
TWMS J. App. and Eng. Math. V.12, N.2, 2022, pp. 619-630

QUADRIPARTITIONED SINGLE VALUED NEUTROSOPHIC ROUGH

SETS AND THEIR APPLICATIONS IN DECISION MAKING

K. SINHA1, P. MAJUMDAR2, §

Abstract. This paper introduces the notion of quadripartitioned single valued neutro-
sophic rough set. Some basic set metaphysical terminologies, operations and properties
of quadripartitioned single valued neutrosophic rough set are given here. Conjointly dif-
ferent kinds of distances and similarity measures are mentioned here. Finally a decision
making problem using the similarity measure technique of quadripartitioned single val-
ued neutrosophic rough sets has been solved.
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1. Introduction

To solve uncertainty-based real and scientific problems, Professor Zadeh [35] introduced
the fuzzy set as a constructive tool. Later Prof. Atanassov [1] extended the concept of
fuzzy set theory to the intuitionstic fuzzy set (IFS), in which each element has both
a degree of membership and a degree of non-membership. It is very clear that IFS is
more helpful than fuzzy set theory for solving different types of uncertainty model. In
2005, Smarandache [21] introduced the concept of the neutrosophic set (NS) as a further
generalization of the IFS from a philosophical perspective. Gradually, neutrosophic sets
become a more powerful technology for representing imperfect, inconsistent and uncer-
tain information in our real world. In neutrosophic set, truth membership functions (TA),
indeterminacy membership functions (IA), and falsity membership functions (FA) are rep-
resented independently. But in case of NS, all components lie in ]0−, 1+[. Thus it is very
inconvenient to apply the non standard the unit interval in real life problems. To solve this
problem Wang et al. [28] introduced single valued NS sets in 2010. Gradually single valued
neutrosophic (SVN) sets become an important tool and it was applied to many practical
problems [3, 14, 20, 27, 30, 31, 32, 33, 34]. Quadripartitioned single valued neutrosophic
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set was introduced by Smarandache [23] in 2013. Smarandache also extended the neu-
trosophic set to refined [n-valued] neutrosophic set, i.e. the truth value T is refined/split
into types of sub-truths such as T1, T2, . . ., indeterminacy I is refined/split into types
of sub-indeterminacies I1, I2, . . ., and the falsehood F is refined/split into sub-falsehood
F1, F2, . . . in [24]. He also exemplified into this paper that a quadruple neutrosophic set
is obtain when only indeterminacy (I) is refined/split into I1 = Contradiction and I2 =
Uncertainty. But the I as T , as F can be refined/split into many more sub-components
(as many as needed into each application). Again quadripartitioned single valued neutro-
sophic set was further studied by R. Chatterjee et al. [9] in 2016. It is four valued logic set
A over a universal set X consisting truth-membership TA, a contradiction membership CA,
an ignorance-membership UA and a falsity membership FA for each x ∈ X. Now quadri-
partitioned single valued neutrosophic set becomes an important tool in solving various
types of decision making problems, medical diagnosis problems, clustering problems etc
[4, 8].

On the other hand, Prof. Pawlak introduced the idea of Rough set to process the
incomplete information in a more formal way [19]. Crisp set and the equivalence relations,
which is the mathematical basis of rough sets are the main elements of Rough set theory.
Later on several researchers have studied different aspects of rough sets and applied it to
different socio-economic model [10, 11, 26, 29, 36]. In this paper we have introduced the
quadripartitioned single valued neutrosophic rough (QSVNR) set for the first time. The
organization of this paper have been done as follows: In section 2, preliminary concepts
regarding the paper have been discussed with proper citations. We have defined QSVNR
set and it’s various types of operations in section 3. Section 4 introduces the idea of
different type of similarity measures of QSVNR sets. In section 5, we have tried to solve
a real life problem using QSVNR set. Section 6 concludes the paper.

2. Preliminaries

The term ’neutrosophy’ was introduced by Prof. Smarandache as a branch of philosophy.
There are many different types of neutrosophic sets which have many applications [2, 6,
13, 22, 28]. However for our purposes, we have the following:

Definition 2.1. [21] Suppose U be a universe. A neutrosophic sets (NS) A in U is
characterized by a truth-membership function TA, an indeterminacy membership function
IA and a falsity-membership function FA. Here for each x ∈ U , TA(x), IA(x) and FA(x)
are real non-standard elements of ]0−, 1+[. A can be written as:

A = {〈(x, TA(x), IA(x), FA(x)) : x ∈ U, TA(x), IA(x), FA(x) ∈]0−, 1+[〉}.

There is no restriction on the sum of TA(x), IA(x), FA(x), i.e,

0− ≤ TA(x), IA(x), FA(x) ≤ 3+.

Definition 2.2. [28] Let U be a universe. A single valued neutrosophic set (SVNS) A in U
is characterized by a truth-membership function TA, an indeterminacy membership func-
tion IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real standard
elements of [0, 1]. It can be written as

A = {〈(x, TA(x), IA(x), FA(x)) : x ∈ U, TA(x), IA(x), FA(x) ∈ [0, 1]〉}.

Definition 2.3. [22] Suppose X be a non-empty set. A quadripartitioned single val-
ued neutrosophic set (QSVNS) A over X characterizes each element x in X by a truth-
membership function TA, a contradiction membership function CA, an ignorance-membership
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function UA and a falsity membership function FA such that for each x ∈ X
TA(x), CA(x), UA(x), FA(x) ∈ [0, 1], 0 ≤ TA(x) + CA(x) + UA(x) + FA(x) ≤ 4

.

On the other hand Prof. Pawlak defined the rough set for the first time in his paper [19].
Broumi et. al [7] introduced the Rough Neutrosophic sets for the first time in 2015.

Definition 2.4. [19] Suppose U be any non-empty set . Suppose R is an equivalence
relation over U . For any non-null subset X of U , the sets A1(x) = {x : [x]R ⊆ X} and
A2(x) = {x : [x]R ∩X 6= φ} are called the lower approximation and upper approximation
respectively of X, where the pair S = (U,R) is called an approximation space. This
equivalent relation R is called indiscernibility relation. The pair A(X) = (A1(x), A2(x)) is
called the rough set of X in S. Here [x]R denotes the equivalence class of R containing x.

The definitions, set theoretic properties and many other properties i.e. entropy, various
types of distances, similarity measures of a neutrosophic sets, single valued neutrosophic
sets, rough neutrosophic sets etc can be found in any of the monograph say [7, 21, 22, 25].

3. Quadripartitioned single valued neutrosophic rough (QSVNR) set

In this section, we will introduce the concept of QSVNR set and define some algebraic
operations on them.

Definition 3.1. Suppose X be a non-empty set and R be an equivalence relation on
X. Let A be quadripartitioned single valued neutrosophic set in X with truth-membership
function TA, a contradiction membership function CA, an ignorance membership function
UA and a falsity-membership function FA. The lower and the upper approximations of
A in the approximation (X,R) denoted by N(A) and N(A) are respectively defined as
follows: N(A) = {〈x, TA(x), CA(x), UA(x), FA(x)〉|x ∈ [x]R ⊆ X}
N(A) = {〈x, TA(x), CA(x), UA(x), FA(x)〉|x ∈ [x]R ⊆ X},
where

TA(x) = ∧x∈[x]RTA(x), CA(x) = ∧x∈[x]RCA(x), UA(x) = ∨x∈[x]RUA(x),

FA(x) = ∨x∈[x]RFA(x), TA(x) = ∨x∈[x]RTA(x), CA(x) = ∨x∈[x]RCA(x),

UA(x) = ∧x∈[x]RUA(x), FA(x) = ∧x∈[x]RFA(x),

where 0 ≤ TA(x) +CA(x) +UA(x) +FA(x) ≤ 4, 0 ≤ TA(x) +CA(x) +UA(x) +FA(x) ≤ 4,
where ∧,∨ mean “min” and “max” operators respectively, TA(x), CA(x), UA(x), FA(x) are
the respective membership function of x with respect to A. N(A) and N(A) are two
quadripartitioned neutrosophic sets in U . The pair (N(A), N(A)) is called QSVNR set in
(X,R).

Example 3.1. Consider the case where eight doctors X = {x1, x2, x3, x4, x5, x6, x7, x8}
were asked to give their opinion on a diabetic patient report. Each of the eight doctors gave
their opinion in terms of degree of agreement, agreement or disagreement both, neither
agreement nor disagreement, disagreement respectively. As per their opinion, they are
classified into the following equivalent class R as following:

X/R = {{x1, x8}, {x2, x3, x5}, {x6}, {x4, x7}}
Consider a QSVN set A based on the aggregate of some of their opinion as follows:

A = {(x1, (0.8, 0.6, 0.2, 0.2)), (x4, (0.6, 0.7, 0.4, 0.1)), (x6, (0.5, 0.5, 0.7, 0.1)),

(x8, (0.4, 0.6, 0.6, 0.8))}.
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Here according to x1, the degree of agreement with the statement is 0.8, the degree of both
agreement and disagreement is 0.6, the degree of neither agreement nor disagreement is
0.2, while the degree of disagreement with the statement is 0.2. Now by Definition 3.1, we
have,

N(A) = {(x1, (0.4, 0.6, 0.6, 0.8)), (x6, (0.5, 0.5, 0.7, 0.1)), (x8, (0.4, 0.6, 0.6, 0.8))}
N(A) = {(x1, (0.8, 0.6, 0.2, 0.2)), (x4, (0.6, 0.7, 0.4, 0.1)), (x6, (0.5, 0.5, 0.7, 0.1)),

(x7, (0.6, 0.7, 0.4, 0.1)), (x8, (0.8, 0.6, 0.2, 0.2))}

Definition 3.2. Suppose X be a non-empty set and R be an equivalence relation on X.
Let A be QSVN set in X with truth-membership function TA, a contradiction membership
function CA, an ignorance membership function UA and a falsity-membership function FA.
The lower and the upper approximations of A in the approximation (X,R) is denoted by
N(A) and N(A) are respectively. If

(i) N(A) = N(A), then the pair (N(A), N(A)) is called constant QSVNR set in
(X,R).

(ii) ∀x ∈ N(A)(and N(A)), TA(x) = 1, CA(x) = UA(x) = FA(x) = 0, then the pair
(N(A), N(A)) is called unit QSVNR set in (X,R).

(iii) ∀x ∈ N(A)(and N(A)), TA(x) = CA(x) = UA(x) = 0, FA(x) = 1, then the pair
(N(A), N(A)) is called zero QSVNR set in (X,R) and it is denoted by Φ.

Definition 3.3. If N(A) = (N(A), N(A)) is a QSVNR set in (X,R), then the complement
of N(A) is also a QSVNR set which is defined as follows: N c(A) = ((N(A))c, (N(A))c),
where (N(A))c, (N(A))c are the complements of N(A), N(A) respectively.

(N(A))c = {〈x, FA(x), 1− UA(x), 1− CA(x), TA(x)〉|x ∈ X}
(N(A))c = {〈x, FA(x), 1− UA(x), 1− CA(x), TA(x)〉|x ∈ X},

Now we will introduce some set-theoretic operations on QSVNR set over a common
universe X and study some of their basic properties.

Definition 3.4. Consider two QSVNR sets N(A1), N(A2) in (X,R). Then N(A1) is
equal to a set N(A2) if N(A1) = N(A2) and N(A1) = N(A2).

Definition 3.5. Consider two QSVNR sets N(A1), N(A2) in (X,R). Then N(A1) is said
to be a subset of N(A2) if N(A1) ⊆ N(A2) and N(A1) ⊆ N(A2) i.e.

TA1(x) ≤ TA2(x), CA1(x) ≤ CA2(x), UA1(x) ≥ UA2(x),

FA1(x) ≥ FA2(x), TA1
(x) ≥ TA2

(x), CA1
(x) ≥ CA2

(x),

UA1
(x) ≤ UA2

(x), FA1
(x) ≤ FA2

(x)∀ x ∈ X.

Definition 3.6. Suppose N(A1), N(A2) are two QSVNR sets in (X,R). Then the union
of N(A1) and N(A2) i.e. N(A) = N(A1) ∪N(A2) is defined as:

N(A) = {〈x, TA1(x) ∨ TA2(x), CA1(x) ∨ CA2(x), UA1(x) ∧ UA2(x),

FA1(x) ∧ FA2(x)〉|x ∈ X}
N(A) = {〈x, TA1

(x) ∧ TA2
(x), CA1

(x) ∧ CA2
(x), UA1

(x) ∨ UA2
(x),

FA1
(x) ∨ FA2

(x)〉|x ∈ X}
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Definition 3.7. Suppose N(A1), N(A2) are two QSVNR sets in (X,R). Then the inter-
section of N(A1) and N(A2) i.e. N(A) = N(A1) ∩N(A2) is defined as:

N(A) = {〈x, TA1(x) ∧ TA2(x), CA1(x) ∧ CA2(x), UA1(x) ∨ UA2(x),

FA1(x) ∨ FA2(x)〉|x ∈ X}
N(A) = {〈x, TA1

(x) ∨ TA2
(x), CA1

(x) ∨ CA2
(x), UA1

(x) ∧ UA2
(x),

FA1
(x) ∧ FA2

(x)〉|x ∈ X}

Proposition 3.1. The set-theoretic axioms are satisfied by any QSVNR set as it can be
easily verified. Consider QSVNR sets N(A1), N(A2), N(A3) in (X,R). Then the following
properties hold all for QSVNR sets over X.

(i) N(A1) ∪N(A2) = N(A2) ∪N(A1); N(A1) ∩N(A2) = N(A2) ∩N(A1).
(ii) N(A1)∪(N(A2)∪N(A3)) = (N(A1)∪N(A2))∪N(A3); N(A1)∩(N(A2)∩N(A3)) =

(N(A1) ∩N(A2)) ∩N(A3)
(iii) N(A1) ∩ (N(A1) ∪N(A2)) = N(A1); N(A1) ∪ (N(A1) ∩N(A2)) = N(A1).
(iv) ((N(A1))

c)c = N(A1).
(v) (N(A1) ∪N(A2))

c = N(A1)
c ∩N(A2)

c; (N(A1) ∩N(A2))
c = N(A1)

c ∪N(A2)
c

(vi) N(A1) ∪N(A1) = N(A1); N(A1) ∩N(A1) = N(A1).
(vii) N(A1) ∪ Φ = N(A1); N(A1) ∩ Φ = Φ.

4. QSVNR set and it’s different similarity measures

Consider the non-empty universe of discourse X 6= Φ and denote the set of QSVNR set
over X by N(X).

Definition 4.1. A mapping s : N×N→ [0, 1] is said to be similarity measure if and only
if
for N(A), N(B) ∈ N the following properties are satisfied:

(i) s(N(A), N(B)) = s(N(B), N(A))
(ii) 0 ≤ s(N(A), N(B)) < 1 and s(N(A), N(B)) = 1 if and only if N(A) = N(B).

(iii) for any N(A), N(B), N(C) ∈ N(X), N(A) ⊂ N(B) ⊂ N(C),
s(N(A), N(C)) ≤ s(N(A), N(B)) ∧ s(N(B), N(C)).

Although in Definition 4.1 the condition (iii) exists but most well-known similarity
measure methods such as weight similarity measure, cosine similarity measures etc. do
not satisfy the above condition. On the other hand methods such as weighted similarity
measure, cosine similarity measure have huge application in solving a variety of real life
problems. So it is natural to introduce the definition of the similarity measure that omits
the condition (iii) of the Definition 4.1. In that case we redefine quasi-similarity measure
between two QSVNR sets over X as a measure of similarity.

Definition 4.2. Consider the non-empty universe of discourse X 6= Φ and refer to the
set of QSVNR set over X by N(X). Then a mapping s′ : N × N → [0, 1] is said to be
quasi similarity measure if and only if for N(A), N(B) ∈ N(X), the following properties
are satisfied:

(i) s(N(A), N(B)) = s(N(B), N(A))
(ii) 0 ≤ s(N(A), N(B)) < 1 and s(N(A), N(B)) = 1 if and only if N(A) = N(B).

4.1. Different types of distances between two QSVNR sets.

Definition 4.3. A mapping dN : N × N → R+, where R+ is the set of all positive real
numbers
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is said to be a distance measure for QSVNR sets if and only if for N(A), N(B), N(C) ∈
N(X), it satisfies the following properties:

(i) dN (N(A), N(B)) = dN (N(B), N(A))
(ii) dN (N(A), N(B)) ≥ 0 and dN (N(A), N(B)) = 0 if and only if N(A) = N(B).
(iii) dN (N(A), N(B)) ≤ dN (N(A), N(C)) + dN (N(C), N(B)).

Then dN is a metric on N(X). Consider two QSVNR sets N(H), N(K) ∈ N(X) over
an universal set X = {x1, x2, . . . , xn}.

Definition 4.4. The Hamming distance between N(H) and N(K) is defined as

h(N(H), N(K)) = min
{
{h(N(H), N(K)}, {h(N(H), N(K)}

}
, where,

h(N(H), N(K)) = {
n∑
j=1

(|TH(xj)− TK(xj)|+ |CH(xj)− CK(xj)|+

|UH(xj)− UK(xj)|+ |FH(xj)− FK(xj)|}

h(N(H), N(K)) = {
n∑
j=1

(|TH(xj)− TK(xj)|+ |CH(xj)− CK(xj)|+

|UH(xj)− UK(xj)|+ |FH(xj)− FK(xj)|},
where xj ∈ X.

Definition 4.5. The Normalized Hamming distance between N(H) and N(K) is defined
as hN (N(H), N(K)) = 1

8n(h(N(H), N(K))).

Definition 4.6. The Euclidean distance E(N(H), N(K)) is defined as follows:

E(N(H), N(K)) = min
{
{E(N(H), N(K)}, {E(N(H), N(K)}

}
, where,

E(N(H), N(K)) = {
∑n

j=1(|TH(xj)− TK(xj)|2 + |CH(xj)− CK(xj)|2 +

|UH(xj)− UK(xj)|2 + |FH(xj)− FK(xj)|2}
1
2

E(N(H), N(K)) = {
∑n

j=1(|TH(xj)− TK(xj)|2 + |CH(xj)− CK(xj)|2 +

|UH(xj)− UK(xj)|2 + |FH(xj)− FK(xj)|2}
1
2 ∀ xj ∈ X.

Definition 4.7. The normalized Euclidean distance Q(N(H), N(K)) is defined as follows:

Q(N(H), N(K)) =
1

2
√

2n
E(N(H), N(K))

In Definition 4.4 and Definition 4.6 both the distances are in real numbers thus we have
taken the minimum value. Also minimum values measures the minimum distances between
two QSVNR sets which in future gives us the minimum value of similarity measures. Also
in Definition 4.4 and Definition 4.6 we may get value higher than 1. To make the value
of Hamming distance as well as Euclidian distance in between 0 and 1 we have done
the normalization of both the distances in Definition 4.5 and Definition 4.7. It is seen
from recent papers in this area that distance measurement between two sets becomes the
most attractive research topic among researchers. There is a large practical application
based on the distance between two sets. Many researchers have used a variety of distance-
based measures to solve uncertainty-based real-life problems containing uncertainties [12,
13]. In addition different types of distance operators i.e. induced weighted aggregation
distance (IOWAD) operators, an extended version of common OWA operators, are used
to find distance measures to solve decision-making problems [16, 17, 18]. However, we are
concerned only with the study of distance-based similarity measures in this paper.
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4.2. Distance based similarity measure between two QSVNR sets. We have de-
fined several types of distances between a pair of QSVNR sets N(H) and N(K) over the
set N(X) in the previous section. Now using these distances we can also define similarity
measures for QSVNR sets. In the following we now define two similarity measure based
on Hamming Distance.

SdN1 (N(H), N(K)) =
1

1 + h(N(H), N(K))
,

SdN2 (N(H), N(K)) = e−α.h(N(H),N(K))

where α is a positive real number (parameter) called the steepness measure. Similarly
using Euclidian distance, another type of similarity measures can be defined as follows:

S′1(N(H), N(K)) =
1

1 + E(N(H), N(K))
,

S′2(N(H), N(K)) = e−β.E(N(H),N(K))

where β is a positive real number (parameter) called the steepness measure.

4.3. Cosine similarity measure between two QSVNR sets. The cosine similarity
measure is obtained when the internal product of the two vectors is divided by the product
of their length. This is the cosine of the angle between the vector representations of two
QSVNR set. The cosine similarity measure is the primary measure used in information
technology. Therefore, a new cosine similarity measure is proposed between QSVNR sets
as follows:

Definition 4.8. Consider N(H), N(K) ∈ N(X). Then for each xi ∈ X, i = 1, 2, . . . , n, a
cosine similarity measure between QSVNR sets N(H) and N(K) is defined as follows:

CQSV NR(N(H), N(K)) =
1

n

n∑
i=1

S1
S2.S3

, where,

S1 = ∂TN(H)(xi)∂TN(K)(xi) + ∂CN(H)(xi)∂CN(K)(xi) + ∂UN(H)(xi)∂UN(K)(xi)+

∂FN(H)(xi)∂FN(K)(xi),

S2 =
√
∂TN(H)(xi)

2 + ∂CN(H)(xi)
2 + ∂UN(H)(xi)

2 + ∂FN(H)(xi)
2,

S3 =
√
∂TN(K)(xi)

2 + ∂CN(K)(xi)
2 + ∂UN(K)(xi)

2 + ∂FN(K)(xi)
2,

where ∂TN(K)(xi) =
TK(xi) + TK(xi)

2
, ∂CN(K)(xi) =

CK(xi) + CK(xi)

2
,

∂UN(K)(xi) =
UK(xi) + UK(xi)

2
, ∂FN(K)(xi) =

FK(xi) + FK(xi)

2
,

and ∂TN(H)(xi) =
TH(xi) + TH(xi)

2
, ∂CN(H)(xi) =

CH(xi) + CH(xi)

2
,

∂UN(H)(xi) =
UH(xi) + UH(xi)

2
, ∂FN(H)(xi) =

FH(xi) + FH(xi)

2
,

Theorem 4.1. CQSV NR(N(H), N(K)) is a similarity measure between two QSVNR sets
N(H), N(K) ∈ N(X).

Proof. Proof is very straight forward. �
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4.4. Similarity measure of QSVNR sets based on membership values. Consider
N(H), N(K) ∈ N(X). For each xi ∈ X,∀ i = 1, 2, . . . , n and for j = 1, 2, . . . , 4 we define

the functions hj
N(H),N(K), hj

N(H),N(K)
: X → [0, 1] respectively as follows:

h1
N(H),N(K)(xi) = |TH(xi)− TK(xi)|,

h2
N(H),N(K)(xi) = |FH(xi)− FK(xi)|,

h3
N(H),N(K)(xi) =

1

3

(
h
N(H),N(K)
1 (xi) + h

N(H),N(K)
2 (xi) + |CH(xi)− CK(xi)|

)
,

h4
N(H),N(K)(xi) = |UH(xi)− UK(xi)|,

h1
N(H),N(K)

(xi) = |TH(xi)− TK(xi)|,

h2
N(H),N(K)

(xi) = |FH(xi)− FK(xi)|,

h3
N(H),N(K)

(xi) =
1

3

(
h
N(H),N(K)
1 (xi) + h

N(H),N(K)
2 (xi) + |CH(xi)− CK(xi)|

)
,

h4
N(H),N(K)

(xi) = |UH(xi)− UK(xi)|
The functions defined above measure the difference between different membership values

corresponding to the two sets N(H) and N(K) w.r.t. each xi, ∀ i = 1, 2, . . . , n. Based on

the above functions we now define a new similarity measure function S̃(N(H), N(K)) as
follows:

S̃(N(H), N(K)) = 1− 1

4n
[
n∑
i=1

4∑
j=1

hj
N(H),N(K)

(xi) +
n∑
i=1

4∑
j=1

hj
N(H),N(K)(xi)].

As a consequence we have the following theorem:

Theorem 4.2. S̃(N(H), N(K)) is a measure of similarity between the two QSVNR sets
N(H), N(K) ∈ N(X).

Proof. All the values of T ,C, U, F , T , C, U, F for a QSVNR set N(H) or N(K) lie be-
tween [0, 1]. Among all these quantities, all has maximum value 1 and the minimum

value 0. As a result 0 ≤ S̃(N(H), N(K)) ≤ 1. Again S̃(N(H), N(K)) = 1 implies that∑n
i=1

∑4
j=1 hj

N(H),N(K)
(xi) +

∑n
i=1

∑4
j=1 hj

N(H),N(K)(xi) = 0 ∀ xi ∈ X which is only

possible if and only if

TH(xi) = TK(xi), CH(xi) = CK(xi), UH(xi) = UK(xi), FH(xi) = FK(xi),

TH(xi) = TK(xi), CH(xi) = CK(xi), UH(xi) = UK(xi), FH(xi) = FK(xi)

∀xi ∈ X, i.e.N(H) = N(K).

Lastly for three BQSVNR sets N(H), N(K), N(J) ∈ N(X) we suppose that N(H) ⊆
N(K) ⊆ N(J). Now by the Definition 3.5 we have ∀ xi ∈ X, ∀ j = 1, 2, . . . , 4 Thus,

S̃(N(H), N(J)) < S̃(N(H), N(K)) ∧ S̃(N(K), N(J)).

Hence the result follows. �

4.5. Weighted similarity measure between two QSVNR sets. The weighted simi-
larity measure between two QSVNR sets N(H), N(K) ∈ N(X) are defined as follows:

Sw(N(H),N(K))=[1− 1
8n
{
∑n

i=1

∑4
j=1 wihj

N(H),N(K)
(xi)+

∑n
i=1

∑4
j=1 wihj

N(H),N(K)(xi)}]
1
k

where k is any integer defined to be the order of similarity, wi are the weights associated
to the elements xi of the universe, i = 1, 2, . . . , n such that

∑n
i=1wi = 1. Using the same
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proof procedure of the Theorem 4.2, one can easily see that Sw(N(H), N(K)) is also a
measure of similarity between the two QSVNR sets N(H), N(K) ∈ N(X).

4.6. Correlation coefficient based similarity measure between two QSVNR sets.

Definition 4.9. The correlation coefficient based similarity measure between two QSVNR
sets N(H), N(K) ∈ N(X) can be defined as follows:

SC(N(H), N(K)) =

[
∑n

i=1

TH (xi).TK (xi)+CH (xi).CK (xi)+UH (xi).UK (xi)+FH (xi).FK (xi)

T
H

(xi).TK
(xi)+C

H
(xi).CK

(xi)+U
H

(xi).UK
(xi)+F

H
(xi).FK

(xi)
]

[
∑n

i=1

(T
H

(xi)
2+C

H
(xi)

2+U
H

(xi)
2+F

H
(xi)

2)

(TH (xi)
2+CH (xi)

2+UH (xi)
2+FH (xi))

2)
][
∑n

i=1

(T
K

(xi)
2+C

K
(xi)

2+U
K

(xi)
2+F

K
(xi)

2)

(TK (xi)
2+CK (xi)

2+UK (xi)
2+FK (xi))

2)
]
,

Remark 4.1. SC(N(H), N(K)) is a quasi-similarity between N(H), N(K).

5. A decision making problem using QSVNR sets

For an example of the above proposed approaches we consider the problem of medical
diagnosis from a practical perspective. Uncertainties in medical diagnosis and the amount
of information available to physicians from new medical technologies are a great obstacle
for treatment of a patient. The process of classifying a variety of symptoms under the
same name of a disease is a difficult task. In some practical situations, it is seen that each
element lies between the lower and upper approximation of the QSVNR set. Proposed
similarity measurement in patients versus symptoms and symptoms versus diseases provide
appropriate medical diagnosis. The main feature of this proposed approach is that it
considers the true membership, ignorance, contradiction and false membership of each
element between two approximations of the QSVNR set by checking for a single diagnosis.

Now, an example of a medical diagnosis of diabetic patients is presented. Let C =
{C1, C2, C3} be a set of patients, D = {Fatigueness, Kidney problem, Heart problem,
Low vision problem} be a set of diseases and S = {Weakness, Headache, Urinal pain,
Cough, Chest pain} be a set of symptoms. Also suppose that d1, d2, d3, d4 denote the
diseases fatigue ness, kidney problem, heart problem, low vision problem respectively and
x1, x2, x3, x4, x5 denote the symptoms weakness, headache, urinal pain, cough, chest pain
in the body respectively. Our solution is to examine the patient and to determine the
disease of the patient in rough quadripartitioned neutrosophic environment. We have
represented the relation R1 between Patients and Symptoms as follows:

C1={(0.8,0.6,0.2,0.5),(0.1,0.3,0.2,0.5)}/x1+{(0.5,0.4,0.4,0.3),(0.6,0.4,0.3,0.3)}/x2+

{(0.8,0.6,0.6,0.9),(0.2,0.5,0.5,0.4)}/x3+{(0.7,0.6,0.4,0.5),(0.2,0.3,0.4,0.1)}/x4+

{(0.3,0.5,0.5,0.6),(0.1,0.4,0.5,0.6)}/x5.

C2={(0.4,0.3,0.1,0.6),(0.4,0.5,0.6,0.2)}/x1+{(0.8,0.3,0.9,0.1),(0.3,0.5,0.4,0.4)}/x2+

{(0.6,0.7,0.3,0.5),(0.4,0.6,0.6,0.3)}/x3+{(0.6,0.5,0.4,0.4),(0.3,0.6,0.5,0.2)}/x4+

{(0.7,0.6,0.6,0.3),(0.4,0.5,0.6,0.2)}/x5.

C3={(0.7,0.5,0.5,0.2),(0.2,0.4,0.4,0.4)}/x1+{(0.5,0.3,0.6,0.4),(0.5,0.5,0.4,0.3)}/x2+

{(0.5,0.4,0.3,0.2),(0.2,0.4,0.6,0.8)}/x3+{(0.4,0.8,0.5,0.6),(0.4,0.7,0.4,0.4)}/x4+

{(0.5,0.6,0.4,0.5),(0.6,0.4,0.4,0.6)}/x5.
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We have represented the relation R2 between Patients and Symptoms as follows:

x1={(0.4,0.5,0.6,0.2),(0.6,0.9,0.4,0.3)}/d1+{(0.4,0.5,0.2,0.1),(0.8,0.5,0.7,0.5)}/d2+

{(0.4,0.5,0.4,0.4),(0.4,0.6,0.8,0.1)}/d3+{(0.2,0.3,0.5,0.6),(0.4,0.5,0.6,0.4)}/d4.

x2={(0.3,0.4,0.2,0.1),(0.3,0.3,0.4,0.6)}/d1+{(0.8,0.7,0.8,0.8),(0.5,0.6,0.4,0.3)}/d2+

{(0.4,0.5,0.5,0.9),(0.4,0.3,0.3,0.6)}/d3+{(0.4,0.4,0.5,0.6),(0.3,0.6,0.5,0.4)}/d4.

x3={(0.3,0.4,0.1,0.5),(0.5,0.6,0.6,0.4)}/d1+{(0.2,0.3,0.6,0.5),(0.7,0.7,0.5,0.8)}/d2+

{(0.3,0.4,0.5,0.9),(0.3,0.6,0.6,0.7)}/d3+{(0.4,0.5,0.5,0.6),(0.4,0.5,0.4,0.4)}/d4.

x4={(0.4,0.6,0.5,0.3),(0.1,0.4,0.2,0.7)}/d1+{(0.7,0.3,0.7,0.4),(0.8,0.4,0.8,0.8)}/d2+

{(0.2,0.2,0.5,0.5),(0.7,0.8,0.8,0.4)}/d3+{(0.5,0.7,0.7,0.5),(0.8,0.6,0.5,0.3)}/d4.

x5={(0.8,0.6,0.2,0.5),(0.1,0.3,0.2,0.5)}/d1+{(0.5,0.4,0.4,0.3),(0.6,0.4,0.3,0.3)}/d2+

{(0.8,0.6,0.6,0.9),(0.2,0.5,0.5,0.4)}/d3+{(0.5,0.3,0.3,0.6),(0.7,0.7,0.7,0.8)}/d4.

Now we calculate the QSVNR cosine similarity measure between R1 and R2 as follows:

C1 = {〈d1, 0.785〉, 〈d2, 0.951〉, 〈d3, 0.876〉, 〈d4, 0.966〉}
C2 = {〈d1, 0.766〉, 〈d2, 0.865〉, 〈d3, 0.801〉, 〈d4, 0.920〉}
C3 = {〈d1, 0.859〉, 〈d2, 0.867〉, 〈d3, 0.847〉, 〈d4, 0.958〉}

Although there always exist some similarity between two sets, so we take only the case of
highest similarity measure among all pairs. Here d4 has highest similarity with all the sets
Ci, i = 1, 2, 3. Form the above result we can say that all the patients will have a chance
of headache in body than other symptoms due to diabetic. One can easily try another
methods of similarity measure between the QSVNR sets obtained from relations R1 and
R2 respectively.

6. Conclusion

In the real world, there exist many examples where four valued arguments work. In
1977 Prof. N.D. Belknap showed modern uses of many valuable arguments in his paper
[5]. So it quite natural to apply four valued logic to rough set theory. Through out this
paper we have tried to develop the idea of a new hybrid set, say QSVNR set which is a
combination of QSVNR set and a rough set. We have also discussed several measures of
similarity for QSVNR sets and applied it in solving a decision making problem. SVN sets
which are generalization of IFS have greater powers in handling uncertainty data including
incomplete or even inconsistent data. Rough sets are used to model uncertain situations
where the data set has vague boundaries. Combining these two features in QSVNR set
give it additional powers in handling uncertain situations. On the other hand similarity
measure is widely used technique in soft computing with many applications in areas like
pattern recognition, medical diagnosis, decision making etc. In the future papers we wish
to highlight several applications of our newly developed sets in solving many real life
problems under uncertain environment and extend it to other multi-dimensional decision
making problems.
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