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CONTROLLED MULTIPLIERS WITH TWO OPERATORS IN HILBERT

C∗-MODULES

M. RASHIDI-KOUCHI1, A. RAHIMI2, §

Abstract. Improving and extending the notion of controlled frames, in this paper, we
introduce controlled frames with two operators for Hilbert C∗-modules. This generalize
controlled frames in Hilbert and Hilbert C∗-module. We show, in Hilbert C∗-module
setting, controlled frame with two operators is classical frame. Also, we investigate
controlled multiplier operators and their invertibility in Hilbert C∗-modules. We show
that the inverse of controlled frame multiplier with two operators is controlled frame
multiplier too.
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1. Introduction

Frames for Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer [1] to
study of nonharmonic Fourier series. They were reintroduced and developed in 1986 by
Daubechies, Grossmann and Meyer [2], and popularized from then on. For basic results
on frames, see [3].

Hilbert C∗-modules is a generalization of Hilbert spaces by allowing the inner prod-
uct to take values in a C∗-algebra rather than in the field of complex numbers. Their
structure was first used by Kaplansky [4] in 1952. Frank and Larson [5, 6] introduced
frames in Hilbert C∗-modules and got a series of result for standard frames in finitely or
countably generated Hilbert C∗-modules over unital C∗-algebras. Extending the results
to Hilbert C∗-modules is not a routine generalization, as there are essential differences
between Hilbert C∗-modules and Hilbert spaces. For example, any Hilbert space has a
frame and any closed subspace in a Hilbert space has an orthogonal complement, but these
fail in Hilbert C∗-module. We refer the readers to [7] and [8] for more details on Hilbert
C∗-modules and to [9, 6, 10, 11, 12, 13] for a discussion of basic properties of frame in
Hilbert C∗-modules and their generalizations.

Balazs and et al.[14] introduced controlled frames in Hilbert space to improve the numer-
ical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert

1 Department of Mathematics, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran.
e-mail: m−rashidi@kahnoojiau.ac.ir; ORCID: http://orcid.org/0000-0003-1640-1207.

2 Department of Mathematics, University of Maragheh, Maragheh, Iran.
e-mail: rahimi@maragheh.ac.ir; ORCID: http://orcid.org/0000-0003-2095-6811.

§ Manuscript received: July 16, 2019; accepted: January 20, 2020.
TWMS Journal of Applied and Engineering Mathematics, Vol.11, No.3 © Işık University, Department
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spaces, however they are used earlier in [15] for spherical wavelets. Recently controlled
frames with two operators were introduced in [16] by the idea of controlled g-frames in
[17]. Also the authors defined and investigated controlled frames in Hilbert C∗-modules
[18].

In this paper, we extend controlled frames with two operators for Hilbert C∗-modules.
This generalize controlled frames in Hilbert and Hilbert C∗-module. Similar to Hilbert
spaces, we show controlled frames with two operators in Hilbert C∗-modules are classical
frame. Then we investigate controlled multipliers in Hilbert C∗-modules. We show the
inverse of controlled frame multiplier is controlled frame multiplier too. The presented
results can be relevance for wider audience in the areas of wave-packet analysis [19, 20]
and [21].

The paper is organized as follows. In Section 2, we review the concept Hilbert C∗-
modules, frames and multiplier operators in Hilbert C∗-modules. Also the analysis, syn-
thesis, frame operator and dual frames are reviewed. In Section 3, we define controlled
frames with two operators in Hilbert C∗- modules and characterize them. In Section
4, we investigate controlled multiplier operators with two controller operators in Hilbert
C∗-modules and verify their invertibility.

2. Preliminaries

In this section, we review some basic notations and definitions.
Hilbert C∗-modules form a wide category between Hilbert spaces and Banach spaces.

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner product
to take values in a C∗-algebra rather than in the field of complex numbers and define as
follows:

Let A be a C∗-algebra with involution ∗. An inner product A-module (or pre Hilbert
A-module) is a complex linear space H which is a left A-module with an inner product
map 〈·, ·〉 : H×H → A which satisfies the following properties:

(1) 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉 for all f, g, h ∈ H and α, β ∈ C;
(2) 〈af, g〉 = a〈f, g〉 for all f, g ∈ H and a ∈ A;
(3) 〈f, g〉 = 〈g, f〉∗ for all f, g ∈ H;
(4) 〈f, f〉 ≥ 0 for all f ∈ H and 〈f, f〉 = 0 iff f = 0.

For f ∈ H, we define a norm on H by ‖f‖H = ‖〈f, f〉‖1/2A . If H is complete with this
norm, it is called a (left) Hilbert C∗-module over A or a (left) Hilbert A-module.

An element a of a C∗-algebra A is positive if a∗ = a and its spectrum is a subset of
positive real numbers. In this case, we write a ≥ 0. It is easy to see that 〈f, f〉 ≥ 0 for

every f ∈ H, hence we define |f | = 〈f, f〉1/2. If a, b ∈ A and 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.
Thus norm preserves order for positive members in C∗-algebras.

We call Z(A) = {a ∈ A : ab = ba,∀b ∈ A}, the center of A. If a ∈ Z(A), then a∗ ∈ Z(A),
and if a is an invertible element of Z(A), then a−1 ∈ Z(A), also if a is a positive element

of Z(A), then a1/2 ∈ Z(A). Let Hom∗A(H,K) denotes the set of all adjointable A-linear
operators from H to K and GL(H,K) as the set of all adjointable bounded linear operators
with an adjointable bounded inverse, and similarly for GL(H). If T ∈ GL(H) is positive,
i.e. 〈Tf, f〉 ≥ 0 for all f ∈ H, then we denote that by T ∈ GL+(H). One of the standard
references for Hilbert space and operator theory is [23].

Let

`2(A) =

{aj} ⊆ A :
∑
j∈J

a∗jaj converges in‖.‖
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with inner product

〈{aj}, {bj}〉 =
∑
j∈J

a∗jbj , {aj}, {bj} ∈ `2(A)

and

‖{aj}‖ :=
√
‖
∑

a∗jaj‖,

it was shown that [8], `2(A) is Hilbert A-modules.
Note that in Hilbert C∗-modules the Cauchy-Schwartz inequality is valid.
Let f, g ∈ H, where H is a Hilbert C∗-module, then

‖〈f, g〉‖2 ≤ ‖〈f, f〉‖ × ‖〈g, g〉‖.

We are focusing in finitely and countably generated Hilbert C∗- modules over unital
C∗-algebra A. A Hilbert A-module H is finitely generated if there exists a finite set
{x1, x2, ..., xn} ⊆ H such that every x ∈ H can be expressed as x =

∑n
i=1 aixi, ai ∈ A. A

Hilbert A-module H is countably generated if there exits a countable set of generators.
The notion of (standard) frames in Hilbert C∗-modules is first defined by Frank and

Larson [6]. Basic properties of frames in Hilbert C∗-modules are discussed in [22, 23, 24,
25].

Let H be a Hilbert C∗-module, and J a set which is finite or countable, a system
{fj}j∈J ⊆ H is called a frame for H if there exist constants C,D > 0 such that

C〈f, f〉 ≤
∑
j∈J
〈f, fj〉〈fj , f〉 ≤ D〈f, f〉 (1)

for all f ∈ H. The constants C and D are called the frame bounds. If C = D it called
a tight frame and in the case C = D = 1 it called Parseval frame. It is called a Bessel
sequence if the second inequality in (1) holds.

Unlike Banach spaces, it is known that every finitely generated or countably generated
Hilbert C∗-modules admits a frame [6] but this is not true for every Hilbert C∗-module
[9] and [26].

The following characterization of frames in Hilbert C∗-modules, which was obtained
independently in [27] and [28], enables us to verify whether a sequence is a frames in
Hilbert C∗-modules in terms of norms. It also allows us to characterize frames in Hilbert
C∗-modules from the operator theory point of view.

Theorem 2.1. Let H be a finitely or countably generated Hilbert A-module over a unital
C∗-algebra A and {fj : j ∈ J} ⊂ H a sequence. Then {fj : j ∈ J} is a frame for H if and
only if there exist constants C,D > 0 such that

C‖f‖2 ≤

∥∥∥∥∥∥
∑
j∈J
〈f, fj〉〈fj , f〉

∥∥∥∥∥∥ ≤ D‖f‖2, f ∈ H.
Let {fj : j ∈ J} be a frame in Hilbert A-module H over a unital C∗-algebra A and

{gj : j ∈ J} be a sequence of H. Then {gj}j∈J is called a dual sequence of {fj}j∈J if

f =
∑
j∈J
〈f, gj〉fj

for all f ∈ H. The sequences {fj}j∈J and {gj}j∈J are called a dual frame pair when
{gj}j∈J is also a frame.
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For the frame {fj : j ∈ J} in Hilbert A-module H over a unital C∗-algebra A, the
operator S defined by

Sf =
∑
j∈J
〈f, fj〉fj , f ∈ H

is called the frame operator. It was proved that [5], S is invertible, positive, adjointable
and self-adjoint. Since

〈Sf, f〉 = 〈
∑
j∈J
〈f, fj〉fj , f〉 =

∑
j∈J
〈f, fj〉〈fj , f〉, f ∈ H

it follows that
C〈f, f〉 ≤ 〈Sf, f〉 ≤ D〈f, f〉, f ∈ H

and the following reconstruction formula holds

f = SS−1f = S−1Sf =
∑
j∈J
〈S−1f, fj〉fj =

∑
j∈J
〈f, S−1fj〉fj

for all f ∈ H.
Let f̃j = S−1fj , then

f =
∑
j∈J
〈f, f̃j〉fj =

∑
j∈J
〈f, fj〉f̃j ,

for any f ∈ H. The sequence {f̃j : j ∈ J} is also a frame for H which is called the
canonical dual frame of {fj : j ∈ J}.

In [29], R. Schatten provided a detailed study of ideals of compact operators using their
singular decomposition. He investigated the operators of the form

∑
j λjϕj ⊗ ψj where

(ϕj) and (ψj) are orthonormal families. In [5], the orthonormal families were replaced
with Bessel and frame sequences to define Bessel and frame multipliers in Hilbert space.

Basic properties and some applications of this operator for Bessel sequences, frames
and Riesz basis have been proved by Peter Balazs in his Ph.D habilation [30] and related
paper [31]. Recently, the concept of multipliers extended and introduced for continuous
frames [32], fusion frames [33], p-Bessel sequences [34], generalized frames [35] and Hilbert
C∗-module [36].

Definition 2.1. Let A be a unital C∗-algebra, J be a finite or countable index set and
{fj : j ∈ J} and {gj : j ∈ J} be Hilbert C∗-modules Bessel sequences for H. For
m ∈ `∞(A) with mj ∈ Z(A), for each j ∈ J , the operator Mm,{fj},{gj} : H → H defined by

Mm,{fj},{gj}f :=
∑
j∈J

mj〈f, fj〉gj , f ∈ H

is called the multiplier operator of {fj}j∈J and {gj}j∈J . The sequence m = {mj} called
the symbol of Mm,{fj},{gj}.

The symbol m has an important role in the studying of multiplier operators. In this
paper m is always a sequence m = {mj}j∈J ∈ `∞(A) with mj ∈ Z(A), for each j ∈ J .

We need the following lemma and theorem of [35] to prove our results.

Lemma 2.2. Let H and K be Hilbert C∗-module over A and let T : H → K be a linear
map. Then the following conditions are equivalent:

(1) the operator T is bounded and A-linear;
(2) there exists a constant M > 0 such that the inequality 〈Tf, Tf〉 ≤ M〈f, f〉 holds

in A for all f ∈ H.
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Theorem 2.3. Let T : H → H be a linear operator. Then the following conditions are
equivalent:

(1) There exist m > 0 and M <∞ such that mI ≤ T ≤MI;
(2) T ∈ GL+(H).

3. Controlled frames with two operators in Hilbert C∗-modules

In this section, we define and characterize controlled frames with two operators in
Hilbert C∗-modules. Then we show every controlled frames with invertible bounded op-
erators in Hilbert C∗-module are classical frames in Hilbert C∗-modules.

Definition 3.1. Let H be a Hilbert C∗-module and T, T ′ ∈ GL(H). Let F = {fj : j ∈ J}
be a sequence in Hilbert C∗-module H. The sequence F is called a controlled frame by T
and T ′ or (T, T ′)-controlled frame if there exists two constants 0 < C,D <∞ such that

C〈f, f〉 ≤
∑
j∈J
〈f, Tfj〉〈T ′fj , f〉 ≤ D〈f, f〉,

for all f ∈ H. We call F a Parseval (T, T ′)-controlled frame if C = D = 1. If only the
right inequality holds, then we call F a (T, T ′)-controlled Bessel sequence.

The proof of the following lemma is straightforward.

Lemma 3.1. Let H be a Hilbert C∗-module and T ∈ GL(H). The Bessel sequence F =
{fj : j ∈ J} in H is (T, T )-controlled Bessel sequence(or (T, T )-controlled frame) if and
only if there exists constant D <∞ (and C > 0) such that∑

j∈J
|〈f, Tfj |2 ≤ D|f |2, ∀f ∈ H

(or C|f |2 ≤
∑
j∈J
|〈f, Tfj |2 ≤ D|f |2, ∀f ∈ H).

We call the (T, T )-controlled Bessel sequence and (T, T )-controlled frame, T 2-controlled
Bessel sequence and T 2-controlled frame with bounds C,D.

Let F = {fj : j ∈ J} be a Bessel sequence of elements in Hilbert C∗-module H. We
define a linear operator UTF : H → `2(A) as follows:

UTFf = {〈f, Tfj〉}j∈J ,
for all f ∈ H. If F is also a (T, T ′)-controlled frame for H, then it is a bounded linear
operator and this is called the analysis operator of (T, T ′)-controlled frame. The adjoint
operator U∗TF : `2(A) → H which is called the synthesis operator of (T, T ′)-controlled
frame and is defined as follows:

U∗TF ({aj}j∈J) =
∑
j∈J

ajTfj ,

for all {aj}j∈J ∈ `2(A).
Controlled frame operator STT ′ on Hilbert C∗-module H for (T, T ′)-controlled frame F

is defined by

STT ′f := U∗T ′FUTF (f) =
∑
j∈J
〈f, Tfj〉T ′fj ,

for all f ∈ H.
It is easy to see that STT ′ is well defined and

CIdH ≤ STT ′ ≤ DIdH.
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Hence STT ′ is a bounded, invertible, self-adjoint and positive linear operator. Therefore
we have STT ′ = S∗TT ′ = ST ′T .

Now, by using the following lemma in [27], we give a characterization of controlled
frames.

Lemma 3.2. [27] Let A be a C∗-algebra, U and V two Hilbert A-modules, and T ∈
End∗A(U, V ). Then the following statements are equivalent:

(1) T is surjective;
(2) T ∗ is bounded below with respect to norm, that is, there is m > 0 such that ‖T ∗f‖ ≥

m‖f‖ for all f ∈ U ;
(3) T ∗ is bounded below with respect to the inner product, that is, there is m′ > 0 such

that 〈T ∗f, T ∗f〉 ≥ m′〈f, f〉 for all f ∈ U .

Theorem 3.3. Let H be a Hilbert C∗-module, T, T ′ ∈ GL(H) and F = {fj}j∈J be a
sequence in H. Then F is a (T, T ′)-controlled frame for H if and only if there exist
constants C,D > 0 such that

C‖f‖2 ≤

∥∥∥∥∥∥
∑
j∈J
〈f, Tfj〉〈T ′fj , f〉

∥∥∥∥∥∥ ≤ D‖f‖2, f ∈ H. (2)

Proof. Let the sequence F = {fj}j∈J be (T, T ′)-controlled frame in Hilbert C∗-module H.
By the definition of (T, T ′)-controlled frame inequality (2) holds.

Now suppose that the inequality (2) holds. Since (T, T ′)-controlled frame operator STT ′
is positive, self-adjoint and invertible, we have

〈S
1
2
TT ′f, S

1
2
TT ′f〉 = 〈STT ′f, f〉 =

∑
j∈J
〈f, Tfj〉〈T ′fj , f〉.

So we have √
C‖f‖ ≤ ‖S

1
2
TT ′f‖ ≤

√
D‖f‖

for any f ∈ H. According to Lemma 3.2 and Lemma 2.3 there are constants m,M > 0
such that

m〈f, f〉 ≤
∑
j∈J
〈f, Tfj〉〈T ′fj , f〉 ≤M〈f, f〉,

which implies that F = {fj : j ∈ J} is (T, T ′)-controlled frame in Hilbert C∗-module
H. �

The following proposition shows every (T, T ′)-controlled is a frame in Hilbert C∗-
modules. Also it gives a condition that every classical frame is a (T, T ′)-controlled frame.

Proposition 3.4. Let H be a Hilbert C∗-module, T, T ′ ∈ GL(H) and F = {fj : j ∈ J} a
sequence in H. Then the following statements hold:

(1) If F is a (T, T ′)-controlled frame for H, then F is a frame for H.
(2) If F is a frame for H and T ′SFT

∗ is a positive operator, then F is a (T, T ′)-
controlled frame for H.

Proof. (1) Let f be an arbitrary element of Hilbert C∗-module H. The operator

Sf := (T ′)−1STT ′(T
∗)−1(f) =

∑
j∈J
〈f, fj〉fj
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is well defined, bounded and invertible. Since

〈Sf, f〉 =
∑
j∈J
〈f, fj〉〈fj , f〉

the operator S is a positive linear operator. Also we have

‖S−1‖ = ‖T ∗S−1TT ′T
′‖ ≤ ‖T ∗‖‖S−1TT ′‖‖T

′‖ ≤ 1

C
‖T‖‖T ′‖.

So S ∈ GL+(H). Therefore, by Theorem 3.9 in [18] there exist m > 0 and M <∞
such that mI ≤ S ≤MI. Therefore F is a frame for H.

(2) Since T ′SFT
∗ is a positive operator so STT ′ := T ′SFT

∗ ∈ GL+(H) and again by
Theorem 3.9 in [18] there exist m > 0 and M < ∞ such that mI ≤ STT ′ ≤ MI.
Therefore F is a (T, T ′)-controlled frame for H.

�

The following proposition shows that any frame is a T 2-controlled frame and versa.

Proposition 3.5. Let H be a Hilbert C∗-module, T ∈ GL(H) be self-adjoint and F =
{fj : j ∈ J} a sequence in H. The sequence F is a frame if and only if F is a T 2-controlled
frame.

Proof. Let the sequence F be a frame in Hilbert C∗-module H with bounds C ′, D′. Then
by Theorem 2.1

C ′‖f‖2 ≤

∥∥∥∥∥∥
∑
j∈J
〈f, fj〉〈fj , f〉

∥∥∥∥∥∥ ≤ D′‖f‖2,
for all f ∈ H. So, we have∥∥∥∥∥∥

∑
j∈J
〈Tf, fj〉〈fj , T f〉

∥∥∥∥∥∥ ≤ D′‖Tf‖2 ≤ D′‖T‖2‖f‖2,
for all f ∈ H.

For lower bound,

C ′‖f‖2 = C ′‖T−1Tf‖2 ≤ C ′‖T−1‖2‖Tf‖2 ≤ ‖T−1‖2
∥∥∥∥∥∥
∑
j∈J
〈f, Tfj〉〈Tfj , f〉

∥∥∥∥∥∥ ,
for all f ∈ H. Therefore F is a T 2-controlled frame with bounds C ′‖T−1‖−2 and D′‖T‖2.

The converse is valid by Proposition 3.4 (1).
�

The idea of the following proposition is from Proposition 3.6. in [17].

Proposition 3.6. Let H be a Hilbert C∗-module, F = {fj : j ∈ J} a frame in H and
T, T ′ ∈ G+L(H), which commute with each other and commute with SF . Then F is a
(T, T ′)-controlled frame.

Proof. Let F be a frame with bounds C,D. Since T, T ′ ∈ GL+(H) by Theorem 2.4 there
exist m,m′ > 0 and M,M ′ <∞ such that

mI ≤ T ≤MI, m′I ≤ T ′ ≤M ′I.
Then

m′CI ≤ T ′SF ≤M ′DI,
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because T ′ commute with SF . Again T commute with T ′SF and then

mm′CI ≤ STT ′ ≤MM ′DI.

�

The following theorem characterize all operators T, T ′ ∈ G+L(H) which can generate
Parseval controlled frames from a usual frame. This is a generalization of Theorem 3.1 in
[16] for Hilbert C∗-modules.

Theorem 3.7. Let H be a Hilbert C∗-module, F = {fj : j ∈ J} a frame in H and

T, T ′ ∈ G+L(H). Then F is a Parseval (T, T ′)-controlled frame if and only if T = WS−qF
and T ′ = W ′S−pF , where W,W ′ are two operators on H such that W ′W ∗ = IdH and p, q
are real numbers such that p+ q = 1.

Proof. Let F be a Parseval (T, T ′)-controlled frame for H. So STT ′ = IdH. Therefore, for
each pairs of real numbers p, q such that p+ q = 1, we have

IdH = ST,T ′ = T ′SFT
∗ = T ′SpFS

q
FT
∗.

We define W ′ := T ′SpF and W := TSqF . So

W ′W ∗ = T ′SpFS
q
FT
∗ = T ′SFT

∗ = STT ′ = IdH.

Conversely, let W,W ′ be two operators on H such that W ′W ∗ = IdH. We define T :=
WS−qF and T ′ = W ′S−pF where p, q are real numbers and p+ q = 1. So

f = T ′SFT
∗(f) =

∑
j∈J
〈f, Tfj〉T ′fj , ∀f ∈ H.

Therefore, F is a Parseval (T, T ′)-controlled frame. �

Corollary 3.8. Let H be a Hilbert C∗-module, F = {fj : j ∈ J} a frame in H. Then

TF = {Tfj : j ∈ J} is a Parseval frame for H if and only if T = WS
− 1

2
F where W is an

operator on H such that WW ∗ = IdH.

Proof. Let W ′ = W and p = q = 1
2 in theorem 3.8. �

4. Multipliers of Controlled Frames in Hilbert C∗-modules

In this section, we introduce controlled multipliers with two operators in Hilbert C∗-
module. We show the inverse of controlled frame multiplier with two operators is a con-
trolled frame multiplier too.

First we start by the following lemma. This is a generalization of Proposition 3.1 in
[36] to controlled multipliers with two operators.

Lemma 4.1. Let H be a Hilbert C∗-module, T, T ′ ∈ GL(H) and F = {fj : j ∈ J},
G = {gj : j ∈ J} be T 2 and T 2-controlled Bessel sequences for H, respectively. Let
m ∈ `∞(A). The operator

Mm,TF ,T ′G : H → H
defined

Mm,TF ,T ′Gf :=
∑
j∈J

mj〈f, T ′gj〉Tfj

is a well defined bounded operator.
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Proof. Let F = {fj : j ∈ J} and G = {gj : j ∈ J} be T 2 and T ′2-controlled Bessel
sequences for H with bounds D and D′, respectively.

For any f, g ∈ H and finite subset I ⊂ J ,∥∥∥∥∥∑
i∈I

mi〈g, T ′gi〉Tfi

∥∥∥∥∥ = supf∈H,‖f‖=1

∥∥∥∥∥∑
i∈I

mi〈g, T ′gi〉〈Tfi, f〉

∥∥∥∥∥
≤ supf∈H,‖f‖=1

∥∥∥∥∥∥
(∑
i∈I
|mi|2|〈g, T ′gi〉|2

) 1
2
(∑
i∈I
|〈Tfi, f〉|2

) 1
2

∥∥∥∥∥∥
≤ supf∈H,‖f‖=1‖m‖∞

∥∥∥∥∥∥
(∑
i∈I
|〈g, T ′gi〉|2

) 1
2
(∑
i∈I
|〈Tfi, f〉|2

) 1
2

∥∥∥∥∥∥
≤ ‖m‖∞

√
DD′‖f‖

This show that Mm,TF ,T ′G is well defined and

‖Mm,TF ,T ′G‖ ≤ ‖m‖∞
√
DD′.

�

Now we can define controlled multipliers with two operators in Hilbert C∗-modules as
follows:

Definition 4.1. Let H be a Hilbert C∗-module, T, T ′ ∈ GL(H) and F = {fj : j ∈ J},
G = {gj : j ∈ J} be T 2 and T ′2-controlled Bessel sequences for H, respectively. Let
m ∈ `∞(A). The operator

Mm,TF ,T ′G : H → H
defined by

Mm,TF ,T ′Gf :=
∑
j∈J

mj〈f, T ′gj〉Tfj

is called the (T, T ′)-controlled multiplier operator with symbol m.

For frames we will call the resulting (T, T ′)-controlled Bessel multiplier a (T, T ′)-controlled
frame multiplier.

Let us denote Mm,TF = Mm,TF ,TF .
Consider the diagonal operator

Dm : `2(A)→ `2(A)

corresponding to sequence m = {mj} ∈ `p for p > 0 which is defined by

Dm{aj}j∈J := {mjaj}j∈J , {aj}j∈J ∈ `2,

so definition of a controlled Bessel multiplier can also be expressed in the following way:

Mm,TF ,T ′G = U∗TFDmUT ′G .

We have the following lemma from [36].

Lemma 4.2. Let m = {mj} ∈ `∞(Z(A)). Then the operator Dm is well defined, ad-
jointable with D∗m = Dm∗ and ‖Dm‖ ≤ ‖m‖∞, where m∗ = {m∗j}j∈J .

The following theorem is a generalization of Theorem 6.1 in [31] and Theorem 3.3 in
[36] to controlled multipliers with two operators in Hilbert C∗-modules.
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Theorem 4.3. Let H be a Hilbert C∗-module and T, T ′ ∈ GL(H). Also, let M =
Mm,TF ,T ′G be a (T, T ′)-controlled Bessel multiplier for T 2-controlled Bessel sequences

F = {fj}j∈J and T
′2-controlled Bessel sequences G = {gj}j∈J with the bounds D and

D′. Then

(1) If m ∈ `∞, M is a well-defined bounded operator with ‖M‖Op ≤
√
DD′‖m‖∞.

Furthermore the sum
∑

j∈J mj〈g, gj〉fj converges unconditionally for all g ∈ H;

(2) (Mm,TF ,T
′
G
)∗ = Mm,T ′G ,TF

. Therefore even if m is self-adjoint and {fj}j∈J =

{gj}j∈J , the multiplier operator M is not self-adjoint;
(3) If m ∈ c0, then the multiplier operator M is compact operator;
(4) If m ∈ `2, then the multiplier operator M is a Hilbert-Schmidt operator with

‖M‖HS ≤
√
DD′‖m‖2.

Proof. (1)

‖M‖Op = ‖U∗TFDmUT ′G‖Op ≤ ‖U∗TF‖Op‖Dm‖∞‖UT ′G‖Op ≤
√
DD′‖m‖∞

As {fj}j∈J is a T 2-controlled Bessel sequence,
∑
CjTfj convergence unconditionally for

all {cj}j∈J ∈ `2(A), in particular for {mj .〈g, Tgj〉}j∈J .
(2) Mm,TF ,T ′G = U∗TFDmUT ′G , so with Lemma 4.3

(Mm,TF ,T ′G)∗ = (U∗TFDmUT ′G)∗ = U∗TGD
∗
mUTF = Mm∗,T ′G,TF .

(3) Let mN be the finite sequences, then

‖MmN −Mm‖Op = ‖U∗TFDmNUT ′G − U
∗
TFDmUT ′G‖Op = ‖U∗TF (DmN −Dm)UT ′G‖Op

≤ ‖U∗TF‖Op‖DmN −Dm‖Op‖UT ′G‖Op ≤
√
DD′ε.

For every ε′ = ε√
DD′
‖C‖Op, there is a Nε such that ‖DmN −Dm‖Op < ε′ and therefore

‖MmN −Mm‖Op < ε for all N > Nε. The operator MmN is a finite sum of rank one
operators and so has finite rank. This means that Mm is a limit of finite-rank operators
and therefore compact.

(4) The operator Dm : `2 → `2 is in HS due with bound ‖Dm‖HS = ‖m‖2. Using the
properties of HS operators we get

‖U∗TFDmUT ′G‖HS ≤ ‖UTF‖Op‖m‖2‖UT ′G‖Op ≤
√
DD′‖m‖2.

�

The following theorem shows that the inverse of a controlled multiplier operator is
a controlled multiplier operator. This generalized Theorem 1.1. in [37] for controlled
multipliers with two operators in Hilbert C∗-modules.

Theorem 4.4. Let H be an Hilbert A-module, T, T ′ ∈ GL(H) and F ,G be T 2-controlled
and T ′2-controlled frames for H. Also let the symbol m = (mj) ∈ `∞(Z(A)) satisfy 0 <
infn|mn| ≤ supn|mn| <∞. Assume that the (T, T ′)-controlled frame operator Mm,TF ,T ′G
is invertible. Then there exists a dual frame F+ of F , so that for any T ′2-controlled dual
frame Gd of G

M−1m,TF ,T ′G = Mm−1,T ′Gd,TF+ .

Proof. Denote M := Mm,TF ,T ′G and TF+ = (M−1(mjT
′gj))j∈J . First observe that TF+

is a dual frame of TF . Therefore,

M−1U∗T ′Gej = U∗TF+Dm−1ej , j ∈ J.
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Now the boundedness of the operators implies that M−1U∗T ′G = U∗TF+Dm−1 on `2(A).

Using any dual frame T ′Gd of T ′G we get M−1 = U∗TF+Dm−1UT ′Gd on Hilbert A-module
H. Therefore

M−1m,TF ,T ′G = Mm−1,T ′Gd,TF+ .

�
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