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ALMOST UNBIASED RIDGE ESTIMATOR IN THE ZERO-INATED

POISSON REGRESSION MODEL

YOUNUS AL-TAWEEL1, ZAKARIYA ALGAMAL 2, §

Abstract. The zero-inflated Poisson regression (ZIP) model is a very popular model for
count data that have extra zeros. In some situations, the count data are correlated and so
multicollinearity exists among the explanatory variables. Thus, the traditional maximum
likelihood estimator (MLE) becomes not a reliable estimator because the mean squared
error (MSE) becomes inflated. The ridge estimator (RE) is used to overcome this prob-
lem. In this work, an almost unbiased ridge estimator for the ZIP model (AUZIPRE)
is proposed to tackle the multicollinearity problem in count data. We investigate the
behavior of the proposed estimator using a simulation study. Using the MSE measure,
the results of the proposed estimator are compared with those of the RE and the MLE.
Furthermore, we apply the proposed estimator on a real dataset. The results show that
the performance of AUZIPRE outperforms for that of the RE and the MLE in the ex-
isting of the multicollinearity among the count data in the ZIP model.

Keywords: Count data, multicollinearity, zero-inflated Poisson regression, ridge estima-
tor, almost unbiased ridge estimator.

AMS Subject Classification: 83-02, 99A00

1. Introduction

Regression models are commonly used in many disciplines of science, such as economic,
biomedical, environment and so forth. Count data are usually analyzed using Poisson
regression models. Suppose we have counts of events, Yi, i = . . . , n, in a period of time.
Thus, Yi are random variables that have a Poisson distribution

p(yi) =
e−πiπyii
yi!

, yi = 0, 1, . . . (1)

where πi > 0 is s the average of events and it is equal to the mean and the variance of
Y , E(Yi) = Var(Yi) = πi. The Poisson model is very common when the count data are
unbounded. Now, let xi = (x1, . . . , xp), be a vector of explanatory variables in the design
matrix X and β be a vector of coefficient parameters. Using a link function, we have
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the Poisson regression model. The maximum likelihood estimator (MLE), β̂, of β can be
obtained using iterative weighted least square algorithm [1, 2].

In some cases, however, the count data may include a huge number of zeros or the count
data exhibit overdispersion where the variance value of the response variable exceeds the
value of the mean. In this case, if the standard Poisson regression model is applied,
the variance of the estimated coefficients parameters will be underestimated. Hence, the
zero-inflated Poisson (ZIP) model becomes more appropriate than the Poisson regression
model for analyzing such kind of count data [3, 4, 5]. In the ZIP model, if the explanatory
variables in the count data are highly correlated, the MLE may not perform well. This is
because the variance of the estimated coefficient parameters will be high which introduces
risks in their interpretation [6, 7]. This multicollinearity is often seen in count data models
in applied economic studies where the explanatory variables are highly correlated. [8].

Ridge estimators (RE) are used to solve the multicollinearity problem in the correlated
data for the ZIP model. For example, [8] used a RE for the ZIP model and they demon-
strated their results with a simulation study and a real dataset. However, the RE may
have a large bias. In order to overcome this problem, [9] proposed the almost unbiased
ridge estimator (AURE) for linear regression model. Hence, we propose in this work the
AURE for the ZIP model. We use a Monte Carlo simulation study to investigate the
performance of the AURE for the ZIP model where we use the mean squared error (MSE)
as a measure. In the Monte Carlo simulation study, we use different combinations of the
sample size, different numbers of the explanatory variables, different levels of the corre-
lation among the explanatory variables and different values of the intercept of the logit
model. The results of the Monte Carlo simulation study show that the AURE estimator
for the ZIP model outperforms the RE and the ML estimators. Moreover, a real dataset
was also used to compare the behavior of the AURE with that of the RE and MLE. The
results of the real dataset agree with those of the Monte Carlo simulation study.

This research is organized as follows. Section 2 presents the methodology of the zero-
inflated Poisson regression model. In Section 3, the ridge estimator is reviewed for the
ZIP model. In Section 4, we present the almost unbiased ridge estimator for the ZIP
model (AUZIPRE). In addition, several estimators of the ridge parameter are presented.
In section 5, a Monte Carlo simulation is conducted to investigate the performance of the
AUZIPRE in terms of the MSE. In Section 6, we apply the proposed AUZIPRE on a real
dataset. Finally, in Section 7, the conclusion is given.

2. Zero-inflated Poisson regression model

The zero-inflated Poisson (ZIP) model was proposed by [4] for modeling zero-inflation
in count data. The ZIP model can be seen as a mixture model for count data with extra
zeros. The zeros in the count data for the ZIP model can be classified into two types.
The first one comes from a non-susceptible group and it is known as structural zeros. The
structural zero occurs with probability θi. The second type of zeros in the count data
for the ZIP model comes from a susceptible group and it is known as random zeros. The
random zero occurs with probability (1− θi) and has a Poisson distribution with mean µi
[10].

The formula of the ZIP model is given by

p(Y = y) =

{
θi + (1− θi)e−µi , if yi = 0

(1− θi)
e−µiµ

yi
i

yi!
if yi = 1, 2, . . . ,.

(2)

where the indicator function, I{·}, is for zero events, µi = exp(xiβ) represents the expected
ith count for the ith observation and the probability θi ∈ [0, 1] is for the extra zeros [11].
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The probability of extra zeros, θi, is given by

θi =
exp(qiδ)

1 + exp(qiδ)
, (3)

where qi is the ith row of the data logit matrix Q.
The ZIP model reduces to a Poisson distribution when θi = 0. When θi > 0, however,

there will be overdispersion in the distribution of Yi which means there will be zero-
inflation. The MLE of the ZIP model parameters can be obtained using Fisher scoring
methods [12].

3. Zero-Inflated Poisson ridge estimator

In the presence of multicollinearity among the explanatory variables in the count data,
the MLE may not be a reliable estimator. This is because the eigenvalues will be small
for the explanatory variables that are highly correlated and so the MSE will be inflated
[13, 14]. The ridge estimator (RE) is proposed by [15] to overcome this problem for linear
regression where a positive amount is added to the diagonal of the matrix XTX.

[8] proposed the RE for the ZIP model. The ZIP ridge estimator (ZIPRE) is defined by

β̂ZIPRE = (XTŴX + kI)−1XTŴXβ̂MLE, (4)

where β̂MLE is the MLE. The parameter k ≥ 0 is called the ridge parameter. When the
ridge parameter is zero, we have β̂ZIPRE = β̂MLE. However, we have ‖β̂ZIPRE‖ < ‖β̂MLE‖
when k > 0 [16]. The non-diagonal elements of the matrix Ŵ are zeros and the ith
diagonal element equals to µ̂i.

The mean squared error (MSE) of the MLE is defined by

MSE(β̂MLE) = E(β̂MLE − β)TE(β̂MLE − β)

= τ̂Σp
j=1

1

λj
, (5)

where τ represents the dispersion parameter that is estimated by τ̂ =
∑n

i=1(yi− µ̂i)2/(n−
p − 1) [8]. The λj is the jth eigenvalue of the XTŴX matrix [17]. The MSE of RE is
obtained by

MSE(β̂RE) = E(β̂RE − β)TE(β̂RE − β)

= τ̂Σp
j=1

λj
(λj + k)2

+ k2Σp
j=1

α2
j

(λj + k)2
, (6)

where αj is defined as the jth element of ψTβ and ψ is the eigenvector of the XTŴX
matrix [17].

4. The almost unbiased Zero-Inflated Poisson ridge estimator

The RE for tackling the multicollinearity problem may have a large bias when the
value of the ridge parameter is large. [9], [21], [23] and [22] proposed the almost unbiased
ridge estimator (AURE) for linear regression model to solve the multicollinearity problem.
Hence, we present in this work the AURE for the ZIP model. The almost unbiased ridge
estimator for the ZIP (AUZIPRE) model can overcome the multicollinearity problem and
is able to decrease the bias of the ZIPRE. The AUZIPRE is defined by

β̂AUZIPRE = (I− (XTŴX + kI)−2k2)β̂MLE. (7)
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By taking the expectation of equation (7), we have

E(β̂AUZIPRE) = (I− (XTŴX + kI)−2k2)E(β̂MLE)

= (I− (XTŴX + kI)−2k2)(XTŴX)−1XTŴE(y)

= (I− (XTŴX + kI)−2k2)(XTŴX)−1XTŴXβ

= (I− (XTŴX + kI)−2k2)β. (8)

The bias of the AUZIPRE is given by

bias(β̂AUZIPRE) = E(β̂AUZIPRE)− β

= (I− (XTŴX + kI)−2k2)β − β

= −k2(XTŴX + kI)−2β

= −k2
p∑
j=1

αj
(λj + k)2

. (9)

The variance of the AUZIPRE is given by

Var(β̂AUZIPRE) = (I− (XTŴX + kI)−2k2)Var(β̂)

= (I− (XTŴX + kI)−2k2)T

= (I− (XTŴX + kI)−2k2)(XTŴX)−1τ̂

= (I− (XTŴX + kI)−2k2)T

= τ̂

p∑
j=1

1

λj

(
1− k2

(λj + k)2

)2

. (10)

The MSE of the AUZIPRE is found by using equations (9) and (10)

MSE(β̂AUZIPRE) = Var(β̂AUZIPRE) +
(

bias(β̂AUZIPRE)
)2

= τ̂

p∑
j=1

1

λj

(
1− k2

(λj + k)2

)2

+

−k2 p∑
j=1

α2
j

(λj + k)2

2

= τ̂

p∑
j=1

(λ2j + 2λjk)2

λj(λj + k)4
+ k4

p∑
j=1

α2
j

(λj + k)4

= τ̂

p∑
j=1

(λj + 2k)2λj + k4α4
j

(λj + k)4
. (11)

Theorem 4.1. In the ZIP model, we have ‖bias(β̂AUZIPRE)‖2 < ‖bias(β̂ZIPRE)‖2
for k > 0.
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Proof. Let D1 = ‖bias(β̂ZIPRE)‖2 − ‖bias(β̂AUZIPRE)‖2. Hence, we have

D1 =

p∑
j=1

k2α2
j

(λj + k)2
−

p∑
j=1

k4α2
j

(λj + k)4

=

p∑
j=1

λ2jk
2α2

j + 2k3λjα
2
j

(λj + k)4

=

p∑
j=1

k2

{
λjα

2
j (λj + 2k)

(λj + k)4

}
.

Hence, for k > 0, the proof is completed. �

Theorem 4.2. For the ZIP model, if

k >
(

3τ̂ − λjα2
j +

√
λ2jα

4
j + 9τ̂4 + 10λjα2

j τ̂
)
/4α2

j , for j = 1, . . . , p, then the AUZIPRE is

superior to the ZIPRE in terms of the MSE.

Proof. Let D2 = MSE(β̂ZIPRE)−MSE(β̂AUZIPRE). Hence, we have

D2 =
τ̂λj

(λj + k)2
+

k2α2
j

(λj + k)2
−
τ̂(λ2j + 2λjk)2

λj(λj + k)4
−

k4α2
j

(λj + k)4

=

n∑
j=1

λj
{

(2α2
j )k

2 + (λjα
2
j − 3τ̂)k − 2τ̂λj

}
k

(λj + k)4

 .

The D2 is a positive definite for k > 0, if and only if{
(2α2

j )k
2 + (λjα

2
j − 3τ̂)k − 2τ̂λj

}
> 0 . Thus, this function is quadratic of k and has the

following root

k =

(
3τ̂ − λjα2

j +
√
λ2jα

4
j + 9τ̂4 + 10λjα2

j

)
4α2

j τ̂
.

Hence, the AUZIPRE is superior to the ZIPRE in terms of the MSE for the ZIP model,
the proof is completed. �

Theorem 4.3. For the ZIP model, the AUZIPRE is superior to the MLE.

Proof. Let D3 = MSE(β̂ML)−MSE(β̂AUZIPRE). Hence, we have

D3 =

p∑
j=1

τ̂

λj
−

p∑
j=1

τ̂λ2j (λj + 2k)2

λj(λj + k)4
−

p∑
j=1

k4α2
j

(λj + k)4

=

p∑
j=1

k2

{
(τ̂ − λjα2

j )k
2 + 4τ̂λjk + 2τ̂λ2j

}
λj(λj + k)4

. (12)

From equation (12), it can be shown that D3 is a positive definite if and only if{
(τ̂ − λjα2

j )k
2 + 4τ̂λjk + 2τ̂λ2j

}
> 0. Hence, the AUZIPRE is superior to the MLE in

terms of the MSE for the ZIP model, the proof is completed. �
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4.1. Estimating the ridge parameter k. In order to obtain values of the ridge esti-
mator, k, several methods have been proposed by authors as there is no specific rule for
obtaining the value of k. In this study, values of the ridge estimator, k, for the AUZIPRE
in the ZIP model were proposed from the work of [18] and [19]. The estimators for the
ridge parameter, k are as follows

k1 =
τ̂

(
∏p
i=1 α̂

2
j )

1/p
, k2 = median(m2

j ),

k3 =
pτ̂2

α̂Tj α̂ j
+

1

(λmaxα̂Tj α̂j)
, k4 =

pτ̂2

α̂Tj α̂ j
+

1

2
√

λmax
λmin

,

where α̂j is the jth element of ψβ̂MLE, ψ is the eigenvector of the XTŴX matrix, mj =√
τ̂2

α̂2
j
, λmax and λmin are the maximum and minimum eigenvalues of the XTŴX matrix.

The k1 and k2 estimators were proposed by [18] for the ridge estimator in the multiple
linear regression model. The k3 and k4 estimators were proposed by [19] for the ridge
estimator in the multiple linear regression model. Hence, we will use these four estimators
for the AUZIPRE using the MSE measure and compare the results with those of the
ZIPRE and MLE.

5. Monte Carlo Simulation study

In this section, we investigate the performance of the AUZIPRE. This investigation is
achieved by comparing the estimated MSE of AUZIPRE with the ZIPRE and MLE using
a Monte Carlo simulation experiment with several different levels of multicollinearity.

The MSE measure was calculated using the following formula

MSE(β̂AUZIPRE) =
R∑
i=1

(β̂i − β)T (β̂i − β)

R
. (13)

where β̂i is the ith simulated value of β. The number of the replications in the Monte
Carlo simulation is set to be R = 1000.

5.1. The simulation design of experiment. In order to generate the design of the
experiment, we generated explanatory variables xTi = (xi1, . . . , xin) using the following
formula

xij = (1− ρ2)1/2ϑij + ρϑij , i = 1, . . . , n, j = 1, . . . , p. (14)

where ρ is the correlation coefficient between the explanatory variables and ϑij ’s are in-
dependent pseudo-random variables. The ϑij were simulated from the standard normal
distribution. For the explanatory variables, we set p = 2 and p = 4. The level of the
correlation is the key point in the design, so we considered four different values of ρ, 0.85,
0.90, 0.95 and 0.99.

Then, a binary variable was generated from the binomial distribution using pseudo-

random numbers where θi = exp(qiδ)
1+exp(qiδ)

. The qi have the value of 1 and δ consists of the

intercept term only. Since the intercept of the logit model δ affects probability of obtaining
zeros and ones, its value is set to be 0, 1 and 2 [8]. Then, we obtained the binary variables
that have values of one from the Poisson distribution with µi = exp(β0 +x1β1 + . . . , xpβp).
The sum of the coefficient regression parameters β was assumed to be 1 and the intercept
of the Poisson model was always set to be zero. The response variable, y, of the ZIP model
was generated using equation (2) with different sample sizes n = 50, 100, 150 and 200.
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5.2. The discussion of simulation results. This section presents the results of the
MSE for the simulation experiment. Using equation (13), the MSE was calculated. Tables
1-6 show the MSE values that were calculated for the different estimators, k1, k2, k3 and
k4 under various combinations of n, p and ρ for the AUZIPRE, ZIPRE and MLE.

Table 1. Estimated MSE when p = 2 and the intercept of the logit = 0.

n ρ

ZIPRE AUZIPRE
MLE k1 k2 k3 k4 k1 k2 k3 k4

50 0.85 1.540 0.834 0.651 0.571 0.534 0.688 0.561 0.519 0.489

0.90 1.602 0.838 0.661 0.561 0.522 0.678 0.548 0.484 0.449
0.95 1.854 0.899 0.724 0.588 0.548 0.721 0.579 0.474 0.433

0.99 4.087 1.145 0.968 0.819 0.795 0.977 0.822 0.685 0.650

100 0.85 2.130 1.220 0.968 0.773 0.774 0.863 0.628 0.459 0.460
0.90 2.440 1.350 1.140 0.910 0.911 1.020 0.804 0.571 0.572

0.95 3.220 1.490 1.380 1.160 1.160 1.230 1.110 0.839 0.839

0.99 7.462 1.669 1.623 1.520 1.514 1.561 1.521 1.381 1.373
150 0.85 2.110 1.500 1.270 1.080 1.080 1.180 0.909 0.690 0.691

0.90 2.344 1.575 1.385 1.174 1.175 1.298 1.060 0.803 0.804

0.95 2.895 1.598 1.514 1.321 1.321 1.355 1.254 0.997 0.998
0.99 5.856 1.694 1.651 1.544 1.542 1.565 1.523 1.377 1.375

200 0.85 1.539 0.938 0.666 0.577 0.577 0.585 0.380 0.323 0.324
0.90 1.582 0.998 0.733 0.625 0.626 0.649 0.433 0.351 0.352

0.95 1.805 1.138 0.891 0.747 0.748 0.809 0.579 0.446 0.447

0.99 3.571 1.473 1.362 1.202 1.202 1.253 1.141 0.944 0.943

The best values are in bold font.

Table 2. Estimated MSE when p = 4 and the intercept of the logit = 0.

n ρ

ZIPRE AUZIPRE
MLE k1 k2 k3 k4 k1 k2 k3 k4

50 0.85 2.347 2.841 2.610 1.877 1.868 2.407 2.126 1.371 1.364

0.90 2.789 2.792 2.517 1.807 1.794 2.349 2.023 1.290 1.278
0.95 4.094 2.638 2.358 1.671 1.658 2.155 1.850 1.171 1.152

0.99 13.738 2.223 1.992 1.401 1.354 1.720 1.477 1.004 0.933
100 0.85 1.610 2.644 2.379 1.703 1.698 2.180 1.894 1.252 1.250

0.90 1.831 2.692 2.355 1.639 1.635 2.217 1.851 1.163 1.160

0.95 2.475 2.701 2.333 1.508 1.495 2.228 1.823 1.008 0.997
0.99 6.892 2.505 2.142 1.205 1.157 2.028 1.657 0.755 0.682

150 0.85 2.438 2.628 2.170 1.764 1.759 2.102 1.522 1.174 1.170

0.90 2.825 2.768 2.394 1.898 1.892 2.282 1.770 1.307 1.302
0.95 3.869 2.883 2.520 1.950 1.940 2.414 1.915 1.357 1.348
0.99 10.925 2.557 2.237 1.597 1.567 1.960 1.581 0.981 0.939

200 0.85 1.539 1.706 1.399 1.012 1.010 1.209 0.941 0.670 0.669
0.90 1.745 1.840 1.489 1.057 1.055 1.257 0.967 0.637 0.636

0.95 2.233 2.105 1.727 1.214 1.210 1.442 1.119 0.676 0.673

0.99 5.335 2.352 1.922 1.335 1.333 1.654 1.225 0.704 0.699

The best values are in bold font.
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Table 3. Estimated MSE when p = 2 and the intercept of the logit = 1.

n ρ

ZIPRE AUZIPRE

MLE k1 k2 k3 k4 k1 k2 k3 k4

50 0.85 2.487 1.697 1.615 1.500 1.501 1.531 1.445 1.301 1.300
0.90 2.787 1.690 1.608 1.479 1.479 1.518 1.429 1.268 1.268

0.95 3.712 1.706 1.629 1.469 1.470 1.533 1.452 1.245 1.246
0.99 11.065 1.781 1.737 1.582 1.583 1.644 1.601 1.394 1.395

100 0.85 2.382 1.577 1.485 1.304 1.305 1.305 1.205 0.986 0.987

0.90 2.698 1.607 1.518 1.313 1.314 1.352 1.242 0.990 0.991
0.95 3.549 1.684 1.608 1.376 1.377 1.459 1.366 1.060 1.061

0.99 9.483 1.838 1.804 1.661 1.661 1.717 1.677 1.466 1.467

150 0.85 2.389 1.714 1.646 1.493 1.493 1.496 1.405 1.187 1.188
0.90 2.647 1.740 1.671 1.501 1.502 1.540 1.442 1.197 1.198

0.95 3.288 1.778 1.719 1.530 1.531 1.600 1.518 1.237 1.238

0.99 7.306 1.864 1.830 1.692 1.692 1.753 1.706 1.491 1.492
200 0.85 1.850 1.648 1.528 1.405 1.405 1.399 1.248 1.083 1.084

0.90 1.937 1.667 1.563 1.425 1.426 1.425 1.291 1.104 1.105

0.95 2.262 1.696 1.612 1.451 1.452 1.464 1.356 1.130 1.131
0.99 4.742 1.779 1.748 1.566 1.566 1.605 1.565 1.290 1.290

The best values are in bold font.

Table 4. Estimated MSE when p = 4 and the intercept of the logit = 1.

n ρ

ZIPRE AUZIPRE
MLE k1 k2 k3 k4 k1 k2 k3 k4

50 0.85 42.202 3.890 3.862 3.991 3.746 3.843 3.801 4.433 3.647

0.90 17.265 3.859 3.828 3.744 3.702 3.799 3.754 3.650 3.591

0.95 24.055 3.447 3.389 3.285 3.210 3.343 3.288 3.186 3.096
0.95 63.632 3.826 3.769 3.492 3.492 3.705 3.626 3.233 3.233

100 0.85 2.774 3.983 3.977 3.950 3.950 3.968 3.959 3.912 3.912
0.90 3.226 3.980 3.972 3.940 3.940 3.962 3.950 3.895 3.895

0.95 4.457 3.961 3.950 3.903 3.903 3.933 3.914 3.833 3.833

0.95 13.956 3.768 3.716 3.535 3.531 3.643 3.576 3.321 3.314
150 0.85 2.912 3.621 3.578 3.530 3.530 3.518 3.478 3.421 3.420

0.90 3.262 3.543 3.502 3.433 3.433 3.419 3.379 3.303 3.302

0.95 4.416 3.548 3.492 3.397 3.396 3.389 3.324 3.214 3.213
0.95 13.975 3.425 3.405 3.127 3.127 3.159 3.115 2.815 2.815

200 0.85 2.123 3.987 3.983 3.970 3.970 3.975 3.967 3.942 3.942

0.90 2.360 3.981 3.974 3.956 3.956 3.963 3.951 3.917 3.917
0.95 3.006 3.949 3.933 3.895 3.895 3.906 3.881 3.818 3.818

0.95 7.797 3.427 3.397 3.303 3.294 3.307 3.278 3.151 3.139

The best values are in bold font.
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Table 5. Estimated MSE when p = 2 and the intercept of the logit = 2.

n ρ

ZIPRE AUZIPRE

MLE k1 k2 k3 k4 k1 k2 k3 k4

50 0.85 3.210 1.824 1.791 1.710 1.711 1.712 1.676 1.562 1.563
0.90 3.648 1.816 1.784 1.691 1.692 1.698 1.663 1.533 1.533

0.95 4.976 1.813 1.788 1.670 1.670 1.687 1.662 1.496 1.496
0.99 16.425 1.850 1.842 1.730 1.731 1.744 1.744 1.580 1.580

100 0.85 5.578 1.978 1.981 1.970 1.970 1.958 1.964 1.944 1.944

0.90 6.266 1.972 1.977 1.960 1.960 1.946 1.955 1.924 1.925
0.95 8.343 1.958 1.970 1.942 1.942 1.920 1.943 1.893 1.894

0.99 25.334 1.963 1.977 1.950 1.950 1.931 1.956 1.908 1.908

150 0.85 5.330 1.986 1.988 1.982 1.982 1.974 1.977 1.965 1.965
0.90 5.778 1.983 1.986 1.977 1.977 1.966 1.972 1.955 1.955

0.95 7.077 1.975 1.981 1.966 1.966 1.951 1.964 1.935 1.935

0.99 17.264 1.973 1.982 1.964 1.964 1.949 1.965 1.932 1.932
200 0.85 4.657 1.989 1.991 1.985 1.985 1.979 1.982 1.971 1.971

0.90 4.881 1.987 1.989 1.982 1.982 1.974 1.978 1.966 1.966

0.95 5.588 1.981 1.985 1.976 1.976 1.963 1.971 1.953 1.953
0.99 11.360 1.969 1.979 1.960 1.960 1.940 1.958 1.923 1.923

The best values are in bold font.

Table 6. Estimated MSE when p = 4 and the intercept of the logit = 2.

n ρ

ZIPRE AUZIPRE
MLE k1 k2 k3 k4 k1 k2 k3 k4

50 0.85 36.625 3.930 3.902 3.852 3.841 3.895 3.853 3.781 3.770

0.90 42.902 3.906 3.880 3.839 3.803 3.861 3.826 3.789 3.722
0.95 33.365 3.787 3.774 3.690 3.676 3.718 3.703 3.593 3.572

0.95 170.307 3.564 3.554 3.378 3.351 3.450 3.445 3.240 3.195

100 0.85 36.433 4.000 4.000 4.000 4.000 4.000 4.000 3.999 3.999
0.90 41.120 4.000 4.000 3.999 3.999 3.999 3.999 3.999 3.999

0.95 48.418 3.999 3.999 3.998 3.998 3.998 3.998 3.997 3.997

0.95 107.540 3.962 3.967 3.939 3.939 3.941 3.948 3.902 3.902
150 0.85 7.665 4.000 4.000 4.000 4.000 4.000 4.000 3.999 3.999

0.90 9.255 3.999 3.999 3.999 3.999 3.999 3.999 3.998 3.998

0.95 13.784 3.982 3.983 3.979 3.979 3.974 3.975 3.969 3.969
0.95 51.558 3.800 3.816 3.772 3.772 3.763 3.775 3.732 3.732

200 0.85 5.477 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
0.90 6.100 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000

0.95 7.947 4.000 4.000 4.000 4.000 4.000 3.999 3.999 3.999

0.95 22.929 3.983 3.984 3.972 3.972 3.971 3.973 3.953 3.953

The best values are in bold font.

We can conclude the following points from Tables 1-4

(1) Increasing the multicollinearity level, ρ, with fixed values of n, p, has a negative
impact on the MLE estimator and in some cases of the AUZIPRE and ZIPRE.
This is because the values of the MSE increase as the level of the multicollinearity,
ρ, increases. However, increasing the value of ρ with p = 4 and qi = 1 has a
positive impact on AUZIPRE and ZIPRE as the MSE values become smaller.

(2) The values of the MSE of the estimators, AUZIPRE, ZIPRE, and MLE, increase
when the number of explanatory variables, p, increased with fixed values of ρ and
n.

(3) All of the AUZIPRE estimators, k1, k2, k3 and k4 are better than the corresponded
ones of the ZIPRE estimators in that they have smaller values of the MSE. In
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contrast, the MLE has, in general, the worse performance in that it has the highest
values of the MSE.

(4) Among the AUZIPRE estimators, the k3 and k4 estimators outperform the k1 and
k2 estimators as they have smaller values of the MSE.

It can be concluded from the simulation study that the MSE of AUZIPRE is always
smaller than those of the ZIPRE and the MLE. All the selection methods of k are superior
to the MLE in terms of MSE. Moreover, the AUZIPRE with the k3 and k4 improved
the AUZIPRE performance compared with the ZIPRE and the MLE in most of the cases.
Furthermore, k4 and k4 are the optimal estimation methods for k of the AUZIPRE. On the
contrast, the MLE estimator values are the poorest compared with the other estimators.

6. Real data application

In this section, we consider the dataset of bioChemists, by [20]. The bioChemists dataset
consists of n = 915 observations. The Articles is the dependent variable that represents
articles number published during the Ph.D study in the last 3 years. The dependent
variable depends on five explanatory variables as described in Table 7.

Table 7. The description of the explanatory variables of the bioChemists
data.

Variable names Description

Female the student gender, 0 if male 1 and if female.
MentorArts the articles number published during the last 3 Ph.D. years.
Prestige the Ph.D. student prestige.
Married the marital status, 0 if single and 1 if married.
Children the children number of aged 5 or younger

The ZIP regression model was fitted to the bioChemists data using equation (2). Then,
the AUZIPRE, ZIPRE and MLE were calculated. Table 8 presents the estimated values of
the MSE and the estimated values of the coefficient parameters of the ZIP model for the
bioChemists dataset for different estimators, AUZIPRE, ZIPRE, and MLE. We can notice
that the AUZIPRE has the smallest value of the MSE in comparison with the ZIPRE
and the MLE. In addition, the k3 and k4 estimators of the ridge parameter have the best
performance among the other ridge parameter estimators for the AUZIPRE as they have
the smallest values of the MSE compared with the values of the k1 and k2 estimators.
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Table 8. The estimated coefficient parameters and the estimated MSE
for the AUZIPRE, ZIPRE and MLE.

MLE
ZIPRE AUZIPRE

k1 k2 k3 k4 k1 k2 k3 k4
Intercept 0.756 0.001 0.759 0.001 0.001 0.001 0.756 0.001 0.001
Female -0.518 0.001 -0.518 0.001 0.001 0.001 -0.518 0.001 0.001
MentorArts 0.398 0.001 0.398 0.001 0.001 0.001 0.398 0.001 0.001
Prestige -0.465 0.001 -0.465 0.001 0.001 0.001 -0.465 0.001 0.001
Married 0.382 0.001 0.382 0.002 0.002 0.002 0.382 0.003 0.003
Children 0.038 0.001 0.038 0.002 0.002 0.002 0.038 0.004 0.004
MSE 170.6 4.183 170.6 4.153 4.153 4.158 170.6 4.098 4.098

The best value of the MSE is in bold font.

7. Conclusions

In this article, we proposed an almost unbiased ridge estimator based on the ridge
estimator for the zero-inflated Poisson regression model. The proposed estimator is able
to solve the inflation problem of the maximum likelihood estimation method that is applied
to estimate the ZIP model parameters. The performance of the proposed estimator was
investigated by conducting a Monte Carlo simulation experiment and a real dataset using
the MSE as a measure. Based on our results, the performance of the AUZIPRE is better
than that of the MLE and ZIPRE as it has smaller MSE values than the other estimators
for the ZIP model when multicollinearity exists in the data.

From the simulated results and the real dataset, we have seen that when multicollinear-
ity is presented, the MLE becomes inflated. The performance of the k3 and k4 estimators
for the AUZIPRE are much better than the MLE and those for the ZIPRE as they have
smaller values of the MSE. Hence, we recommended the k3 and k4 estimators for estimating
the ridge parameter for the ZIP regression model.
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