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EULERIAN AND HAMILTONIAN PROPERTIES OF GALLAI AND

ANTI-GALLAI MIDDLE GRAPHS

S. GOYAL1, D. JAIN2, §

Abstract. The Gallai middle graph ΓM (G) of a graph G = (V,E) is the graph whose
vertex set is V ∪E and two edges ei, ej ∈ E are adjacent in ΓM (G), if they are adjacent
edges of G and do not lie on a same triangle in G, or if ei = uv ∈ E then ei is adjacent
to u and v in ΓM (G). The anti-Gallai middle graph ∆M (G) of a graph G = (V,E) is the
graph whose vertex set is V ∪E and two edges ei, ej ∈ E are adjacent in ∆M (G) if they
are adjacent in G and lie on a same triangle in G, or if ei = uv ∈ E then ei is adjacent
to u and v in ∆M (G). In this paper, we investigate Eulerian and Hamiltonian properties
of Gallai and anti-Gallai middle graphs.

Keywords: Euler graph, Hamiltonian graph, Gallai middle graph, anti-Gallai middle
graph.

AMS Subject Classification: 05C45, 05C76.

1. Introduction

A graph G = (V,E) is an ordered pair of set of vertices and edges, where edges are
unordered pair of vertices. Also G is said to be a (p, q) graph if |V | = p and |E| = q. Two
vertices (edges) are said to be adjacent if they have a common edge (vertex). If a vertex
v lies on an edge e, then they are said to be incident to each other. The degree d(v) of
a vertex v ∈ V is the number of edges incident at v. A complete graph is the graph in
which every vertex is adjacent to every another vertex. It is dented by Kn, where n is
number of vertices. A regular graph is the graph in which every vertex of the graph has
same degree. A walk is an alternating sequence of vertices and edges of G, whose starting
and ending point is a vertex. A path in a graph G is a walk with no repeated vertex. A
graph G is said to be connected if there exists a path between every pair of vertices of G.
Let G = (V,E) be a graph with |V | = p, then the adjacency matrix A(G) of G is defined
as A(G) = [aij ]p×p, where

aij =

{
1 if vi is adjacent to vj ,

0 otherwise.
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If A is an square matrix of order n, then the trace of A is denoted by tr(A), is the sum
of all of the entries in the main diagonal, where main diagonal of A consists of the entries
a11, a22, ..., ann (entries whose row number is the same as their column number).

A graph G is called Euler graph if there exists a closed walk in G with no repeated edge
and all the edges are traversed exactly once. A closed path is called a cycle. A cycle is
said to be spanning cycle if it contains all the vertices of the graph. A graph G is said to
be Hamiltonian if it contains a spanning cycle. Vertices and edges of G are called elements
of G.

Definition 1.1. The line graph L(G) of a graph G is defined as the graph whose vertices
are the edges of G, with two vertices are adjacent in L(G) if and only if the corresponding
edges are adjacent in G.

The line graphs were first studied by Whitney [15]. Several properties of line graph is
studied in the literature [1], [2], [10].

Definition 1.2. The middle graph T1(G) of a graph G is the graph whose vertex set is
V (G) ∪E(G), two vertices in T1(G) are adjacent if and only if they are adjacent edges in
G, or one is a vertex and another is an incident edge in G.

A structural characterization and various properties of middle graphs were presented
by Sampathkumar & Chikkodimath [11], [12], [13]. In the literature, middle graphs are
also known as semi-total line graphs. Hamada & Yoshimura [7] have presented a charac-
terization of middle graphs in terms of line graphs and also investigated traversability and
connectivity properties of middle graphs.

Definition 1.3. The Gallai graph Γ(G) of a graph G is the graph in which V (Γ(G)) =
E(G) and two distinct edges of G are adjacent in Γ(G) if they are adjacent in G, but do
not span a triangle in G.

Definition 1.4. The anti-Gallai graph ∆(G) of a graph G is the graph in which V (∆(G)) =
E(G) and two distinct edges of G are adjacent in ∆(G) if they are adjacent in G and lie
on a same triangle in G.

These constructions were used by Gallai [4] in his investigation of comparability graphs;
the notion was suggested by Sun [14]. Sun used the Gallai graphs to describe a nice class
of perfect graphs. Gallai graphs are also used in polynomial time algorithm to recognize
k1,3-free perfect graphs by Chvatal & Sbihi [3]. Several properties of Gallai and anti-Gallai
graphs are discussed in [8], [9]. Eulerian and Hamiltonian properties of Gallai and anti-
Gallai total graphs are given by garg et al. in [5].

Motivated from the operators Gallai graph, anti-Gallai graph and middle graph, we
introduce two new operators Gallai middle graph ΓM (G) and anti-Gallai middle graph
∆M (G) of a graph G as follows:

Definition 1.5. The Gallai middle graph ΓM (G) of a graph G = (V,E) is the graph whose
vertex set is V ∪ E and two edges ei, ej ∈ E are adjacent in ΓM (G), if they are adjacent
edges of G and do not lie on a same triangle in G, or if e = uv ∈ E then e is adjacent to
u and v in ΓM (G).
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Definition 1.6. The anti-Gallai middle graph ∆M (G) of G is the graph whose vertex set
is V ∪ E and two edges ei, ej ∈ E are adjacent in ∆M (G) if they are adjacent in G and
lie on a same triangle in G, or if e = uv ∈ E then e is adjacent to u and v in ∆M (G).

In this paper, we present Eulerian and Hamiltonian properties of Gallai and anti-Gallai
middle graphs. The Gallai middle graph ΓM (G) and anti-Gallai middle graph ∆M (G) of
G are shown in Figure 1. Throughout the paper we consider all graphs are simple (namely,
with no loops or multiple edges).
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Figure 1. A graph G, its Gallai middle graph H = ΓM (G) and anti-Gallai
middle graph H ′ = ∆M (G)

2. Eulerian Gallai middle graphs

The degree of a vertex v′ ∈ V (ΓM (G)) is denoted as dΓ(v′).

Proposition 2.1. Let G = (V,E) be a graph.

(i) If v is a vertex of G and v′ is the corresponding vertex of ΓM (G), then dΓ(v′) =
d(v),

(ii) If e = uv is an edge of G and e′ is the corresponding vertex of ΓM (G), then
dΓ(e′) = d(u) + d(v) − 2t, where t is the number of triangles in G containing the
edge e.

Proof. (i) By definition, there is a bijective mapping from the edges incident to v in
G to the vertices adjacent to v′ in ΓM (G). Thus, dΓ(v′) = d(v).”

(ii) If e = uv is an edge of G, then e′ is adjacent to all the edges adjacent to e, but
do not those edges which lie on a same triangle with e in G. It implies that they
contribute the degree (d(u) − 1) + (d(v) − 1) − 2t (because if e is the edge of a
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triangle, then it is not adjacent to those two edges of G which lie on a same triangle
with e in G) and e′ is also adjacent in ΓM (G) to the vertices to which it is incident
in G. Therefore, dΓ(e′) = d(u) + d(v)− 2t.

�

Lemma 2.1. [6] The number of triangles in a graph G is equal to tr(A3)/6, where A is
the adjacency matrix of G.

Proposition 2.2. Let G be a (p, q) graph, then the number of edges in the Gallai middle
graph ΓM (G) is equal to q+ 1

2

∑p
i=1(d(vi))

2−3(tr(A3)/6), where A is the adjacency matrix
and vi is a vertex of G.

Proof. Let G = (V,E) be a (p, q) graph and v1, v2, . . . , vi, . . . , vp be vertices of G. Then
total degree of vertices of ΓM (G) is equal to (sum of degree of the vertices of G)+sum of
the degree of the vertices corresponding to the edges of G. Let E′(G) be the set of edges
which do not lie on a triangle in G and |E′(G)| = q1. Also let E′′(G) be the set of edges
which lie on a triangle in G and |E′′(G)| = q2. Now if e = vivj ∈ E′(G), then degree of the
corresponding vertex e′ in ΓT (G) is equal to d(vi)+d(vj), so the total degree of the vertices

in ΓM (G) corresponding to such edges of G is
q1∑

vivj∈E′(G)

(d(vi)+d(vj)). If e = vivj ∈ E′′(G),

then degree of the corresponding vertex e′ in ΓM (G) is equal to d(vi) + d(vj)− 2tij , where
tij is the number of triangles on which the edge vivj lies, so the total degree of the vertices

in ΓM (G) corresponding to such edges of G is
q2∑

vivj∈E′′(G)

(d(vi) + d(vj) − 2tij). Then by

handshake lemma on G and ΓM (G) we have,
total degree of ΓM (G)

= (2q) +

q1∑
vivj∈E′(G)

(d(vi) + d(vj)) +

q2∑
vivj∈E′′(G)

(d(vi) + d(vj)− 2tij)

= 2q +

q∑
vivj∈E(G)

(d(vi) + d(vj))− 2

q2∑
vivj∈E′′(G)

(tij)

= 2q +

p∑
i=1

((d(vi))
2)− 2(3× total no. of triangles in G)

= 2q +

p∑
i=1

(d(vi))
2 − 6(number of triangles in G)

= 2q +

p∑
i=1

(d(vi))
2 − 6

(
tr(A3)

6

)
, using Lemma 2.1.

Then by hand shake lemma (sum of the degree of the vertices is equal to twice the
number of edges in G), the total number of edges in ΓM (G),

|E(ΓM (G))| = q + 1
2

p∑
i=1

(d(vi))
2 − 3

(
tr(A3)

6

)
.

�

A graph is called l-triangular if each edge of G lies on l number of triangles in G.
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Proposition 2.3. The Gallai middle graph ΓM (G) of a graph G is 2l-regular if and only
if G is 2l-regular and l-triangular.

Proof. Let G be a 2l-regular and l-triangular graph. Now we have to show that ΓM (G) is
2l-regular. Since G is 2l-regular, degree of each vertex is same. Proposition 2.1 implies that
each corresponding vertex in ΓM (G) is of degree 2l. Also it is given that G is l-triangular.
It follows that every vertex corresponding to the edges of G has degree d(u) + d(v) − 2l
(by proposition 2.1), where u and v are the end vertices of the edge and this is equal to
2l (because G is 2l-regular). Therefore, degree of each vertex of ΓM (G) is same. Hence,
ΓM (G) is regular. Conversely, suppose that ΓM (G) is regular. Now we have to show that
G is 2l-regular and l-triangular. Suppose G is not 2l-regular or not l-triangular. If G is not
2l-regular, then degree of every vertex of ΓM (G) corresponding to the vertices of G is not
same, which is a contradiction to our fact that ΓM (G) is regular. Hence G is 2l-regular.
Now if G is not l-triangular, then degree of every vertex of ΓM (G) corresponding to the
edges of G is d(u) + d(v) − 2t (by Proposition 2.1), where t is the number of triangles
containing the edge, which is again a contradiction to our fact that ΓM (G) is regular.
Thus, every edge of G lies on l triangles. Hence, G is 2l-regular and l-triangular.

�

Proposition 2.4. The Gallai middle graph ΓM (G) of G is connected if and only if G is
connected.

Proof. Necessity: Let G be connected, that means there is a path between each pair of
vertices in G. Since ΓM (G) has a subdivision graph of G as a subgraph, ∃ a path between
each pair of vertices (because G is connected). Hence ΓM (G) is connected.

Sufficiency: Suppose ΓM (G) is connected. Now we have to show that G is connected.
Let on contrary, G be disconnected, then ∃ at least a pair of vertices which has no path
between them. Let u, v be such two vertices, then u and v also have no path in ΓM (G). It
follows that ΓM (G) is disconnected graph, a contradiction to the hypothesis. Hence the
theorem.

�

For any integer n ≥ 1 the nth Gallai middle graph of G is defined recursively as,
Γn
M (G) = ΓM (Γn−1

M (G)), where Γ0
M (G) = G.

Corollary 2.5. Γn
M (G) of G is connected if and only if G is connected for all n ≥ 1.

Theorem 2.6. The Gallai middle graph ΓM (G) of G is Eulerian if and only if G is
Eulerian.

Proof. Necessity: Let G be an Eulerian graph. Then G is connected and the degree of each
vertex of G is even. Since G is connected, by the Proposition 2.4, ΓM (G) is also connected.
Now by the Proposition 2.1(i), vertices of ΓM (G) corresponding to the vertices of G are
of even degree. Also by Proposition 2.1(ii), vertices of ΓM (G) corresponding to the edges
of G are of even degree. Thus, ΓM (G) is connected and all vertices are of even degree.
Hence, ΓM (G) is Eulerian.

Sufficiency: Suppose ΓM (G) of a graph G is an Eulerian graph. It implies that ΓM (G) is
connected and degree of each vertex of ΓM (G) is even. Since ΓM (G) is connected, then
G is also connected by Proposition 2.4. Now we have to show that G is Eulerian. By
the Proposition 2.1(i), d(v) = d(v′) for each vertex v ∈ V (G) and v′ is the corresponding
vertex of v in ΓM (G). Thus, all the vertices of G are of even degree by our assumption.
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Hence, G is Eulerian.
�

The Eulerian Gallai middle graph ΓM (G) of G is shown in Figure 2.
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Figure 2. A graph G and its Eulerian Gallai middle graph H = ΓM (G)

Corollary 2.7. Γn
M (G) of G is Eulerian if and only if G is Eulerian for all n ≥ 1.

3. Eulerian anti-Gallai middle graphs

The degree of a vertex v′ ∈ V (∆M (G)) is denoted as d∆(v′).

Proposition 3.1. Let G = (V,E) be a graph.

(i) If v is a vertex of G and v′ is the corresponding vertex of ∆M (G), then d∆(v′) =
d(v),

(ii) If e = uv is an edge of G and e′ is the corresponding vertex of ∆M (G), then
d∆(e′) = 2 + 2t, where t denotes the number of triangles in G containing the edge
e.

Proof. (i) By definition, there is a bijective mapping from the edges incident to v in
G to the vertices adjacent to v′ in ∆M (G). Thus, d∆(v′) = d(v).

(ii) If e = uv is an edge of G, then e′ is adjacent to all the edges adjacent to e and
lie on a same triangle with e in G. It implies that they contribute the degree 2t
(because if e is the edge of a triangle, then it is adjacent to those two edges of G
which lie on a same triangle with e in G) and e′ is also adjacent in ∆M (G) to the
vertices to which it is incident in G, therefore, d∆(e′) = 2t + 2.

�

Proposition 3.2. Let G = (V,E) be a graph. Then the number of edges in ∆M (G) is
equal to 2|E|+ 3t, where t is the number of triangles in G.

Proof. Let G = (V,E) be a graph and |E| = q. We know that V (∆M (G))= V ∪ E. If
e = uv is an edge of G, then eu and ev are the edges of ∆M (G). So, every edge e ∈ E
contributes two edges in ∆M (G). Also, two vertices in ∆M (G), that correspond to 2 edges
in G, are adjacent if the corresponding edges belong to the same triangle in G. It implies
that every triangle in G contributes 3 edges in ∆M (G). Thus, if there are t triangles in G,
then 3t edges are there in ∆M (G). Hence, the total number of edges in ∆M (G) is 3t+ 2q.

�
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Proposition 3.3. If G has t triangles, then there are 4t triangles in ∆M (G).

Proof. Let G = (V,E) be a graph with t number of triangles. If there is a triangle in G,
then vertices corresponding to the edges of a triangle in G are adjacent in ∆M (G). Thus,
one triangle is formed in ∆M (G) from a triangle of G. Since there are t triangles in G,
t triangles are in ∆M (G). Furthermore, two edges which are adjacent in ∆M (G) has a
common vertex v and both of them are adjacent to the vertex v in ∆M (G). It follows that
every edge of triangle in ∆M (G) form a triangle with their common vertex. Therefore,
from one triangle in G there are 4 triangles in ∆M (G). Thus, there are 4t triangles in
∆M (G).

�

Proposition 3.4. The anti-Gallai total graph ∆M (G) of a graph G is 2(l + 1)-regular if
and only if G is l-triangular and 2(l + 1)-regular.

Proof. Suppose G is l-triangular and 2(l + 1)-regular. By Proposition 3.1(i), the degree
of each vertex of ∆M (G) that corresponds to a vertex of G is also 2(l + 1). Since G
is l-triangular, Proposition 3.1(ii) implies that the degree of each vertex of ∆M (G) that
corresponds to an edge of G is 2(l + 1). Thus, ∆M (G) is 2(l + 1)-regular. Conversely,
suppose ∆M (G) is 2(l + 1)-regular. Assume G is not l-triangular or not 2(l + 1)-regular.
If G is not l-triangular, then the degree of the vertices corresponding to the edges of G
in ∆M (G) is not same (by Proposition 3.1(ii)), which is a contradiction to our fact that
∆M (G) is regular. Thus, G is l-triangular. Next, if G is not 2(l + 1)-regular, then the
degree of every vertex in ∆M (G) corresponding to the vertices of G is not same, which is
a contradiction to our fact that ∆M (G) is regular. Hence, G is l-triangular and 2(l + 1)-
regular.

�

Proposition 3.5. The anti-Gallai middle graph ∆M (G) of G is connected if and only if
G is connected.

Proof. Similar to the argument for the proof of Proposition 2.4. �

For any integer n ≥ 1 the nth anti-Gallai middle graph of G is defined recursively as,
∆n

M (G) = ∆M (∆n−1
M (G)), where ∆0

M (G) = G.

Corollary 3.6. ∆n
M (G) of G is connected if and only if G is connected for all n ≥ 1.

Theorem 3.7. The anti-Gallai middle graph ∆M (G) of G is Eulerian if and only if G is
Eulerian.

Proof. Similar to the argument for the proof of Theorem 2.6. �

The Eulerian anti-Gallai middle graph ∆M (G) of G is shown in Figure 3.
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Figure 3. A graph G and its Eulerian anti-Gallai middle graph H = ∆M (G)

Corollary 3.8. ∆n
M (G) of G is Eulerian if and only if G is Eulerian for all n ≥ 1.

A graph G is called semi-Eulerian if and only if it has exactly two vertices of odd degree.

Proposition 3.9. The anti-Gallai middle graph ∆M (G) of G is semi-Eulerian if and only
if G is semi-Eulerian.

Proof. Let G be a semi-Eulerian graph. Now, we have to show that ∆M (G) is semi-
Eulerian. Since G is semi-Eulerian, it has exactly two vertices of odd degree. By Propo-
sition 3.1, ∆M (G) also has exactly two vertices of odd degree. It follows that ∆M (G)
is semi-Eulerian. Conversely, suppose ∆M (G) is semi-Eulerian. Now, we have to show
that G is semi-Eulerian. Since ∆M (G) is semi-Eulerian, it has exactly two vertices of odd
degree. These two vertices correspond to the vertices of G (by Proposition 3.1). Thus, G
has exactly 2 vertices of odd degree. Hence, G is semi-Eulerian.

�

Corollary 3.10. ∆n
M (G) is semi-Eulerian if and only if G is semi-Eulerian for all n ≥ 1.

4. Hamiltonian Gallai and anti-Gallai middle graphs

In this section, we find some result on Hamiltonian property of Gallai and anti-Gallai
middle graphs. Vertices and edges of G are called elements of G and set of all elements of
a graph G = (V,E) is V ∪E, where V and E are set of vertices and set of edges respectively.

Definition 4.1. Two elements u and v of a graph G are said to be contact if one of the
following holds:

(i) u and v are adjacent edges.
(ii) one of u and v is a vertex and the other an incident edge.

For a (p, q) graph G, let S = {x1, x2, ..., xp+q, x1} be a sequence of the p + q elements
of G.

Theorem 4.1. The Gallai middle graph ΓM (G) of a non-trivial (p, q) graph G is Hamil-
tonian if and only if G contains a sequence S = {x1, x2, ..., xp+q, x1} such that every two
consecutive elements of S are contacts but not both are edges of an induced K3 of G, where
xi
′s are element of G.
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Proof. Let G be a graph with a sequence S as stated. By definition, every two consecutive
elements in S are adjacent vertices in ΓM (G). Thus, S corresponds to a Hamiltonian cycle
in ΓM (G). The sufficiency holds.

Let ΓM (G) be a Hamiltonian graph. It follows that it contains a Hamiltonian cycle,

C = (v1, v2, . . . , vp+q, v1).

Let xi be that element of G associated with the vertex vi. Thus, we get a sequence, say
S = {x1, x2, . . . , xp+q−1, xp+q, x1} of elements of G. By the definition of ΓM (G), we know
that two consecutive vertices correspond to two adjacent edges not belong to an induced
K3 or correspond to a vertex and its incident edge. This implies that two edges that
belong to an induced K3 and two vertices are not consecutive elements of S. Thus, C
corresponds to a sequence S of elements of G such that every two consecutive elements
are contacts but not both are edges of an induced K3 of G. �

The Hamiltonian Gallai middle graph ΓM (G) of G is shown in Figure 4. A required
sequence S of G is {1, a, 2, b, 3, h, 4, c, f, 6, g, 5, e, d, 1}.
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Figure 4. A graph G and its Hamiltonian Gallai middle graph H = ΓM (G)

By a similar argument, we have the following theorem on Hamiltonian anti-Gallai middle
graph.

Theorem 4.2. The anti-Gallai middle graph ∆M (G) of a non-trivial (p, q) graph G is
Hamiltonian if and only if G contains a sequence S = {x1, x2, ..., xp+q, x1} such that every
two consecutive elements of S are contacts but not both are edges not belong to an induced
K3 of G, where xi

′s are element of G.

Proof. Similar to the argument for the proof of Theorem 4.1. �

The Hamiltonian anti-Gallai middle graph ∆M (G) of G is shown in Figure 5. A required
sequence S of G is : {1, a, e, 5, f, 2, c, h, 4, d, g, 3, b, 1}.
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Figure 5. A graph G and its Hamiltonian anti-Gallai middle graph H = ∆M (G)

5. Conclusion

In this paper, we have introduced two graph operators, namely, Gallai middle graph
and anti-Gallai middle graph. Further, we have presented some simple properties of Gallai
and anti-Gallai middle graphs. Next, we have established the results related to Eulerian
and Hamiltonian properties of Gallai and anti-Gallai middle graphs.
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