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EXTENDING THE APPLICABILITY OF A FOURTH-ORDER

METHOD UNDER LIPSCHITZ CONTINUOUS DERIVATIVE IN

BANACH SPACES

DEBASIS SHARMA1, SANJAYA KUMAR PARHI1, §

Abstract. We extend the applicability of a fourth-order convergent nonlinear system
solver by providing its local convergence analysis under Lipschitz continuous Fréchet de-
rivative in Banach spaces. Our analysis only uses the first-order Fréchet derivative to
ensure the convergence and provides the uniqueness of the solution, the radius of con-
vergence ball and the computable error bounds. This study is applicable in solving such
problems for which earlier studies are not effective. Furthermore, the convergence region
for the scheme to approximate the zeros of various polynomials is studied using basins of
attraction tool. Various computational tests are conducted to validate that our analysis
is beneficial when prior studies fail to solve problems.
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1. Introduction

The main objective of the analysis discussed in this article is to extend the applicability
of a fourth-order iterative scheme for obtaining a locally unique solution u∗ of

H(u) = 0, (1)

where H : Ω ⊆ X → Y is a Fréchet differentiable operator with values in the Banach
space Y and Ω(6= ∅) is an open and convex subset of the Banach space X. Many problems
can be solved in the domain of engineering and applied sciences, by reducing the form to
nonlinear equations (1). Taking the reality into consideration that numerous problems in
applied sciences and engineering such as the integral equations occur in radiative transfer
theory, problems in optimization, the boundary value problems related to Kinetic theory
of gases and many others can be solved by obtaining the solutions of nonlinear equations in
the form (1), a lot of successful algorithms has been constructed. “Generally, the solutions
for these nonlinear equations are not obtained in closed form” [1]. Iterative algorithms
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are therefore often used to avoid these issues. A simple and widely accepted iterative
algorithm for solving (1) is Newton’s scheme, which is expressed as:

un+1 = un − [H ′(un)]−1H(un), n ≥ 0. (2)

Also, the cubically convergent Halley’s, Chebyshev’s and Super-Halley’s schemes are gen-
erated by choosing (γ = 1

2), (γ = 0) and (γ = 1) respectively in

un+1 = un −
(

1 +
1

2
(1− γFH(un))−1FH(un)

)
[H ′(un)]−1H(un), (3)

where FH(un) = H ′(un)−1H ′′(un)H ′(un)−1H(un).
Several researchers have designed newtons-like methods [2, 3, 4, 5, 6, 7, 9, 10, 12, 11, 13,
8, 14, 15, 16] such as harmonic mean Newton’s method, midpoint Newton’s method and
other variants of Newton’s method to handle the computation of higher-order derivatives
found in conventional third-order schemes. “The local convergence analysis of iterative
schemes is based on the information around a solution and provides the radii of convergence
balls”[1]. Numerous researchers [1, 17, 18, 19] discussed the local convergence study of
several modifications of the schemes (3) including deformed Halley, modified Halley-like
and improved Chebyshev-Halley type methods. In addition to that, the local convergence
study for Newton-type, Jarratt-type, Weerakoon-type, etc. is studied in Banach spaces in
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. In this paper, our primary
focus is to enhance the applicability of a fourth-order scheme using Lipschitz continuity
condition only on H ′ in Banach spaces.

In [36], the authors derived a fourth-order convergent nonlinear systems solver, which
is given as:

sn = un −H ′(un)−1H(un)

tn = un −H ′(un)−1(H(un) +H(sn))

un+1 = sn −H ′(tn)−1H(sn) (4)

The implementation of this method needs the computation of only H ′. However, the
analysis of convergence is provided under the Taylor series approach using higher-order
(up to fourth-order) derivatives in [36]. These techniques, which require the higher-order
derivatives, restrict the algorithm applicability for the problems where the derivatives of
higher order are undefined or unobtainable. Consider, for example, the function H defined
on Ω = [−1

2 ,
5
2 ] by

H(u) =

{
u3 log(u2) + u5 − u4, if u 6= 0
0, if u = 0

.

It is important to note that H ′′′ is not bounded on Ω. So, the earlier procedure [36],
which needs at least fourth-order derivative, fails to show the convergence of the method
(4) for above problem. In addition, one can get zero knowledge regarding the radii of
convergence balls in [36]. In this study, we analyze the local convergence for the scheme
(4) assuming the theory based on H ′ to remove the calculation of derivatives of higher
order. In particular, we assume that the first-order Fréchet derivative belongs to the
Lipschitz class. This analysis boosts the applicability of the scheme (4) to address such
problems for which earlier analysis can not be used.

Also, the region of convergence for an iterative scheme to obtain the zeros of complex
polynomials can be explored using basins of attraction. In [37, 38], the authors presented
the convergence region of different efficient schemes using attraction basins tool. We
also provide convergence region of the algorithm (4) when applied to various complex
polynomials.
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The outline this manuscript is as follows: Sect. 2 deals with the local convergence study
of the scheme (4). Basins of attraction related to the scheme (4) is studied in Sect. 3.
Section 4 discusses the applicability of our analytical results on standard numerical tests.
Conclusion is provided in the final section.

2. Local convergence analysis

In this section, the local convergence analysis of the fourth-order convergent method
(4) is discussed. We use the notations B̄(c, ρ) and B(c, ρ) for the closed and open balls in
X with center c and radius ρ > 0 respectively. Also, the set of bounded linear operators
from Y to X is denoted as BL(Y,X). Considering the parameters k0 > 0 and k1 > 0 with
k0 ≤ k1, we define the function J1 on the interval [0, 1

k0
) by

J1(w) =
k1w

2(1− k0w)
(5)

and the parameter

θ1 =
2

2k0 + k1
<

1

k0
.

Note that J1(θ1) = 1. Again, we consider the functions J2 and K2 on [0, 1
k0

) defined by

J2(w) =

[
k1(2 + J1(w))w

2(1− k0w)

]
J1(w) (6)

and
K2(w) = J2(w)− 1.

Now, K2(0) = −1 < 0 and lim
w→( 1

k0
)−
K2(w) = +∞. The zeros of the function K2(w) lies in

(0, 1
k0

) due to the intermediate value theorem. The notation of the smallest zero of K2(w)

in (0, 1
k0

) is θ2. Also, we consider functions J3 and K3 on [0, 1
k0

) by

J3(w) = k0J2(w)w (7)

and
K3(w) = J3(w)− 1.

Now, K3(0) = −1 < 0 and lim
w→( 1

k0
)−
K3(w) = +∞. The intermediate value theorem ensures

the existence of the smallest zero θ3 of K3(w) in (0, 1
k0

). Again, we define J4 and K4 on

[0, θ3) by

J4(w) =

[
1 +

(1 + k0J1(w)w)

1− J3(w)

]
J1(w) (8)

and
K4(w) = J4(w)− 1.

Now, K4(0) = −1 < 0 and lim
w→θ−3

K4(w) = +∞. So, the interval (0, θ3) holds the smallest

zero θ4 of the function K4(w). Choosing

R = min{θ1, θ2, θ4}, (9)

we get
0 ≤ J1(w) < 1, (10)

0 ≤ J2(w) < 1, (11)

0 ≤ J3(w) < 1 (12)
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and

0 ≤ J4(w) < 1, (13)

∀w ∈ [0, R). Also, we assume the following conditions for the Fréchet differentiable oper-
ator H : Ω ⊆ X → Y .

H(u∗) = 0, H ′(u∗)−1 ∈ BL(Y,X), (14)

||H ′(u∗)−1(H ′(u)−H ′(u∗))|| ≤ k0||u− u∗||, ∀u ∈ Ω (15)

and

||H ′(u∗)−1(H ′(u)−H ′(s))|| ≤ k1||u− s||, ∀u, s ∈ Ω. (16)

Many authors [27, 26, 1, 17, 23] use an extra assumption

||H ′(u∗)−1H ′(u)|| ≤M, ∀u ∈ B
(
u∗,

1

k0

)
. (17)

We eliminate this additional condition by using the following results.

Lemma 2.1. If H obeys (15) and B̄(u∗, R) ⊆ Ω, then ∀u ∈ B(u∗, R), we get

||H ′(u∗)−1H ′(u)|| ≤ 1 + k0||u− u∗|| (18)

and

||H ′(u∗)−1H(u)|| ≤ (1 + k0||u− u∗||)||u− u∗|| (19)

Proof. Applying (15), we get

||H ′(u∗)−1H ′(u)|| ≤ 1 + ||H ′(u∗)−1(H ′(u)−H ′(u∗))|| ≤ 1 + k0||u− u∗||.
For β ∈ [0, 1],

||H ′(u∗)−1H ′(u∗ + β(u− u∗))|| ≤ 1 + k0β||u− u∗|| ≤ 1 + k0||u− u∗||
and the mean value theorem helps in obtaining

||H ′(u∗)−1H(u)|| = ||H ′(u∗)−1(H(u)−H(u∗))||
≤ ||H ′(u∗)−1H ′(u∗ + β(u− u∗))(u− u∗)||
≤ (1 + k0||u− u∗||)||u− u∗||.

�

Now, we move forward to describe the local convergence analysis of the algorithm (4)
in the next Theorem.

Theorem 2.1. Let H : Ω ⊆ X → Y be a Fréchet differentiable operator. Assume that
u∗ ∈ Ω, H satisfies (14)-(16) and

B̄(u∗, R) ⊆ Ω, (20)

where R is mentioned in (9). For u0 ∈ B(u∗, R) the scheme (4) provides the well defined
sequence {un}n≥0 such that {un}n≥0 ∈ B(u∗, R) and converges to u∗. In addition, the
followings are true ∀n ≥ 0.

||sn − u∗|| ≤ J1(||un − u∗||)||un − u∗|| < ||un − u∗|| < R, (21)

||tn − u∗|| ≤ J2(||un − u∗||)||un − u∗|| < ||un − u∗|| < R (22)

and

||un+1 − u∗|| ≤ J4(||un − u∗||)||un − u∗|| < ||un − u∗|| < R, (23)

where J1, J2 and J4 are provided in (5), (6) and (8) respectively. Also, u∗ is the unique
solution of H(u) = 0 in B̄(u∗,∆) ∩ Ω for ∆ ∈ [R, 2

k0
).
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Proof. From (9), (15) and the assumption u0 ∈ B(u∗, R), we obtain

||H ′(u∗)−1(H ′(u0)−H ′(u∗))|| ≤ k0||u0 − u∗|| < k0R < 1. (24)

Now, Banach Lemma on invertible operators [2, 4, 5, 6, 7] ensures that H ′(u0)
−1 ∈

BL(Y,X) with

||H ′(u0)−1H ′(u∗)|| ≤
1

1− k0||u0 − u∗||
<

1

1− k0R
(25)

and this confirms the existence of s0. Again,

s0 − u∗ = u0 − u∗ −H ′(u0)−1H(u0)

= −
[
H ′(u0)

−1H ′(u∗)
] [∫ 1

0
H ′(u∗)−1(H ′(u∗ + β(u0 − u∗))−H ′(u0))(u0 − u∗) dβ

]
.

(26)

With the help of (5), (9), (10), (16), (25) and (26), we get

||s0 − u∗|| ≤
[
||H ′(u0)−1H ′(u∗)||

] [∣∣∣∣∣
∣∣∣∣∣
∫ 1

0
H ′(u∗)−1(H ′(u∗ + β(u0 − u∗))−H ′(u0))(u0 − u∗) dβ

∣∣∣∣∣
∣∣∣∣∣
]

≤ k1||u0 − u∗||
2(1− k0||u0 − u∗||)

||u0 − u∗||

= J1(||u0 − u∗||)||u0 − u∗|| < ||u0 − u∗|| < R. (27)

Hence, (21) holds for n = 0. Also,

t0 − u∗ = u0 − u∗ −H ′(u0)−1(H(u0) +H(s0))

= u0 − u∗ −H ′(u0)−1H(u0)−H ′(u0)−1H(s0)

= s0 − u∗ −H ′(u0)−1H(s0)

= −
[
H ′(u0)

−1H ′(u∗)
] [∫ 1

0
H ′(u∗)−1(H ′(u∗ + β(s0 − u∗))−H ′(u0))(s0 − u∗) dβ

]
.

(28)

We use (6), (9), (11), (19), (25), (27) and (28) and deduce that

||t0 − u∗|| ≤
[
||H ′(u0)−1H ′(u∗)||

] [∣∣∣∣∣
∣∣∣∣∣
∫ 1

0
H ′(u∗)−1(H ′(u∗ + β(s0 − u∗))−H ′(u0))(s0 − u∗) dβ

∣∣∣∣∣
∣∣∣∣∣
]

≤
k1
∫ 1
0 (||u∗ + β(s0 − u∗)− u0||) dβ

(1− k0||u0 − u∗||)
||s0 − u∗||

≤

k1
(
||u0 − u∗||+ ||s0−u∗||

2

)
(1− k0||u0 − u∗||)

 ||s0 − u∗||
≤

k1
(
||u0 − u∗||+ J1(||u0−u∗||)||u0−u∗||

2

)
(1− k0||u0 − u∗||)

 J1(||u0 − u∗||)||u0 − u∗||
=

[
k1(2||u0 − u∗||+ J1(||u0 − u∗||)||u0 − u∗||)

2(1− k0||u0 − u∗||)

]
J1(||u0 − u∗||)||u0 − u∗||

=

[
k1(2 + J1(||u0 − u∗||))||u0 − u∗||

2(1− k0||u0 − u∗||)

]
J1(||u0 − u∗||)||u0 − u∗||

= J2(||u0 − u∗||)||u0 − u∗|| < ||u0 − u∗|| < R. (29)
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Again,

||H ′(u∗)−1(H ′(t0)−H ′(u∗))|| ≤ k0||t0−u∗|| < k0J2(||u0−u∗||)||u0−u∗|| = J3(||u0−u∗||) < 1.
(30)

So, H ′(t0)
−1 ∈ BL(Y,X) with

||H ′(t0)−1H ′(u∗)|| ≤
1

1− J3(||u0 − u∗||)
. (31)

This ensures the existence of u1. At last, we use the definition of R, (8), (13), (19), (29)
and (31) to yield

||u1 − u∗|| ≤ ||s0 − u∗||+ ||H ′(t0)−1H(s0)||
= ||s0 − u∗||+ ||H ′(t0)−1H ′(u∗)|| ||H ′(u∗)−1H(s0)||

≤ J1(||u0 − u∗||)||u0 − u∗||+
(1 + k0||s0 − u∗||)||s0 − u∗||

1− J3(||u0 − u∗||)

≤ J1(||u0 − u∗||)||u0 − u∗||+
(1 + k0J1(||u0 − u∗||)||u0 − u∗||)J1(||u0 − u∗||)||u0 − u∗||

1− J3(||u0 − u∗||)

=

[
1 +

(1 + k0J1(||u0 − u∗||)||u0 − u∗||)
1− J3(||u0 − u∗||)

]
J1(||u0 − u∗||)||u0 − u∗||

= J4(||u0 − u∗||)||u0 − u∗|| < ||u0 − u∗|| < R. (32)

Hence, we get (23) for n = 0. The estimates (21)-(23) emerge from the substitution
of un, sn, tn and un+1 instead of u0, s0, t0 and u1 respectively in the prior estimates.
The inequality ||un+1 − u∗|| ≤ J4(R)||un − u∗|| < R ensures that un+1 ∈ B(u∗, R) and
lim
n→∞

un = u∗. Now, we are left with the uniqueness part. If another solution s∗( 6= u∗) of

H(u) = 0 exists in B(u∗,∆), then using A =
∫ 1
0 H

′(s∗+β(u∗−s∗)) dβ and (15), we arrive
at

||H ′(u∗)−1(A−H ′(u∗))|| ≤
∫ 1

0
k0||s∗ + β(u∗ − s∗)− u∗|| dβ

≤ k0
2
||u∗ − s∗||

≤ k0∆

2
< 1.

Thus, A−1 ∈ BL(Y,X) for ∆ < 2
k0

. Now, the identity 0 = H(u∗) −H(s∗) = A(u∗ − s∗)
guarantees that u∗ = s∗. This finishes the proof. �

3. Basins of attraction

Suppose P : C→ C be a complex polynomial with degree greater than or equal to two.
Choosing z0 ∈ C as an initial guess, let {zn}∞n=0 be the sequence of successive iterates
produced by an iterative algorithm. We say the point z0 is attracted to z∗ if the sequence
{zn}∞n=0 converges to the root z∗. The set of all starting points z0 which are attracted to a
zero z∗ of the polynomial P (z) is the basin of attraction corresponding to z∗. We consider
a region S ⊂ C and a grid of 400×400 points covering S = [−10, 10] × [−10, 10] to produce
the basins of attraction of the scheme (4) corresponding to the zeros of a polynomial. In
this numerical experiment, is considered and we apply the algorithm (4) treating every
z0 ∈ S as an initial guess. If the corresponding sequence {zn}∞n=0 converges to a zero of
the test function, then we conclude that z0 is in the attraction basin of that zero and this
initial point is painted with a color related to the zero. The point z0 ∈ S is painted in
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black color if the method (4) starting from z0 does not converge to any zero of the test
polynomial. We set e = 10−6 as the tolerance error and 1000 as the maximum number of
iterations. The test polynomials are chosen from [37, 38]. The region S holds all zeros of
considered test functions. We used MATLAB 2019a to produce the figures.

Experiment 1: At first, we show the convergence region for the scheme (4) to obtain the
zeros of the polynomial P1(z) = z2 − 1. In Fig. 1, convergence to the zeros −1 and 1 of
P1(z) is painted in red and green color respectively.
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1

2

3

4

5

Im
{z

}

Figure 1. Attraction basins related to the zeros of P1(z)

Experiment 2: In Fig. 2, the region of convergence for the scheme (4) to approximate the
zeros of the polynomial P2(z) = z3 − 1 is presented. Convergence to zeros −0.500000 −
0.866025i, −0.500000 + 0.866025i and 1 of P2(z) is painted in green, red and yellow color
respectively.
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Figure 2. Attraction basins related to the zeros of P2(z)
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Experiment 3: In Fig. 3, we provide the convergence region for the scheme (4) to obtain
the zeros of the polynomial P3(z) = z3 + (0.275 + 1.65i− 1)z+ 0.275 + 1.65i. Convergence
to the zeros 0.401440−0.915201i, −1.401440+0.915201i and 1 of P3(z) is painted in green,
magenta and yellow color respectively.
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Figure 3. Attraction basins related to the zeros of P3(z)

Experiment 4: In Fig. 4, the region of convergence for the scheme (4) to approximate
the zeros of the polynomial P4(z) = z3 − 4z2 + 10 is shown. Convergence to the zeros
−2.682615− 0.358259i, −2.682615 + 0.358259i and 1.365230 of P4(z) is painted in green,
magenta and yellow color respectively.
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Figure 4. Attraction basins related to the zeros of P4(z)

Experiment 5: In Fig. 5, we present the convergence region for the scheme (4) to obtain
the zeros of the polynomial P5(z) = z4 − 1. Convergence to the zeros −i, −1, i and 1 of
P5(z) is painted in green, magenta, yellow and red color respectively. Fig. 6 provides a
zoomed view of Fig. 5.
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Figure 5. Attraction basins related to the zeros of P5
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Figure 6. Zoomed view of Fig. 5

Experiment 6: In Fig. 7, the region of convergence for the scheme (4) to approximate the
zeros of the polynomial P6(z) = z4 − 10z2 + 9 is given. Convergence to the zeros −3, −1,
1 and 3 of P6(z) is painted in green, magenta, yellow and red color respectively.
Experiment 7: In Fig. 8, we show the convergence region for the scheme (4) to obtain the
zeros of the polynomial P7(z) = z5 − 1. Convergence to the zeros −0.809016− 0.587785i,
−0.809016+0.587785i, 0.309016−0.951056i, 0.309016+0.951056i and 1 of P7(z) is painted
in green, red, yellow, magenta and cyan color respectively. Fig. 9 shows a zoomed view
of Fig. 8.
Experiment 8: In Fig. 10, the region of convergence for the scheme (4) to obtain the zeros
of the polynomial P8(z) = z5 + 5z3 − 4z is provided. Convergence to the zeros −2, −1, 0
, 1 and 2 of P8(z) is painted in green, magenta, yellow, blue and red color respectively.
Experiment 9: At last, we present the convergence region for the scheme (4) to obtain the
zeros of the polynomial P9(z) = z6 − 0.5z5 + 11

4 (1 + i)z4 − 1
4(19 + 3i)z3 + 1

4(11 + i)z2 −
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Figure 7. Attraction basins related to the zeros of P6(z)
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Figure 8. Attraction basins related to the zeros of P7(z)

1
4(19 + 3i)z + 3

2 − 3i. In Fig. 11, convergence to the zeros −3
2 i, −1 + 2i, −1

2 −
i
2 , i, 1 and

1− i of P9(z) is painted in green, magenta, yellow, blue, red and orange color respectively.
Fig. 12 presents a zoomed view of Fig. 11.

4. Numerical Examples

In this section, we compute the radii of convergence balls of the method (4) for standard
numerical problems. Also, we compare the convergence radii with that of the fourth and
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Figure 9. Zoomed view of Fig. 7
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Figure 10. Attraction basins related to the zeros of P8(z)

fifth order convergent family of methods,

sn = un − aH ′(un)−1H(un), a ∈ (−∞,∞) \ {0}
tn = sn −H ′(un)−1H(sn)

un+1 = tn −
(

1

a
H ′(sn)−1 +

(
1− 1

a

)
H ′(un)−1

)
H(tn), (33)

obtained by the technique of Singh et al. discussed in [20]. We obtain larger domain of
convergence for the method (4) using our technique in all cases.

Example 1 [20]: Let H is defined for (u1, u2, u3)
t on B̄(0, 1) by

H(u) = (eu1 − 1,
e− 1

2
u22 + u2, u3)

t
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Figure 11. Attraction basins related to the roots of P9(z)
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Figure 12. Zoomed view of Fig. 9

We have u∗ = (0, 0, 0)t. Also, we have k0 = e− 1 and k1 = e. The radius R is computed
using “J” functions.

Table 1: Parameters for example 1

Method (4) Family of methods (33) [20]
θ1 θ2 θ4 R ρ
0.324947 0.255270 0.203279 0.203279 0.118532

Example 2 [20]: Let us define H on Ω = [−1, 1] by

H(u) = sin(u)

We have u∗ = 0. Also, we have k0 = k1 = 1. R is calculated using “J” functions.

Table 2: Parameters for example 2
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Method (4) Family of methods (33) [20]
θ1 θ2 θ4 R ρ
0.666667 0.552789 0.449859 0.449859 0.272419

Example 3 [21]: Consider the nonlinear Hammerstein type integral equation given by

H(u)(x) = u(x)− 5

∫ 1

0
x y u(y)3 dy,

where u(x) ∈ C[0, 1]. We have u∗ = 0. Also, k0 = 7.5 and k1 = 15. “J” functions are
used to find the radius R.

Table 3: Parameters for example 3

Method (4) Family of methods (33) [20]
θ1 θ2 θ4 R ρ
0.066667 0.050929 0.040269 0.040269 0.022502

Example 4 [20]: We consider the motivational problem mentioned in the first section. We
have u∗ = 1. Also, k0 = k1 = 96.6628. The radius R is obtained from the “J” functions.

Table 4: Parameters for example 4

Method (4) Family of methods (33) [20]
θ1 θ2 θ4 R ρ
0.006896 0.005719 0.004654 0.004654 0.002818

We ensure the convergence of the scheme (4) with radius R = 0.004654.

5. Conclusions

Local convergence analysis of the higher-order convergent scheme (4) is studied. We
used the only assumption that the first-order Fréchet derivative is Lipschitz continuous to
expand the application of the algorithm. The analysis presented in this study is applicable
for solving such problems for which earlier analysis are not useful. Also, the region of
convergence for the the method (4) to find the zeros of different polynomials is presented
by means of basins of attraction. At last, various examples like a nonlinear system and
the Hammerstein integral equation are solved to show the convergence of the algorithm.
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