Comput. Math. Appl., 55, pp. 368-380.

[16] Acosta, CD. and Mejia, CE., (2009), Approximate solution of hyperbolic conservation laws by discrete
mollification, Appl. Numer. Math., 59, pp. 2256-2265.

[17] Garshasbi, M. and Dastour, H., (2015), Estimation of unknown boundary functions in an inverse heat
conduction problem using a mollified marching scheme, Numer. Alg., 68 (4), pp. 769–790.

[18] Garshasbi, M. and Dastour, H., (2016), A mollified marching solution of an inverse ablation-type
moving boundary problem, Comp. Appl. Math., 35, pp. 61–73.

Parastoo Reihani Ardabili is an assistant professor in the department of mathe-
matics at Payame Noor University, Tehran, Iran. She was born in Ardabil in 1979.
She received her BSc and MSc degrees in applied mathematics. Dr. Reihani received
her Ph.D. in applied mathematics from the Iran University of Science and Technology.
Her methodological research focuses on applied mathematics-numerical analysis.


