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(p,q)-CHEBYSHEV POLYNOMIALS AND THEIR APPLICATIONS TO
BI-UNIVALENT FUNCTIONS

A. AMOURAH', H. ABDELKARIM!, A. ALELAUMI?, §

ABSTRACT. In the present paper, a subclass of analytic and bi-univalent functions by
means of (p,q)—Chebyshev polynomials is introduced. Certain coefficient bounds for
functions belong to this subclass are obtained. Furthermore, the Fekete-Szegd problem
in this subclass is solved.
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1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form:
f(z) = z+Zanzn, (1)
n=2

which are analytic in the open unit disk U = {z € C : |2| < 1}. Further, by A we shall
denote the class of all functions in .4 which are univalent in U.

Given two functions f, g € A. The function f(z) is said to be subordinate to g(z) in U,
written f(z) < g(z), if there exists a Schwarz function w(z), analytic in U, with w(0) =0
and |w(z)| < 1 for all z € U, such that f(z) = g (w(2)) for all z € U. Furthermore, if the
function g is univalent in U, then we have the following equivalence (see [9] and [17]):

f(z) < g(2) = £(0) = g(0) and f(U) C g(U).
The Koebe one-quarter theorem [5] asserts that the image of U under each univalent

function f in A contains a disk of radius i. According to this, every function f € A has
an inverse map f~', defined by

F7HfR) =2 (z€U),
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and
FUw) =w  (Jwl <ro(f);ro(f) = 7)-
In fact, the inverse function is given by
N w) = w — agw?® + (2a3 — az)w?® — (5a3 — Sazaz + ag)w + - - - . (2)

A function f € A is said to be bi-univalent in U if both f(z) and f~!(w) are univalent
in U. Let ¥ denote the class of bi-univalent functions in U given by (1). For a brief
history and some intriguing examples of functions and characterization of the class X, see

Srivastava et al. [11] and Amourah [6], we employ techniques similar to these used earlier
by [1, 2, 3, 19, 12, 21], see also [15, 7, 8, 10, 13, 20].

For any integer n > 2 and 0 < ¢ < p < 1, (p,¢)—Chebyshev polynomials of the second
kind is defined by the following recurrence relations:

Un(z,5,p,9) = (P" + ¢") aUn—1(x,5,p,9) + (pa)" ' sUn—2(, ,p, q), (3)

with the initial values Uy(z, s,p,q) = 1 and Uj(x, s,p,q) = (p + q) = and s is a variable.

Very recently, Kizilates et al. [14], defined (p,q)—Chebyshev polynomials of the first
and second kinds and derived explicit formulas, generating functions and some interesting
properties of these polynomials.

The generating function of the (p, ¢)—Chebyshev polynomials of the second kind is as
follows:

1
1 — apeTy, — 2q2T; — 8PG22Tyy

= ZUn(x,s,p, q9)z" (z€l).

n=0

Hp,q(2)

where the Fibonacci operator 7, was introduced in Mason and Handscomb (see [16]),
by 74f(2) = f(gz).

Similarly, 7, 4 f(2) = f(pgz).
Definition 1.1. For A > 1, and u > 0, a function f € ¥ given by (1) is said to be in the
class Bs,(\, i, p, q) if the following subordinations hold for all z,w € U:

f(Z) / 1" 1
1—A) =2+ X H = 4
(=N T2 A @) 42 ) = Hpo(2) = T e ()
and
g(w) / " 1
1—M) ==+ H = 5
(L=N =7 FAg )+ pwg(w) < Hyglw) = 5 e gty O

where the function g(w) = f~1(w) is defined by (2).
2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS Bs (A, 1, p, q)

We begin with the following result involving initial coefficient bounds for the function
class By, (A, 1, p, q).

Theorem 2.1. Let the function f(z) given by (1) be in the class Bs (A, p,p,q). Then
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(r+gzy/(p+qz

|ag| < (6)
\/\ (201204 60) (p+ 0)2 42 = 2[5 + %) 22 (p + ) + pas] (1+ A+ 2307 |
and
3.3
+ z
la| < : (p+q) 7)
[2(1 + 20+ 6p) (p+ )" 22 = 2[(0? + ¢*) 2% (p + ¢) + pgs] (1+A+2/~6)2”
Ptz ®)
1+2)\+6p
Proof. Let f € By, (A, it,p,q). From (4) and (5), we have
- f(2) / " _
(1 =2) ==+ Af(2) + pzf7(2) = Hpq(w(z)) (9)
and
g(w) / 1" _
(1 =A) == +Ag (w) + pwg"(w) = Hpqg(v(w)), (10)
for some analytic functions
w(z) = 12 + c22? + 323 + -+ (z € ),
and
v(w) = dyw + dow® + dgw® + -+ (w € V),
such that w(0) =v(0) =0, |w(z)| <1 (2 € U) and |[v(w)| <1 (w € U).
It follows from (9) and (10) that
-0 are) e
=1+ Ul(:L‘a S, D, Q)Clz + [Ul(CC, S, D, Q)CQ + UZ(ajv 5, D, q)C%] Z2 +-
and
(1=2) g(ww) + Mg (w) + pwg” (w)
=1+ Ui(z,s,p,Q)d1w + [Ur(,s,p,q)d2 + Uz(x, s,p, q)d; | )w® + - --
A short calculation shows that
(1+>\+2:U’) a2 = Ul(x’57p7Q)Cla (11)
(1 +2) + 6“) asz = Ul(xv S, D, q)CQ + UQ(w7 S, D, Q)C% (12)
and
_(1+A+2M) ag :Ul(x787paq)d17 (13)
(1 +2X2+ 6:“) (2@% - CL3) = Ul(x7 $, P, Q)dQ + UQ(@', S, P, Q)d% (14)
From (11) and (13), we have
Ccl = —dl, (15)
and
2(1+A+2u)" a3 = UP(2,5,p,q) (cf + i) . (16)

By adding (12) to (14), we get
2(1 42X+ 6p) a3 = Ui (z, 5,p,q) (c2 + d2) + Ua(z, 5,p,q) (T + d3) - (17)
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By using (16) in (17), we obtain

2U2(ZC, S, D, Q)

22260 = )

(1+)‘+21U’)2 CL% :U1($,S,p,q) (C2+d2)' (18)

It is fairly well known [5] that if |w(z)| < 1 and |v(w)| < 1, then
l¢jl <1 and |d;| <1 forall j € N. (19)
By considering (3) and (19), we get from (18) the desired inequality (6).
Next, by subtracting (14) from (12), we have
2 (14 2\ + 6p) az—2(1+2X\+6u)a3 = Uy (x, s,p, q) (ca — d2)+Us(z, 5,p, q) (c% - d%) . (20)
Further, in view of (15), it follows from (20) that

2 Ul(xﬂSvva_I)

= —_ —da). 21

e ETI w  A) (21
By considering (16) and (19), we get from (21) the desired inequality (7). This completes
the proof of Theorem 2.1. ]

Taking A = 1 and g = 0 in Theorem 2.1, we get the following corollary.
Corollary 2.1. Let the function f(z) given by (1) be in the class Bs (A, u,p,q). Then
P+azy/(p+a=

\/’ {6(]94‘(1)2332 = 8[(P* +¢*) % (p+q) +pqS]H

las| <

)

and
as| < (p+q)°2°
B Hﬁ (p+q)° 2% —8[(p2+¢2) 22 (p+q) +Pq5]} ‘
M GRE: +3q) ) (22)

3. FEKETE-SZEGO INEQUALITY FOR THE FUNCTION CLASS By, (A, i, p, q)

Now, we are ready to find the sharp bounds of Fekete-Szegd functional az —na3 defined
for f € Bs (A, i, p, q) given by (1).

Theorem 3.1. Let the function f(z) given by (1) be in the class By, (X, i, p,q). Then for
some n € R,

+
e n=1<M
2
_ < M ?
lag —naz| < 2(p+q)°a®|1-n]| In—1] > =
|2(1+224-61) (p+q)* 22 —2(14+A+20) [ (P2 +42) 22 (p+q) +pas]| | -
where

’2 (14204 60) (0 + 0)° 2% = (14 A+ 20 [(0 + ¢?) 2 WFQ)]H

M = 3
2(14+2X+6p) (p+q)° 22
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Proof. Let f € By (A, u,p,q). By using (18) and (21) for some n € R, we get
n) [ UP (N, 1,05 ) (2 + da) }
2(1+ 22X+ 6)UT (A, i1, @) — 2(1 + X+ 20)2U2 (A, 1,9, q)

Ul ()‘7#7})7 Q) (C2 - d2)
2(1+ 2\ + 6p1)

a3—77a%:(1—

=01 o) | (100 + 5 ) 2+ (W00 = 5ar e ) )

2 [(1+ 2\ + 6)UF (A, 1, @) — (1 + X+ 20)2Uz (A, 11, 1, 4)]
Then, we easily conclude that

where

(p+a)z 1
T-H2A+6° ()] < 2(1+27167)

2(p+q) [h(m)lz, 1h1) = srraxren
This proves Theorem 3.1. (|

|ag — na3| <

We end this section with some corollaries concerning the sharp bounds of Fekete-Szego
functional a3 — na3 defined for f € By, (A, i1, p, q) given by (1).
Taking n = 1 in Theorem 3.1, we get the following corollary.

Corollary 3.1. Let the function f(z) given by (1) be in the class Bs, (A, i, p,q). Then
lag — a2| < _(ptga
142X+ 6p
Taking A = 1 and g = 0 in Theorem 3.1, we get the following corollary.

Corollary 3.2. Let the function f(z) given by (1) be in the class By, (t). Then for some
neR,

2 e p—1l< M
— < .
a3 = nag| < 2(p+q)®a® |11 m—1|>M
|6(p+q)*22—8[(p>+4¢2)a2 (p+q)+pgs]|’ -
where
2[3(p+aa® =4 [P+ ) 2> (p+ )] |
M = 5 :
6(p+q) 2
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