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UNIT GRAPH OF TYPE - 2

B. SATYANARAYANA1, D. SRIVANASULU2, M. BHAVANARI3, §

Abstract. The unit graph of ring R was introduced in commutative rings by Vasan-
tha Kandasamy[27]. In this short note, we introduce the concept namely “Unit graph
of type-2” denoted by UG2(R) in associative rings R and announced a few important
fundamental results. In section 3, we prove that the number of edges in the unit graph

of type-2 of Zp is
p− 3

2
. In section 4, we prove that sum of the degrees of the vertices in

UG2(R) is equal to (|U(R)|−number of self units). Also we have included some examples.
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1. Introduction

Let G = (V , E) be a graph consist of a finite non-empty set V of vertices and finite set
E of edges such that each edge ek is identified as an unordered pair of vertices {vi, vj},
where vi, vj are called end points of ek . The edge ek is also denoted by either vivj or
vivj . We also write G(V,E) for the graph. Vertex set and edge set of G are also denoted
by V (G) and E(G) respectively. An edge associated with a vertex pair {vi, vi} is called a
self-loop. The number of edges associated with the vertex is the degree of the vertex, and
d(v) denotes the degree of the vertex v. If there is more than one edge associated with a
given pair of vertices, then these edges are called parallel edges or multiple edges.
A graph that does not have self-loops or parallel edges is called a simple graph. We
consider simple graphs only.
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2. Unit graph of type-2

Definition 2.1. (i) A graph G(V,E) is said to be a star graph if there exists a fixed vertex
v ( called the center of the star graph )such that E = {vu / u ∈ V and u 6= v}. A star
graph is said to be an n-star graph if the number of vertices of the graph is n.

(ii) In a graph G, a subset S of V (G) is said to be a dominating set if every vertex not
in S has a neighbour in S. The domination number, denoted by γ(G) is defined as min
{|S| / S is a dominating set in G}.

Definition 2.2. [27] Let R be a finite commutative ring with 1. We take U(R) the set of
units in R (clearly U(R) 6= φ as 1 ∈ U(R)). Now the elements of U(R) form the vertices of
simple graph. Two elements x and y in R are adjacent if and only if x.y = 1. We assume
that 1 is adjacent with every unit in R. The graph associated with U(R) is defined to be
the unit graph of R. Unit Graph of type-1.

Remark 2.1. In the case of a zero divisor graph of R, the vertex set V is equal to R. In
the case of the unit graph of R we take V = U(R), the set of all units in R.

Remark 2.2. If R has no unit (no invertible) element other than 1, then U(R)={1}.

Now we introduce a new concept “Unit Graph of type-2” and observe some examples.

Definition 2.3. Let R be a finite commutative ring with 1. A graph G (V , E) is said to
be unit graph of type-2 if V = U(R) and E = {xy | x, y ∈ U(R) such that xy = 1 and x 6=
y}. We denote the unit graph of type-2 of a ring R by UG2(R).

If x2 = 1 then we say that x is a self unit, and if x2 6= 1 then we say that x is a non-self
unit.
Notation: We write SU(R) = {x ∈ U(R) | x = x−1} = the set of all self units; and
NSU(R) = {x ∈ U(R) | x 6= x−1} = the set of all non-self units

Note 2.1. Unit graph of type-2 is a subgraph of the unit graph of Type-1

Note 2.2. Let n be a positive integer and ‘ p’ be a prime number.

(i) (n− 1)2≡ 1 ( mod n)

(ii) (p− 1) is the inverse of (p− 1) in the multiplicative group Z∗p = Zp-{0}.

(iii) In UG2(Zp), the vertex (p− 1) is an isolated vertex.

Verification: For (i) consider (n− 1)(n− 1) = (n− 1)2

= n2 + 1− 2n ∼= 1 ( mod n)

So, (n− 1) is inverse of (n− 1). Hence (n− 1) is an isolated vertex

Example 2.1. Let Z2={0,1}, U(R)={1}. So V(UG2(R))={1}. Since ‘1’ is adjacent to
all units in R, as there are no units other than 1, there are no edges and E(UG2(R))=∅.
Now UG2(R) is given in Figure-1.0.1.

1

Unit graph of type-2 of Z2
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Example 2.2. Consider Z7 = {0,1,2,3,4,5,6} the ring of integers modulo 7. Now U(R)
= {1,2,3,4,5,6}, 2 and 4 are inverses to each other, and so there is an edge between 2 and
4. Also 3 and 5 are inverses to each other, so there is an edge between 3 and 5. Also 1
and 6 are self units. The unit graph of type-2 of Z7 is given in Fig 1.0.2.

Fig 1.0.2

Unit graph of type-2 of Z7

Lemma 2.1. There is no triangle in UG2(Zp) for any prime number p

Verification: In a contrary way, suppose x, y, z ∈ U(Zp) are three distinct elements such
that {x, y, z} is a triangle.
Now xy =1 and yz =1
⇒ x and z are two distinct inverses of y, which is a contradiction. Hence the unit graph
of type-2 of Zp contains no triangle.

Note 2.3. (i) UG2(Zn) is a is disconnected graph for any positive integer n. (ii)UG2(R)
⊆ UG1(R) for any ring R [that is, the unit graph of type-2 is a subgraph of unit graph of
type-1 for all the rings R].

Example 2.3. Consider Z5={0,1,2,3,4}, the ring of integers modulo 5. Now U(R)={1,2,3,4},
2 and 3 are inverses to each other and so there is an edge between 2 and 3. Also 1 and 4
are self units. The unit Graph of type-2 of Z5 is given in Fig. 1.0.3.

Fig. 1.0.3

Number of edges in unit Graph of type-2 of Z5 is 1

Example 2.4. Consider Z11={0,1,2,3,4,5,6,7,8,9,10}, the ring of integers modulo 11.
Now U(R)={1,2,3,4,5,6,7,8,9,10}, Since 1 and 10 are self inverses, there are no edge with
end point 1 or 10. Since 2 and 6 are inverses to each other, we connect 2 and 6 by an
edge. Since 3 and 4 are inverses to each other we connect 3 and 4 by an edge. We connect
all such pairs of vertices and finally we get the Unit graph of type-2 of Z11 given in the
Fig.1.0.4.
The number of edges in unit Graph of type-2 of Z11 is 4.

Now we conclude the following:
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Fig 1.0.4

3. Number of Edges in UG2(Zp)

Lemma 3.1. UG2(Zp) contains at least two isolated vertices.

Proof. We know that (p − 1)2 ≡ 1(modp) and 12 ≡ 1(modp). Since 1 and (p − 1)are self
units, we conclude that the vertices 1 and (p− 1) in UG2(Zp) are isolated vertices.

�

The following Result is well known in number theory, but we provide proof for com-
pleteness.

Lemma 3.2. [26] Let ‘a’ be an integer such that 1≤ a < p and a2 ≡ 1( mod p). Then
either a=1 or a = p-1 .

Proof: Suppose a 6= 1 and a2≡1(mod p), then
p

a2 − 1
and so

p

a− 1
or

p

a+ 1

⇒ p

a+ 1
(since p cannot divide (a-1) as a < p)

⇒ p ≤ (a+1)
⇒ p = (a+1), since (a+1)≤p
⇒ a = (p-1)

Therefore in Zp only self units are 1 and (p-1).

Corollary 3.1. In UG2(Zp) there exit exactly two isolated vertices.

Proof. By above lemma-3.1 we know that the two vertices 1 and (p-1) are isolated. Suppose
v ∈ V (UG2(Zp)) with 1 6= v 6= (p− 1). By lemma-3.2, v=1 or v=(p-1), a contradiction.
Hence the set of isolated vertices in UG2(Zp)is exactly {1, (p-1)}. �

Theorem 3.1. Let Zp={0, 1, 2, ..., (p− 1)} be the ring of integers modulo ‘p’ . Then the

number of edges in unit graph of type-2 of Zp is p−3
2

Proof. Since 1 and p − 1 are self units, the degree of these two vertices is equal to zero.
As p is prime, Zp is a field. Since every element in Zp−{0} has inverse, for the remaining

vertices, that is {2,3,...,(p-2)} are (p-3) in number and so we can group into P−3
2 pairs {x,

y} as y=x−1 or that xy ≡ 1 ( mod p)
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As xy ≡ 1 ( mod p) , x and y are adjacent in the unit graph of type-2, we have that P−3
2

pairs exist with xy ≡ 1 ( mod p) and x 6= y. Therefore the number of edges in the unit
graph of type-2 of Zp is P−3

2 . �

Theorem 3.2. Let R be an associative ring. Then R is a Division ring if and only if the

number of edges in UG2(R) is equal to
|R| − 1− (number of self inverses in R)

2
.

Proof. Since R is a division ring all the elements of R∗=R-{0} are units. Write S =
{u ∈ R/u2 = 1} (the set of all self inverses), N={x∈R/xy=1 and x 6=y}. Then R-
{0}=R∗=S ∪ N ⇒|R|-1=|S|+|N| ⇒ |N |=|R|-1-|S| or |S|=|R|-1-|N | (say (i)). Since self
inverses units are not end points of any edge in UG2(R), the edges that are having end
points in S is zero. If 0 6= x∈N , then there is an edge between x and y ∈ N with x6=y and
xy=1. Thus the number of edges that can be formed in UG2(R) is equal to t

2 where t =

|N |. Hence the number of edges in UG2(R) is equal to t
2= |N |2 = |R|−1−|S|2

Converse: Suppose R is a ring with the condition

|E(UG2(R))| =
|R| − 1− (number of self units in R)

2
From the given condition 2|E(UG2(R))|=|R| − 1− (number of self units in R)
Number of self units = |R|-1-2|E(UG2(R))|.
In a contrary way suppose that R is not a division ring. Then there exists 0 6= x ∈ R
such that x has no inverse. The number of elements in R have inverse <|R-{0,x}|=|R|-2
⇒ (number of self units+ number of invertible elements which are not self units)< |R|-2
⇒ |R|-1-2|E(UG2(R))| +( number of inverse elements which are not self units)< |R|-2

⇒ number of inverse elements which are not self units < 2|E(UG2(R))|-1

⇒ 2|E(UG2(R))<
|R| − 1− (number of self units in R)

2
a contradiction.

Hence R is a division ring. �

Corollary 3.2. The following conditions are equivalent
(i) (0) is the maximal ideal of a ring
(ii) R is a division ring

(iii)|E(UG2(R))| =
|R| − 1− (number of self units in R)

2

Proof. (i)⇔ (ii): By proposition 1 of chapter 3 of [1].

(ii)⇔ (iii)By Theorem 3.2. �

4. Degrees of vertices in UG2(R)

Theorem 4.1. (i) If v ∈ V (UG2(R)) where R is the ring then degree of v is either 0 or
1.
(ii) v ∈ V (UG2(R)) is isolated vertex if and only if it is a self unit.

Proof. Let v ∈ V (UG2(R)). Since v is a unit there exits u ∈ V (UG2(R)) with uv = 1. If
u = v then v is a self unit and so there is no edge in V (UG2(R)) with end point v. So
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degree of v is zero. If u 6= v then by definition of UG2(R) there exists an edge between v
and u. Since there are no other edges with end point v We get that the degree of v is 1.
Hence we conclude that for every v in UG2(R) the degree is either 0 or 1.
(i) v ∈ V (UG2(R)) is an isolated vertex.
⇔ degree of v is equal to zero and v is a unit.
⇔ v = v−1. �

Theorem 4.2. (i) |E(UG2(R))|=1

2
{|U(R)|-number of self units}.

(ii) Sum of the degrees of the vertices is equal to (|U(R)|-number of self units).

Proof. (i) Let R be a ring and U(R) be the set of all self units in R.
write NSU(R)={x∈U(R)/x6=x−1} and SU(R)={x∈U(R)/x=x−1}. Now U(R)=NSU(R)
∪ SU(R), a disjoint union. If x6=x−1 then there is an edge between x and x−1. The number

of such {x, x−1} pairs that can be formed is
|NSU(R)|

2

Thus |E(UG2(R)) |=1

2
|NSU(R)|= 1

2
|U(R)− SU(R)|.

(ii)Sum of the degrees of the vertices in UG2(R)
= 2× number of edges (by Theorem 13.1, p337 [24])
= |U(R)| − SU(R) (by (i)). �

5. Conclusions

A new concept ‘Unit graph of type-2 of a finite commutative ring R (denoted by
UG2(R))’ was introduced. Two important results proved are

(i). R is a division ring if and only if |E(UG2(R))| = |R|−1−(number of self units in R)
2 ;

(ii). The sum of the degrees of the vertices in the graph G is equal to (|U(R)|− number
of self units). These results provide some new fundamental important relations between
‘Graph Theory’, and ‘Ring Theory’.
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