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ON THE LOCAL CONVERGENCE OF WEERAKOON’S METHOD

UNDER HÖLDER CONTINUITY CONDITION IN BANACH SPACES

D. SHARMA1, S. K. PARHI1, §

Abstract. In this manuscript, the study of local convergence analysis for the cubically
convergent Weerakoon’s method using Hölder continuity condition is presented to solve
nonlinear equations in Banach spaces. Hölder continuity condition on the first derivative
is assumed to extend the applicability of the method on such problems for which Lipschitz
condition fails. This convergence analysis generalises the local convergence with Lips-
chitz continuity condition. A theorem showing existence and uniqueness of the solution
with the error bounds is established. To verify our theoretical findings some numerical
examples like Hammerstein integral equation and a system of nonlinear equations are
solved.
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1. Introduction

The prime objective of the study presented in this manuscript is to find a locally unique
solution x∗ of the equation

F (x) = 0, (1)

where F : Ω ⊆ X → Y is a Fréchet differentiable function and Ω is a convex subset of
X. X and Y are Banach spaces. In the field of applied science and engineering, a large
number of problems can be solved by transforming them into nonlinear equations of the
form (1). For instance, the boundary value problems occur in Kinetic theory of gases, the
integral equations related to radiative transfer theory, problems in optimization and many
others can be reduced to the problem of solving nonlinear equations. The most frequently
used solution techniques are iterative in nature.

A widely known iterative procedure for solving (1) is Newton’s algorithm, which can be
expressed as:

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0. (2)
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Evaluation of second and more order derivatives is a major drawback of higher-order
iterative schemes and are not appropriate for practical use. Due to the calculation of
F ′′ in each iteration the cubically convergent classical schemes are not suitable in terms
of computational cost. Some classical third-order algorithms include Chebyshev’s, the
Halley’s and Super-Halley’s schemes are produced by putting (α = 0), (α = 1

2) and
(α = 1) respectively in

xn+1 = xn −
(

1 +
1

2
(1− αHF (xn))−1HF (xn)

)
[F ′(xn)]−1F (xn), (3)

where HF (xn) = F ′(xn)−1F ′′(xn)F ′(xn)−1F (xn).
The local convergence analysis of many varieties of the methods defined in (3) has been
studied by numerous authors in [5, 6, 7, 8]. In addition, the local convergence study of
various iterative schemes is explored in Banach spaces in [10, 11, 12, 13, 14]. In this paper,
we use the Hölder continuity condition only on the first derivative to generalize the local
convergence analysis based on Lipschitz continuity condition and enhance the applicability
of Weerakoon’s method in Banach spaces. Basically, we have used the technique given by
Argyros et al. [3] and the assumption that the first derivative is Hölder continuous.

In [18], the cubically convergent Weerakoon’s method [17] is generalized to solve systems
of nonlinear equations in Rn. The method is given as:

yn = xn − F ′(xn)−1F (xn)

xn+1 = xn − 2[F ′(xn) + F ′(yn)]−1F (xn) (4)

In this method, only the first-order derivative occurs in the iteration function but the
convergence is proved with the assumption on third-order derivative for which the ap-
plicability of the method is restricted. In [3], the authors use Lipschitz condition on the
first-order derivative. But there are numerous problems for which Lipschitz condition fails.
For instance, consider the nonlinear integral equation [10] given by

F (x)(s) = x(s)− 3

∫ 1

0
G1(s, t)x(t)

5
4dt,

where x(s) ∈ C[0, 1] and G1(s, t) is Green’s function defined on [0, 1]× [0, 1] by

G1(s, t) =

{
(1− s)t, if t ≤ s
s(1− t), if s ≥ t .

Then,

||F ′(x)− F ′(y)|| ≤ 15

32
||x− y||

1
4

It is clear that Lipschitz condition does not hold for this problem. However, Hölder
continuity condition holds on F ′ for p = 1

4 . In this paper, we provide the local convergence
analysis of the method (4) using hypotheses only on F ′ to avoid the use of higher-order
derivatives. Particularly, the Hölder continuity condition on the first derivative is assumed
to extend the applicability of the method by generalizing the Lipschitz condition.

The rest part of this paper is arranged as follows: The local convergence analysis of the
method (4) is placed in Section 2. Section 3 is devoted to demonstrating the applications
of our theoretical outcomes on some numerical examples. Conclusions are discussed in the
last section.

2. Local convergence analysis

This section deals with the local convergence analysis of Weerakoon’s method defined
in (4). Denote by B(c, ρ) and B̄(c, ρ) the open and closed balls respectively with center
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c and radius ρ > 0. Suppose p ∈ (0, 1], k0 > 0 and k > 0 be given parameters with
k0 ≤ k. Some functions and parameters are defined for the local convergence analysis of

the method (4). Define the functions J1 and K1 on the interval [0, ( 1
k0

)
1
p ) by

J1(s) =
ksp

(p+ 1)(1− k0sp)
, K1(s) = J1(s)− 1. (5)

Now, K1(0) = −1 < 0 and lim
s→(( 1

k0
)
1
p )−

K1(t) = +∞. The intermediate value theorem

confirms that the interval (0, ( 1
k0

)
1
p ) contains the zeros of the function K1(s). Let the

smallest zero of K1(s) in (0, ( 1
k0

)
1
p ) is R1. So, J1(R1) = 1 and 0 ≤ J1(s) < 1 for s ∈ [0, R1).

One can explicitly obtain R1 =
(

p+1
(p+1)k0+k

) 1
p

using J1(R1) = 1. Again, define functions

J2 and K2 on [0, ( 1
k0

)
1
p ) by

J2(s) =
k0
2

(1 + J1(s)
p)sp (6)

and
K2(s) = J2(s)− 1.

Now, K2(0) = −1 < 0 and lim
s→(( 1

k0
)
1
p )−

K2(s) = +∞. According to the intermediate value

theorem, the interval (0, ( 1
k0

)
1
p ) contains the zeros of the function K2(s). Let the smallest

zero of K2(s) in (0, ( 1
k0

)
1
p ) is R2. Again, define functions J3 and K3 on [0, R2) by

J3(s) =
k[ 2

p+1 + J1(s)
p]sp

2(1− J2(s))
(7)

and
K3(s) = J3(s)− 1.

Now, K3(0) = −1 < 0 and lim
s→R−

2

K3(s) = +∞. So, the interval (0, R2) contains the zeros

of the function K3(s). Let the smallest zero of K3(s) in (0, R2) is R3. Consider

R = min{R1, R3} (8)

Now, we have
0 ≤ J1(s) < 1, (9)

0 ≤ J2(s) < 1 (10)

and
0 ≤ J3(s) < 1 (11)

for each s ∈ [0, R).
Next, the local convergence analysis of the method (4) is presented in Theorem 1.

Theorem 2.1. Let F : Ω ⊆ X → Y be a Fréchet differentiable function and x∗ ∈ Ω.
Suppose there exist parameters p ∈ (0, 1], k0 > 0 and k > 0 such that

F (x∗) = 0, F ′(x∗)−1 ∈ BL(Y,X), (12)

||F ′(x∗)−1(F ′(x)− F ′(x∗))|| ≤ k0||x− x∗||p, ∀x ∈ Ω, (13)

||F ′(x∗)−1(F ′(x)− F ′(y))|| ≤ k||x− y||p, ∀x, y ∈ Ω (14)

and
B̄(x∗, R) ⊆ Ω, (15)
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where R is defined in (8). Starting from x0 ∈ B(x∗, R) the method (4) generates the
sequence of iterates {xn} which is well defined, {xn}n≥0 ∈ B(x∗, R) and converges to the
solution x∗ of (1). Moreover, the following estimations hold ∀n ≥ 0

||yn − x∗|| ≤ J1(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R, (16)

||[F ′(xn) + F ′(yn)]−1F ′(x∗)|| ≤ 1

2(1− J2(||xn − x∗||))
, (17)

and

||xn+1 − x∗|| ≤ J3(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R, (18)

where the functions J1, J2 and J3 are given in (5), (6) and (7) respectively. Furthermore,

the solution x∗ of the equation F (x) = 0 is unique in B̄(x∗,∆)∩Ω, where ∆ ∈ [R, (p+1
k0

)
1
p ).

Proof. Using the definition of R, the equation (13) and the assumption x0 ∈ B(x∗, R), we
obtain

||F ′(x∗)−1(F ′(x0)− F ′(x∗))|| ≤ k0||x0 − x∗||p < k0R
p < 1. (19)

Now, we get F ′(x0)
−1 ∈ BL(Y,X) applying Banach Lemma on invertible functions [1, 2,

9, 15, 16]. Also,

||F ′(x0)−1F ′(x∗)|| ≤
1

1− k0||x0 − x∗||p
<

1

1− k0Rp
. (20)

Hence, it follows from the first step of the method (4) for n = 0 that y0 is well defined.
Again,

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= −
[
F ′(x0)

−1F ′(x∗)
] [∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ

]
.

(21)

The equations (5), (8), (9) and (14) are employed to produce

||y0 − x∗|| ≤
[
||F ′(x0)−1F ′(x∗)||

] [
||
∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ||

]
≤ k||x0 − x∗||p

(p+ 1)(1− k0||x0 − x∗||p)
||x0 − x∗||

= J1(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R. (22)

and this shows (16) for n = 0. Then we show [F ′(x0) + F ′(y0)]
−1 ∈ BL(Y,X). We use

(6), (10), (13) and (22) to obtain

||(2F ′(x∗))−1(F ′(x0) + F ′(y0)− 2F ′(x∗))||

≤ 1

2
[||F ′(x∗)−1(F ′(x0)− F ′(x∗))||+ ||F ′(x∗)−1(F ′(y0)− F ′(x∗))||]

≤ k0
2

[||x0 − x∗||p + ||y0 − x∗||p]

≤ k0
2

[||x0 − x∗||p + (J1(||x0 − x∗||)p||x0 − x∗||p]

=
k0
2

[1 + J1(||x0 − x∗||)p]||x0 − x∗||p

= J2(||x0 − x∗||) < 1.
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Using Banach Lemma on invertible functions, we have [F ′(x0) + F ′(y0)]
−1 ∈ BL(Y,X)

with

||[F ′(x0) + F ′(y0)]
−1F ′(x∗)|| ≤ 1

2(1− J2(||x0 − x∗||))
. (23)

Thus, we establish (17) for n = 0. Now, it follows from the last step of the method (4)
for n = 0 that x1 is well defined. Using the definition of R, (4), (7), (11), (14), (22) and
(23), we get

||x1 − x∗|| ≤
(
||[F ′(x0) + F ′(y0)]

−1F ′(x∗)||
)(
||
∫ 1

0
F ′(x∗)−1

(
F ′(x0)− F ′(x∗ + θ(x0 − x∗))

)
(x0 − x∗)dθ||

+ ||
∫ 1

0
F ′(x∗)−1

(
F ′(y0)− F ′(x∗ + θ(x0 − x∗))

)
(x0 − x∗)dθ||

)
≤

k
p+1 ||x0 − x

∗||p+1 + k
∫ 1
0 (||y0 − x∗ − θ(x0 − x∗)||p)dθ||x0 − x∗||

2(1− J2(||x0 − x∗||))

≤
k

p+1 ||x0 − x
∗||p+1 + k(||y0 − x∗||p + ||x0−x∗||p

p+1 )||x0 − x∗||
2(1− J2(||x0 − x∗||))

≤
k

p+1 ||x0 − x
∗||p+1 + k[J1(||x0 − x∗||)p||x0 − x∗||p + ||x0−x∗||p

p+1 ]||x0 − x∗||
2(1− J2(||x0 − x∗||))

≤
( 2k
p+1 ||x0 − x

∗||p + kJ1(||x0 − x∗||)p||x0 − x∗||p)||x0 − x∗||
2(1− J2(||x0 − x∗||))

=
[( 2k

p+1 + kJ1(||x0 − x∗||)p)||x0 − x∗||p]||x0 − x∗||
2(1− J2(||x0 − x∗||))

=
k[( 2

p+1 + J1(||x0 − x∗||)p)||x0 − x∗||p]||x0 − x∗||
2(1− J2(||x0 − x∗||))

= J3(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R.

Hence, we show the estimate (18) for n = 0. We get the estimates (16)-(18) by substituting
xn, yn and xn+1 in place of x0, y0 and x1 in the previous estimations. Using the fact
||xn+1 − x∗|| ≤ J3(R)||xn − x∗|| < R, we confirm that xn+1 ∈ B(x∗, R) and lim

n→∞
xn = x∗.

Now, we want to show the uniqueness of the solution x∗. Suppose there exist another

solution y∗( 6= x∗) of F (x) = 0 in B(x∗,∆). Consider Q =
∫ 1
0 F

′(y∗ + θ(x∗ − y∗))dθ. From
equation (13), we get

||F ′(x∗)−1(Q− F ′(x∗))|| ≤
∫ 1

0
k0||y∗ + θ(x∗ − y∗)− x∗||pdθ

≤ k0
p+ 1

||x∗ − y∗||p

≤ k0∆
p

p+ 1
< 1.

Applying Banach Lemma, we find Q−1 ∈ BL(Y,X). Now, Using the identity 0 = F (x∗)−
F (y∗) = Q(x∗ − y∗), it is concluded that x∗ = y∗. This ends the proof. �

3. Numerical Examples

In this section, numerical examples are provided to validate the theoretical results. We
consider the Examples (1, 2 and 3) from the research paper of Argyros and George [6].



714 TWMS J. APP. AND ENG. MATH. V.11, N.3, 2021

The examples 4 and 5 are selected from [10].
Example 1 Consider S = R and define F on Ω = [−1

2 ,
5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, if x 6= 0
0, if x = 0

.

We have x∗ = 1. Also, p = 1 and k0 = k = 146.6629. The value of R is determined using
the definitions of “J” functions.

Table 1: Radius of convergence for example 1

WM
R1 = 0.004545
R2 = 0.005209
R3 = 0.003994
R = 0.003994

Example 2 Let us define F on Ω = [1, 3] by

F (x) =
2

3
x

3
2 − x

We have x∗ = 9
4 . Also, we have p = 0.5, k0 = 1 and k = 2. R is determined using “J”

functions.

Table 2: Radius of convergence for example 2

WM
R1 = 0.183673
R2 = 0.505824
R3 = 0.107877
R = 0.107877

Example 3 Let F is defined on B̄(0, 1) for (x1, x2, x3)
t by

F (x) = (ex1 − 1,
e− 1

2
x22 + x2, x3)

t

We have x∗ = (0, 0, 0)t. Also, we have p = 1, k0 = e − 1 and k = e. We determine the
value of R using “J” functions.

Table 3: Radius of convergence for example 3

WM
R1 = 0.324947
R2 = 0.407903
R3 = 0.268633
R = 0.268633

Example 4 Consider the nonlinear Hammerstein type integral equation given by

F (x)(s) = x(s)− 5

∫ 1

0
stx(t)

3
2dt,

where x(s) ∈ C[0, 1]. We have x∗ = 0. Also, p = 0.5 and k0 = k = 15
4 . Using the

definitions of “J” functions the value of R is determined.

Table 4: Radius of convergence for example 4

WM
R1 = 0.025599
R2 = 0.043644
R3 = 0.017992
R = 0.017992
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Example 5 Consider the nonlinear integral equation given by

F (x)(s) = x(s)− 3

∫ 1

0
G1(s, t)x(t)

5
4dt,

where x(s) ∈ C[0, 1] and G1(s, t) is Green’s function. We have x∗ = 0. Also, p = 0.25 and
k0 = k = 15

32 . Using the definitions of “J” functions the value of R is determined.

Table 5: Radius of convergence for example 5

WM
R1 = 1.973080
R2 = 9.863415
R3 = 0.879329
R = 0.879329

4. Conclusions

We studied the local convergence analysis of the method (4) to find a locally unique
solution of a nonlinear equation in Banach spaces. The Hölder continuity condition on
the first derivative is used to enhance the applicability of these methods. The theoretical
outcomes are validated by solving numerical examples like Hammerstein equation and a
system of nonlinear equations.
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[7] Argyros, I. K., George, S., Magreñán, Á. A, (2015), Local convergence for multi-point-parametric
Chebyshev–Halley–type methods of higher convergence order, J. Comput. Appl. Math., 282, pp. 215-
224.

[8] Argyros, I. K., George, S., (2015), Local convergence of modified Halley-like methods with less compu-
tation of inversion, Novi. Sad. J. Math., 45, pp. 47-58.
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