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SOLUTION OF PARTIALLY SINGULARLY PERTURBED SYSTEM OF

INITIAL AND BOUNDARY VALUE PROBLEMS USING

NON-UNIFORM HAAR WAVELET

AKMAL RAZA1, ARSHAD KHAN1, KHALIL AHMAD2, §

Abstract. An efficient non-uniform Haar wavelet method is proposed for the numerical
solution of system of first order linear partially singularly perturbed initial value prob-
lem on piecewise uniform Shishkin mesh and ρ-mesh. Further, we apply same technique
for solving system of second order linear partially singularly perturbed boundary value
problems on piecewise uniform Shishkin mesh and q-mesh. Our method produces better
results in comparison to uniform Haar wavelet, classical finite difference operator method
and parameter uniform methods. We demonstrated two test problems to support the
theory, accuracy and efficiency of the non-uniform Haar Wavelet method.
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Singular Perturbation; Initial and Boundary Value Problems.

2000 Mathematics Subject Classification: 65M99; 65N35; 65N55; 65L10.

1. Introduction

In this paper, we took a particular case of linear system of first and second order
singularly perturbed initial and boundary value problems which contains perturbation pa-
rameter ε in both equations. Consider the linear system of first order singularly perturbed
initial value problem as follows:

εy′1(t) + a(t)y1(t) + b(t)y2(t) = f1(t), (1)

εy′2(t) + c(t)y1(t) + d(t)y2(t) = f2(t), ∀ t ∈ (0, 1] (2)

with initial conditions

y1(0) = α1, y2(0) = α2 (3)
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of Mathematics, 2021; all rights reserved.

1246



A. RAZA, A. KHAN, K. AHMAD: SOLUTION OF PARTIALLY SINGULARLY PERTURBED ... 1247

where a(t), b(t), c(t), d(t), f1(t) and f2(t) are continuous functions.
Further, we consider linear system of second order singularly perturbed boundary value
problem as follows:

−εy′′1(t) + a(t)y1(t) + b(t)y2(t) = f1(t), (4)

εy′′2(t) + c(t)y1(t) + d(t)y2(t) = f2(t), ∀ t ∈ (0, 1] (5)

with boundary conditions

y1(0) = α1, y2(0) = α2, y1(1) = β1 and y2(1) = β2. (6)

Now we consider the following linear system of partially singularly perturbed initial value
problem

εy′1(t) + a(t)y1(t) + b(t)y2(t) = f1(t), (7)

y′2(t) + c(t)y1(t) + d(t)y2(t) = f2(t), ∀ t ∈ (0, 1] (8)

with initial conditions

y1(0) = α1, y2(0) = α2. (9)

The matrix form of the system (7)-(8) can be written as(
−ε ddt 0

0 d
dt

)(
y1(t)
y2(t)

)
+

(
a(t) b(t)
c(t) d(t)

)(
y1(t)
y2(t)

)
=

(
f1(t)
f2(t)

)
, ∀ t ∈ (0, 1] (10)

with initial conditions

y(0) = (y1(0), y2(0))T = (α1, α2)
T . (11)

Here, we took one equation with perturbation parameter ε and the other equation which
does not contain perturbation parameter ε or we can say that ε = 1 in equations (2)
and (5). Also, the system of partially singularly perturbed second order boundary value
problem is written as follows:

−εy′′1(t) + a(t)y1(t) + b(t)y2(t) = f1(t), (12)

y′′2(t) + c(t)y1(t) + d(t)y2(t) = f2(t), ∀ t ∈ (0, 1] (13)

with boundary conditions

y1(0) = α1, y2(0) = α2, y1(1) = β1 and y2(1) = β2. (14)

The matrix form of the system of (12)-(13) can be written as(
−ε d2

dt2
0

0 d2

dt2

)(
y1(t)
y2(t)

)
+

(
a(t) b(t)
c(t) d(t)

)(
y1(t)
y2(t)

)
=

(
f1(t)
f2(t)

)
(15)

with the boundary conditions

y(0) = (y1(0), y2(0))T = (α1, α2)
T

and y(1) = (y1(1), y2(1))T = (β1, β2)
T . (16)

Such systems occurs in various fields especially in electro-analytical chemistry, chemical
reactions, semiconductor devices, circuit theory, diffusion process complicated by linear
diffusion chemical reactions, linear state regulator problem, viscous fluid flow, mathemati-
cal miniature of turbulence in water wave when they interact with electricity and predator
prey population dynamics.

A study of solution of linear system of first and second order partially singularly per-
turbed initial and boundary value problems can be seen in [7]. Standard finite difference
method is not sufficient to give the solution of such problems due to presence of ε multi-
plied by highest order derivatives. Further, various numerical approximations were given
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to deal with these kind of problems, such as classical finite difference operator method,
fitted operator method, parameter robust numerical method, fitted numerical method,
parameter uniform finite difference method, uniformly accurate finite element method
[5, 6, 11, 12, 15]. In the present paper, we have solved system of first order linear partially
singularly perturbed initial value problem on piecewise uniform Shishkin mesh and ρ-mesh
and system of second order linear partially singularly perturbed boundary value problem
on piecewise uniform Shishkin mesh and q-mesh. For the numerical solution of these prob-
lems we have proposed an efficient non-uniform Haar wavelet method. In fact, our method
produces better results in comparison to uniform Haar wavelet, classical finite difference
operator method and parameter uniform methods. Moreover, we have demonstrated two
problems to show the better efficiency of the non-uniform Haar wavelet method.

2. Non-Uniform Haar Wavelet

Basic non-uniform Haar wavelet and non-uniform multi-resolution analysis was intro-
duced by F. Dubeau et al. [4] in 2004. Solution of integral and differential equations
using non-uniform Haar wavelet was given by U.Lepik ([9], [10]), solution of two point
boundary value problem using Haar wavelet was given by Siraj-ul-Islam et al. [8]. For
further details on wavelets we refer to [1]-[3]. The non-uniform Haar Wavelet family for
t ∈ [0, 1] is defined as follows:

Hi(t) =


1, ξ1(i) ≤ t < ξ2(i),

−ni, ξ2(i) ≤ t < ξ3(i),

0, otherwise,

(17)

where i indicates the wavelet number and

ξ1(i) = x(2kµ) , ξ2(i) = x((2k + 1)µ), ξ3(i) = x((2k + 2)µ), µ = M
m

m = 2j , j = 0, 1, 2..., J , M = 2J and integer k = 0, 1...,m− 1.

Here J indicates the level of resolution and k represents the translations parameter. Index
i is calculated as i = m + k + 1 which is true for i ≥ 2. We have given the graph of
non-uniform Haar wavelet for i = 1, 2...8. in figure 1.

Figure 1. Graph of non-uniform Haar wavelet for i = 1, 2...8.
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The integration of non-uniform Haar wavelet can be given as follows:

Pi(t) =


t− ξ1(i), ξ1(i) ≤ t < ξ2(i),

(ξ3(i)− t)ni, ξ2(i) ≤ t < ξ3(i),

0, otherwise.

(18)

The graph of integration of non-uniform Haar wavelet is given in figure 2.

Figure 2. Graph of integration of non-uniform Haar wavelet for i = 1, 2...8.

The double integration of non-uniform Haar wavelet can be given as follows:

Qi(t) =


1
2(t− ξ1(i))2, ξ1(i) ≤ t < ξ2(i),

K − 1
2(ξ3(i)− t)2ni, ξ2(i) ≤ t < ξ3(i),

K, ξ3(i) ≤ t < 1

0, otherwise.

(19)

The graph of double integration of non-uniform Haar wavelet is given in figure 3.

Figure 3. Graph of double integration of non-uniform Haar wavelet for i = 1, 2...8.

Proceeding in similar manner the nth integration of non-uniform Haar wavelet see ([8],
[9],[10],[13] and [14]) can be obtained as follows :

InHi(t) =


0, t < ξ1(i),
1
n! [t− ξ1(i)]

n, ξ1(i) ≤ t < ξ2(i),
1
n! [(t− ξ1(i))

n − (1 + ni)(t− ξ2(i))n], ξ2(i) ≤ t < ξ3(i),
1
n! [(t− ξ1(i))

n − (1 + ni)(t− ξ2(i))n + ni(t− ξ3(i))n], ξ3(i) ≤ t,

(20)
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where, K = (ξ2−ξ1)(ξ3−ξ1)
2 and ni = (ξ2−ξ1)

(ξ3−ξ1) .

Grid Formation: Here we discuss the non-uniform and piecewise uniform fitted mesh/grids:
The non-uniform grid, i.e., q-mesh is defined as

t̂(j) =
1− qj

1− qN
, j = 0, 1, 2, ..., N (21)

t(j) =
t̂(j − 1) + t̂(j)

2
, j = 1, 2, ..., N. (22)

The ρ-mesh is given as follows

M =
N

2
, ρ =

5− ε
5M

, δ =
Nρ− 1

M(N − 1)

t0 = 0, tj = 1− (N − j)ρ+ δ(N − j + 1)
N − j

2
, j = 1, 2, ...N

Tcj =
tj+1 + tj

2
, j = 1, 2, ...N (23)

and the Shishkin mesh is given as follows

σ = min(
1

α
, εlog(N))

tj =
2σ(j − 1

2)

N
, j = 1, 2, ...

N

2
− 1 (24)

tj = σ +
2(1− σ)(j −M − 1

2)

N
, j =

N

2
, ...N. (25)

3. Solution of Partially Singularly Perturbed System of Initial and
Boundary Value Problems

3.1. Method for Solving System of First Order Linear Partially Singularly Perturbed Initial
Value Problem. We consider the system as follows

εy′1(t) + a(t)y1(t) + b(t)y2(t) = f1(t), (26)

y′2(t) + c(t)y1(t) + d(t)y2(t) = f2(t), ∀ t ∈ (0, 1] (27)

with initial conditions

y1(0) = α1, y2(0) = α2. (28)

To solve this system, we assume that

y′1(t) =

N∑
i=1

aiHi(t), (29)

and

y′2(t) =
N∑
i=1

biHi(t). (30)

Now, integrating (29) from 0 to t, we get

y1(t) =
N∑
i=1

aiPi(t) + y1(0). (31)
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Further, integrating (30) from 0 to t, we get

y2(t) =

N∑
i=1

biPi(t) + y2(0). (32)

Now, putting the values of y′1(t), y1(t), y
′
2(t) and y2(t) from equations (29)-(32), in equa-

tions (26) and (27), respectively, we get

ε
N∑
i=1

aiHi(t) + a(t)(
N∑
i=1

aiPi(t) + y1(0)) + b(t)(
N∑
i=1

biPi(t) + y2(0)) = f1(t), (33)

and
N∑
i=1

biHi(t)+c(t)(
N∑
i=1

aiPi(t)+y1(0))+d(t)(
N∑
i=1

biPi(t)+y2(0)) = f2(t), ∀ t ∈ (0, 1] (34)

On simplifying (33) and (34), we get

N∑
i=1

ai(εHi(t) + a(t)Pi(t)) + b(t)
N∑
i=1

biPi(t) = f1(t)− a(t)y1(0)− b(t)y2(0), (35)

and
N∑
i=1

bi(Hi(t) + d(t)Pi(t)) + c(t)
N∑
i=1

aiPi(t) = f2(t)− c(t)y1(0)− d(t)y2(0), ∀ t ∈ (0, 1]

(36)
The equations (35) and (36) are system of linear equations with unknown non-uniform
Haar wavelet coefficients a′is and b′is, which can be solved using any method present in
literature, such as Gauss elimination method and then we put the values of non-uniform
Haar wavelet coefficients a′is in equation (31) and b′is in equation (32), which is the non-
uniform Haar wavelet approximate solution of the system of first order linear partially
singularly perturbed initial value problem.

3.2. Method for Solving System of Second Order Linear Partially Singularly Perturbed
Boundary Value Problems. We consider the system as follows

−εy′′1(t) + a(t)y1(t) + b(t)y2(t) = f1(t), (37)

y′′2(t) + c(t)y1(t) + d(t)y2(t) = f2(t), ∀ t ∈ (0, 1] (38)

with boundary conditions

y1(0) = α1, y2(0) = α2, y1(1) = β1 and y2(1) = β2. (39)

To solve this system, we assume that

y′′1(t) =
N∑
i=1

aiHi(t), (40)

and

y′′2(t) =
N∑
i=1

biHi(t). (41)

Now, integrating (40) from 0 to t, we get

y′1(t) =
N∑
i=1

aiPi(t) + y′1(0). (42)
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Also, integrating (41) from 0 to t we get,

y′2(t) =
N∑
i=1

biPi(t) + y′2(0). (43)

Again integrating (42) and (43) from 0 to t, respectively, we get

y1(t) =
N∑
i=1

aiQi(t) + ty′1(0) + y1(0), (44)

y2(t) =

N∑
i=1

biQi(t) + ty′2(0) + y2(0). (45)

Further, to find y′1(0) and y′2(0) we integrate the equations (40) and (41) from 0 to 1,
respectively, and then we get

y′1(0) = y1(1)− y1(0)−
N∑
i=1

aiCi(t) (46)

and

y′2(0) = y2(1)− y2(0)−
N∑
i=1

biCi(t) (47)

where C(t) =
∫ 1
0 P(t)dt.

Now, putting the values of y′1(0) and y′2(0) from equations (46) and (47) in equations (44)
and (45), respectively, we get

y1(t) =
N∑
i=1

aiQi(t) + t(y1(1)− y1(0)−
N∑
i=1

aiCi(t)) + y1(0), (48)

y2(t) =

N∑
i=1

biQi(t) + t(y2(1)− y2(0)−
N∑
i=1

biCi(t)) + y2(0). (49)

Substituting the values of y′′1(t), y1(t), y
′′
2(t) and y2(t) from equations (40), (48), (41)and

(49) in equations (37) and (38), respectively, we get the following system of linear equations

−ε(
N∑
i=1

aiHi(t)) + a(t)(
N∑
i=1

aiQi(t) + t(y1(1)− y1(0)−
N∑
i=1

aiCi(t)) + y1(0)) +

b(t)(
N∑
i=1

biQi(t) + t(y2(1)− y2(0)−
N∑
i=1

biCi(t)) + y2(0)) = f1(t), (50)

and

N∑
i=1

biHi(t) + c(t)(

N∑
i=1

aiQi(t) + t(y1(1)− y1(0)−
N∑
i=1

aiCi(t)) + y1(0)) +

d(t)(
N∑
i=1

biQi(t) + t(y2(1)− y2(0)−
N∑
i=1

biCi(t)) + y2(0)) = f2(t). (51)
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On simplifying the system (50) and (51), we get

N∑
i=1

ai(−εHi(t) + a(t)(Qi(t)− tCi(t))) +

N∑
i=1

bi(b(t)(Qi(t)− tCi(t)))

= f1(t)− a(t)(t(y1(1)− y1(0)) + y1(0))− b(t)(t(y2(1)− y2(0))− y2(0)), (52)

and
N∑
i=1

bi(Hi(t) + d(t)(Qi(t))− tCi(t)) +
N∑
i=1

aic(t)(Qi(t)− tCi(t))

= f2(t)− c(t)(t(y1(1)− y1(0)) + y1(0))− d(t)(t(y2(1)− y2(0)) + y2(0)). (53)

The equations (52) and (53) are system of linear equations with unknown non-uniform
Haar wavelet coefficients a′is and b′is, which can be solved using any method present in
literature, such as Gauss elimination method and then we put the values of non-uniform
Haar wavelet coefficients a′is in equation (48) and b′is in equation (49), which is the non-
uniform Haar wavelet approximate solution of the system of second order linear partially
singularly perturbed boundary value problems.

4. Error Analysis

Lemma. Let y(x) be a square integrable function with bounded first derivative on
(0, 1) and y(xj), be Haar wavelet approximation of y(x), then the error norm at J th level
satisfies the inequality

‖E‖ = |y(t)− y(tj)| ≤ 2D
√
K
(2−2(J+1)

3

)2
(54)

Proof. For the proof see [8, 13].

In case, if we do not have the exact solution of the system of first order linear partially
singularly perturbed initial value problem, then the maximum absolute residual error is
calculated by the following formula

E = max |εy′1(tj) + a(tj)y1(tj) + b(tj)y2(tj)− f1(tj)|, (55)

where y′1(tj), y1(tj) and y2(tj) are given as in equations (29), (31) and (32), respectively,
j = 1, 2, ...N., N = 2J+1.

In case, if we do not have the exact solution of the system of second order linear par-
tially singularly perturbed boundary value problem, then the maximum absolute residual
error is calculated by the following formula

E = max | − εy′′1(tj) + a(tj)y1(tj) + b(tj)y2(tj)− f1(tj)|, (56)

where y′′1(tj), y1(tj) and y2(tj) are given as in equations (40), (48) and (49), respectively,
j = 1, 2, ...N., N = 2J+1.

5. Numerical Examples

To illustrate the non-uniform Haar wavelet method on different meshes, we demonstrate
one numerical example of the system of first order linear partially singularly perturbed
initial value problem and one numerical example of the system of second order linear
partially singularly perturbed boundary value problem. The maximum absolute residual
errors are tabulated and also compared with the classical finite difference operator method
and parameter uniform methods presented in [11] and [12], respectively.
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Problem 1. Let us consider the following partially singularly perturbed initial value
problem

εy′1(t) + (2 + t)y1(t)− (1 +
t

2
)y2(t) = 5t+

1

2
, (57)

y′2(t)− (1 + t)y1(t) + (2 + t)y2(t) = tet, ∀ t ∈ (0, 1) (58)

with initial conditions

y1(0) = 2, y2(0) = 2. (59)

Comparison of maximum absolute residual errors obtained by non-uniform Haar wavelet
method with different resolutions level and classical finite difference operator method
have been given in the Tables 1.1, 1.2, 1.3, 1.4 and 1.5 for various values of perturbation
parameter. Also, graph of non-uniform Haar wavelet solution is given in Figures 4, 5, 6
and 7.

Table 1.1 Maximum absolute residual errors obtained by non-uniform Haar wavelet on ρ-mesh for various values of ε

ε \N 64 128 256 512 1024 2048

2−2 4.1078e-15 2.8866e-14 9.4147e-14 5.9952e-15 2.2204e-14 3.4195e-14

2−4 1.0436e-14 7.9492e-14 7.7716e-14 3.9746e-14 1.0703e-13 1.0836e-13

2−6 7.3275e-15 1.1502e-13 7.0832e-14 7.4163e-14 1.2657e-13 2.6290e-13

2−8 9.9920e-15 1.2101e-14 3.2419e-14 1.1902e-13 7.5495e-14 2.7267e-13

2−10 1.3212e-14 4.4076e-14 6.0618e-14 6.7946e-14 3.5616e-13 1.4999e-12

2−12 1.7875e-14 1.1480e-13 3.3423e-13 3.3984e-13 3.2663e-13 1.0367e-12

2−14 2.4203e-14 1.5599e-13 7.7754e-13 2.3839e-12 9.5279e-13 1.5477e-12

2−16 1.6209e-14 1.8452e-13 9.9498e-13 8.4892e-12 4.9925e-12 3.6597e-12

2−18 2.7311e-14 1.6853e-13 1.0961e-12 1.1143e-11 1.9294e-11 7.5797e-12

2−20 1.7319e-14 1.5854e-13 1.1033e-12 1.2064e-11 2.5990e-11 8.2536e-11

2−22 1.7764e-14 2.1072e-13 1.0854e-12 1.1987e-11 2.7449e-11 4.0708e-11

2−24 1.7764e-14 1.7253e-13 1.1520e-12 1.2177e-11 2.8213e-11 4.3110e-11

2−26 2.3093e-14 2.0806e-13 1.1336e-12 1.2306e-11 2.8385e-11 4.4727e-11

2−28 1.5765e-14 2.1139e-13 1.1326e-12 1.2246e-11 2.8827e-11 4.5758e-11

2−30 4.1744e-14 1.9384e-13 1.2054e-12 1.2563e-11 2.8260e-11 4.4787e-11

2−32 2.0317e-14 1.9207e-13 1.0894e-12 1.2280e-11 2.8895e-11 8.1765e-11

2−34 1.7542e-14 1.8163e-13 1.0513e-12 1.2288e-11 2.8594e-11 4.5211e-11

2−36 1.9096e-14 1.8829e-13 1.0154e-12 1.2091e-11 2.8591e-11 4.4827e-11

2−38 1.7764e-14 1.8097e-13 1.2020e-12 1.2412e-11 2.8871e-11 4.5883e-11

2−40 3.8636e-14 1.4766e-13 1.1727e-12 1.2459e-11 2.8853e-11 4.4534e-11

Table 1.2 Maximum absolute residual errors obtained by non-uniform Haar wavelet on ρ-mesh for various values of ε

ε \N 32 64 128 256 512 1024

10−3 1.3767e-14 4.6407e-14 8.6597e-14 9.3259e-14 5.0093e-13 1.3487e-12

10−5 2.8089e-14 1.7120e-13 9.7722e-13 9.4564e-12 9.7020e-12 6.0334e-12

10−7 2.8200e-14 1.6720e-13 1.0703e-12 1.2225e-11 2.8184e-11 4.3185e-11

Figure 4. Non-uniform Haar wavelet solution on shishkin mesh of problem 1 for ε = 2−6 with
J = 6.
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Table 1.3 Maximum absolute residual errors obtained by non-uniform Haar wavelet on Shishkin mesh for various values
of ε

ε \N 64 128 256 512 1024 2048 4096

2−2 2.1538e-14 6.6613e-15 1.5099e-14 1.6209e-14 1.5099e-14 3.6859e-14 7.0610e-14

2−4 2.0872e-14 4.4409e-15 1.9096e-14 1.5543e-14 5.0404e-14 7.5939e-14 1.3323e-13

2−6 2.1982e-14 3.5749e-14 6.6391e-14 2.5313e-14 9.1260e-14 5.8908e-13 3.0465e-13

2−8 9.5923e-14 2.3492e-13 1.4300e-13 2.5047e-13 2.8022e-13 1.0683e-12 2.4984e-12

2−10 4.4476e-13 5.8753e-13 3.2374e-13 8.4777e-13 1.0953e-12 5.8855e-12 6.7606e-12

2−12 6.7479e-13 1.8021e-12 3.3475e-12 4.2180e-12 5.8935e-12 1.1380e-11 3.5781e-11

2−14 5.4818e-12 8.0473e-12 7.9565e-12 2.0488e-11 2.1784e-11 3.6403e-11 8.1301e-11

2−16 5.3906e-11 1.5910e-11 1.5997e-11 8.0267e-11 3.3118e-11 7.3043e-11 2.2942e-10

2−18 1.1533e-10 6.9644e-11 3.2157e-10 4.8666e-10 2.4769e-10 1.0448e-09 4.9136e-10

2−20 6.1724e-10 7.8969e-10 7.7818e-10 2.8672e-09 1.1941e-09 2.2140e-09 2.9340e-09

2−22 1.2860e-09 2.6925e-09 4.1590e-09 2.4290e-09 5.7606e-09 1.0989e-08 1.4569e-08

2−24 5.7088e-09 1.3774e-08 8.8248e-09 1.0128e-08 2.9396e-08 3.2977e-08 4.6273e-08

2−26 4.6880e-08 1.9145e-08 6.1711e-08 9.7442e-08 9.8635e-08 1.0465e-07 1.7249e-07

2−28 9.8958e-08 1.0455e-07 1.3310e-07 1.5702e-07 3.4662e-07 1.0747e-06 6.4958e-07

2−30 1.8406e-07 4.8247e-07 3.5228e-07 1.6018e-06 1.9999e-06 3.4653e-06 2.3661e-06

2−32 2.2135e-06 9.5038e-07 1.1344e-06 5.2311e-06 6.8724e-06 8.9694e-06 1.0042e-05

2−34 3.7412e-06 3.6463e-06 1.6677e-05 1.7547e-05 3.7073e-05 4.9961e-05 3.4575e-05

2−36 2.5019e-05 3.9447e-05 5.5062e-05 9.4696e-05 1.7000e-04 2.7315e-04 1.4333e-04
Table 1.4 Maximum absolute residual errors obtained by non-uniform Haar wavelet on Shishkin mesh for various values

of ε

ε \N 32 64 128 256 512 1024 2048

10−3 2.2404e-13 4.5097e-13 7.4585e-13 1.1644e-12 3.2627e-12 3.9213e-13 9.1205e-12

10−5 2.7947e-11 3.0884e-11 2.5485e-11 1.0856e-10 3.7653e-11 5.2737e-11 6.3557e-10

10−7 1.0022e-08 3.2361e-09 4.5378e-09 5.1181e-09 1.4684e-08 5.0842e-08 2.6979e-08

Table 1.5 Maximum absolute residual errors obtained by classical finite difference operator method [12] for various
values of ε.

ε \N 64 128 256 512 1024 2048

10−3 3.4000e - 002 1.8100e - 002 1.11700e - 002 7.1800e - 02 4.2700e - 03 1.3700e - 03

10−5 3.4000e - 002 1.8100e - 002 1.11700e - 002 7.1800e - 02 4.2700e - 03 1.3700e - 03

10−7 3.4000e - 002 1.8100e - 002 1.11700e - 002 7.1800e - 02 4.2700e - 03 1.3700e - 03

Figure 5. Blowup of the initial layer in the sub-domain for ε = 2−6 with J = 6 in the interval [0,
0.1].

Figure 6. Non-uniform Haar wavelet solution of problem 1 for ε = 2−10 with J = 7.



1256 TWMS J. APP. AND ENG. MATH. V.11, N.4, 2021

Figure 7. Non-uniform Haar wavelet solution on ρ-mesh of problem 1 for ε = 2−6 with J = 9.

Problem 2. Let us consider the following partially singularly perturbed boundary value
problem

−εy′′1(t) + 2(1 + t)2y1(t)− (1 + t3)y2(t) = 2et, (60)

y′′2(t)− 2cos(
πt

4
)y1(t) + 2.2e1−ty2(t) = 10t+ 1, ∀ t ∈ (0, 1) (61)

with boundary conditions

y1(0) = y2(0) = 0 and y1(1) = y2(1) = 0. (62)

Computed maximum absolute residual errors obtained by non-uniform Haar wavelet method
on different mesh with different resolutions level and parameter uniform method have been
given in the Tables 2.1, 2.2, 2.3 and 2.4 for various values of perturbation parameter. Also,
graph of non-uniform Haar wavelet solution is given in Figures 8, 9 and 10.

Figure 8. Non-uniform Haar wavelet solution on q-mesh of problem 2 for ε = 2−1 with J = 6.

Figure 9. Non-uniform Haar wavelet solution on shishkin mesh of problem 2 for ε = 2−5 with
J = 8.
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Table 2.1 Maximum absolute residual errors obtained by non-uniform Haar wavelet on Shishkin mesh for various values
of ε

ε \N 32 64 128 256 512 1024

2−2 1.5543e-14 8.8818e-15 9.3259e-15 9.7700e-15 3.4639e-14 3.2863e-14

2−6 1.5099e-14 1.0658e-14 1.1102e-14 9.7700e-15 3.7303e-14 3.4639e-14

2−10 3.3751e-14 3.2863e-14 1.4655e-14 1.9096e-14 2.8422e-14 1.3323e-14

2−14 1.7764e-14 1.4655e-14 2.7089e-14 1.4211e-14 2.4869e-14 1.4211e-14

2−18 1.8652e-14 3.7748e-14 1.7764e-14 4.3077e-14 2.3981e-14 5.3291e-14

2−22 2.5313e-14 1.2434e-14 2.9310e-14 4.1744e-14 3.3307e-14 3.9524e-14

2−26 1.9096e-14 1.1990e-14 3.7303e-14 3.4195e-14 3.9524e-14 2.6201e-14

2−30 1.9540e-14 1.1102e-14 4.0412e-14 1.3767e-14 2.8422e-14 4.8406e-14

2−34 2.4869e-14 1.2434e-14 3.5971e-14 1.2434e-14 3.1974e-14 2.6201e-14

2−38 2.0428e-14 1.1990e-14 3.8636e-14 1.2434e-14 3.1086e-14 2.4869e-14

2−42 2.3093e-14 1.0658e-14 3.5971e-14 1.2434e-14 2.0428e-14 4.4853e-14

2−46 2.1760e-14 1.1102e-14 3.3307e-14 1.2434e-14 2.9310e-14 2.3093e-14

2−50 2.2204e-14 1.1990e-14 3.6859e-14 1.2434e-14 2.5313e-14 4.6185e-14

Table 2.2 Maximum absolute residual errors obtained by parameter uniform method [11] for various values of ε

ε \N 8 16 32 64 128 256 512

20 2.6110e-03 6.5500e-04 1.6440e-04 4.1100e-05 1.0270e-05 2.5670e-06 6.3980e-07

2−2 2.5760e-03 6.4630e-04 1.6170e-04 4.0440e-05 1.0110e-05 2.5260e-06 6.2960e-07

2−4 2.7920e-03 7.0150e-04 1.7660e-04 4.4170e-05 1.1040e-05 2.7580e-06 6.8760e-07

2−6 2.9200e-03 7.2900e-04 1.8240e-04 4.5620e-05 1.1410e-05 2.8490e-06 7.1030e-07

2−8 3.0350e-03 7.5260e-04 1.8830e-04 4.7070e-05 1.1770e-05 2.9390e-06 7.3270e-07

2−10 3.1160e-03 7.8060e-04 1.9390e-04 4.8420e-05 1.2100e-05 3.0200e-06 7.5430e-07

2−12 3.1520e-03 7.9670e-04 1.9810e-04 4.9350e-05 1.2300e-05 3.0550e-06 7.5960e-07

2−14 3.1630e-03 8.0310e-04 2.0040e-04 4.9930e-05 1.2430e-05 3.1080e-06 7.7140e-07

2−16 3.1670e-03 8.0520e-04 2.0120e-04 5.0210e-05 1.2520e-05 3.1130e-06 7.7260e-07

2−18 3.1680e-03 8.0570e-04 2.0150e-04 5.0320e-05 1.2550e-05 3.1240e-06 7.7030e-07

2−20 3.1680e-03 8.0590e-04 2.0160e-04 5.0370e-05 1.2570e-05 3.1330e-06 7.7100e-07

2−22 3.1680e-03 8.0590e-04 2.0160e-04 5.0370e-05 1.2580e-05 3.1350e-06 7.7420e-07

2−24 3.1680e-03 8.0600e-04 2.0160e-04 5.0380e-05 1.2580e-05 3.1360e-06 7.7460e-07

2−26 3.1680e-03 8.0590e-04 2.0160e-04 5.0370e-05 1.2550e-05 3.0960e-06 7.6450e-07

2−28 3.1680e-03 8.0600e-04 2.0160e-04 5.0380e-05 1.2560e-05 3.1120e-06 7.6440e-07
Table 2.3 Maximum absolute residual errors obtained by non-uniform Haar wavelet on q-mesh for various values of ε

ε \N 8 16 32 64 128 256 512

2−2 5.3291e-15 3.9968e-15 7.1054e-15 6.2172e-15 8.4377e-15 3.3751e-14 2.4425e-14

2−6 5.3291e-15 4.4409e-15 7.1054e-15 5.7732e-15 8.4377e-15 3.4639e-14 2.5757e-14

2−10 5.3291e-15 3.9968e-15 6.6613e-15 5.7732e-15 8.8818e-15 3.5527e-14 2.5757e-14

2−14 5.3291e-15 3.5527e-15 7.1054e-15 5.3291e-15 8.8818e-15 3.5083e-14 2.5757e-14

2−18 5.3291e-15 4.4409e-15 7.1054e-15 5.7732e-15 8.8818e-15 3.5971e-14 2.5757e-14

2−22 5.3291e-15 4.4409e-15 7.1054e-15 5.7732e-15 8.8818e-15 3.5083e-14 2.5757e-14

2−26 5.3291e-15 3.5527e-15 6.2172e-15 5.7732e-15 8.8818e-15 3.6415e-14 2.5757e-14

2−30 5.3291e-15 4.4409e-15 7.1054e-15 6.2172e-15 8.8818e-15 3.5971e-14 2.5757e-14

2−34 5.3291e-15 3.9968e-15 6.6613e-15 5.7732e-15 8.8818e-15 3.5527e-14 2.5757e-14

2−38 5.3291e-15 3.9968e-15 7.1054e-15 5.7732e-15 8.8818e-15 3.5527e-14 2.5757e-14

2−42 5.3291e-15 3.9968e-15 6.6613e-15 5.7732e-15 8.8818e-15 3.5083e-14 2.5757e-14

2−46 5.3291e-15 4.4409e-15 7.1054e-15 5.7732e-15 8.8818e-15 3.5083e-14 2.5757e-14

2−50 4.8850e-15 3.9968e-15 6.6613e-15 5.7732e-15 8.8818e-15 3.5083e-14 2.5757e-14

Figure 10. Non-uniform Haar wavelet solution on q-mesh of problem 2 for ε = 2−5 with J = 8.
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Conclusion

In the present paper, we have solved the system of first and second order linear partially
singularly perturbed initial and boundary value problems respectively using non-uniform
Haar wavelet on different meshes such as Shishkin mesh, ρ-mesh and q-mesh. In fact, we
obtained the approximate solution and computed maximum absolute residual errors, which
are tabulated in the Tables 1.1 − 1.5 and 2.1 − 2.3. Also, we have compared our results
with the existing methods given in [11, 12]. Further, the graphs of examples have been
demonstrated in the Figures 1-7, which clearly indicate that non-uniform Haar wavelet
produces better results in comparison of classical finite difference operator method and
parameter uniform methods. The technique introduced here is easy to apply as well as
yields more accurate results.
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