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DETERMINATION OF A NONLINEAR SOURCE TERM IN A

REACTION-DIFFUSION EQUATION BY USING FINITE ELEMENT

METHOD AND RADIAL BASIS FUNCTIONS METHOD

H. ZEIDABADI1, R. POURGHOLI1, A. HOSSEINI1, §

Abstract. In this paper, two numerical methods are presented to solve a nonlinear in-
verse parabolic problem of determining the unknown reaction term in the scalar reaction-
diffusion equation. In the first method, the finite element method will be used to dis-
cretize the variational form of the problem and in the second method, we use the radial
basis functions (RBFs) method for spatial discretization and finite-difference for time
discretization. Usually, the matrices obtained from the discretization of the equations
are ill-conditioned, especially in higher-dimensional problems. To overcome such difficul-
ties, we use Tikhonov regularization method. In fact, this work considers a comparative
study between the finite element method and radial basis functions method. As we will
see, these methods are very useful and convenient tools for approximation problems and
they are stable with respect to small perturbation in the input data. The effectiveness
of the proposed methods are illustrated by numerical examples.

Keywords: Nonlinear inverse problem, Parabolic equations, Finite element method, Ra-
dial basis functions method, Least square method, Tikhonov regularization method,
Stability analysis.
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1. Introduction

The inverse problem presents an interesting challenge in many areas of engineering and
sciences. This concept has used widespread acceptance in applied mathematics. These
problems appear in many significant scientific and technological fields and play a very
important role, such as resources exploration, aerospace engineering, atmosphere measure,
ocean engineering, quantum mechanics and etc [1]. Hence, analysis, design implementation
and testing of inverse algorithms are also the great scientific and technological interest.
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In the process of transportation, diffusion, and conduction of natural materials, the
following heat equation is induced:

ut = a2∆u+ F (x, t;u), (x, t) ∈ Ω× [0, T ], (1)

where a is the diffusion coefficient, Ω is a bounded domain in Rd and F denotes physical
laws. In the context of heat conduction and diffusion when u represents temperature and
concentration the unknown function F (u) is interpreted as a heat and material source,
respectively, while in a chemical or biochemical application F may be interpreted as a
reaction term. Although the results in this paper apply to each of these interpretations.

There are many researches on such an inverse source problem from the 1970s [2–14]. Li et
al [15] investigate a stability for the nonlinear source term’s inversion. Isakov [16] discussed
stability problem, and obtained some wonderful results for linear source term’s inversion
of parabolic equations. But for nonlinear source terms, there are fewer researches in the
literatures we have. In 1982, Lorenzi [8] proved a stability of W δ

∞(δ < 1/2) for nonlinear
source F (u), and this still seem a better result for inverse problems of a nonlinear source
term.

In general, these problems belong to the class of problems called the ill-posed problems,
i.e. small error in one’s measurement may lead to big variation in the model determina-
tion. As a consequence, their solution does not satisfy the general requirement of existence,
uniqueness and stability under small changes to the input data. Thus, due to importance,
a variety of techniques for solving these problems have been proposed, where have been
resulted from mathematical fields such as partial differential equations, numerical analysis,
harmonic analysis, functional analysis, Fourier analysis and etc. Among the most versa-
tile methods, the followings can be mentioned: Tikhonov regularization [17, 18], iterative
regularization [19], mollification [20], BFM (Base Function Method) [21], SFDM (Semi
Finite Difference Method) [22] and the FSM (Function Specification Method) [23].

The finite element method (FEM) is known as very powerful tool for solving differential
equation which was first introduced by Courant in 1943 [24]. This method is applied for
solving linear and nonlinear problems by many researchers. Milos Zlamal [25] used FEMs
for nonlinear parabolic equations. In [26], El-Azab and Abdelgaber obtained finite element
solution of nonlinear diffusion problems. Volker John and Ellen Schmeyer [27] applied this
method for time-dependent convection-diffusion-reaction equations with small diffusion.
Wolfgang Bangerth [28] applied adaptive FEMs for nonlinear inverse problems. Larisa
Beilina and Johnson [29] used a hybrid finite element/difference method for an inverse
scattering problem. Larisa Beilina [30] applied adaptive finite element/difference method
for inverse elastic scattering waves. In [31], Xianwu Ling used a non-iterative FEM for
inverse heat conduction problems.

In the last decays, the radial basis functions method is one of the most often applied
meshless methods in modern approximation theory. Since Kansa [32,33] extended Hardy’s
MQ [34] and proposed radial basis functions method (RBFs) to solve partial differential
equations (PDEs) the approach has been applied to solve many different problems, such
as nonlinear Burgers equation [35] with shockwave, shallow water equations for tide and
currents simulation [36], heat transfer problems [37]. Fasshauer [38] implemented this
method with MATLAB.

Radial basis functions are used actively for solving inverse problems. Hon and Wu
[39] utilized Hermite-Birkhoff collocation method in which the RBFs were replaced by
harmonic functions with shift invariability to determine an unknown boundary. Li [40,41]
used the conical-type RBFs to solve the inverse boundary value problems of the elliptic
equation and biharmonic equation. Cheng and Cabral [42] choose the inverse multiquadric
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(IMQ) as the RBFs to solve several types of ill-posed inverse boundary problems for the
Laplace equation. Ma and Wu [43] used radial basis functions method to solve semi linear
inverse problem.

It is worth mentioning that the shape parameter in radial basis functions plays an
important role in the accuracy of the method. Hence, selecting a suitable shape parameter
is a challengeable issue. Bayona et al. [44] obtained the optimal value of the constant
parameter which is called Optimal Variable Shape Parameter (OVSP) for some problems,
but the optimum selection of the constant shape parameter is still an open problem. For
more descriptions see [45] and references therein.

The rest of the paper is organized as follows. Section 2 is devoted to formulate inverse
problem. The variational formulation, discretization of inverse problem and solving it by
finite element method are proposed in Section 3. Furthermore regularizing the resultant
ill-conditioned linear system of equations, the least square minimization technique and
Tikhonov regularization are also illustrated in Section 3. Section 4 introduce the RBFs
method and present the numerical scheme for solving inverse problem. In Section 5, we
prove the stability of the finite element method. To illustrate the effectiveness and compare
of the presented methods, Section 6 gives some examples with analytical solution. Section
7 ends this paper with a brief conclusion.

2. Inverse Scalar Reaction-Diffusion Problem

Here we consider a simple model equation, that is a scalar reaction-diffusion equation
of one-space dimension. Suppose u(x, t) satisfies

ut(x, t) = uxx(x, t) + F (u(x, t)), 0 < x < 1, 0 < t < T, (2a)

u(x, 0) = f(x), 0 ≤ x ≤ 1, (2b)

u(0, t) = g0(t), 0 ≤ t ≤ T, (2c)

u(1, t) = g1(t), 0 ≤ t ≤ T, (2d)

and the overspecified data

u(x∗, t) = gs(t), 0 < x∗ < 1, 0 ≤ t ≤ T, (2e)

where T represents the final time, ω = {(x, t) : x ∈ [0, 1] = Ω, t ∈ [0, T = J} and f, g0, g1

and gs are given continuous functions. The reaction term F (u(x, t)) is unknown and is,
in fact, to be determined from the overspecified data. We seek both the functions u(x, t)
and F (u(x, t)).

It is assumed that F (u) is smooth on R and there exist the constant M ∈ R such that

|F ′(u)| ≤M, for u ∈ R (3)

and

F (0) = F (1) = 0. (4)

For an unknown reaction term F (u) we must therefore provide additional information (2e)
to provide a unique solution (u, F (u)) to the inverse problem (2), [3, 5, 46].

In this paper the unknown function F (u) is approximated as

F̃ (u) = u(a1 + a2u+ a3u
2 + a4u

3 + · · ·+ aqu
q−1), (5)

where {a1, a2, . . . , aq} are constants which remain to be determined [47].
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3. Implementation of Finite Element Method

First, we convert the boundary conditions such that to be homogeneous. For this
purpose we use w(x, t) = u(x, t) + A(t) ∗ x + B(t). Then we have the homogeneous form
of Eq. (2) as follows:

wt(x, t) = wxx(x, t) + F1(x, t, w(x, t)), 0 < x < 1, 0 < t < T, (6a)

w(x, 0) = f∗(x), 0 ≤ x ≤ 1, (6b)

w(0, t) = 0, 0 ≤ t ≤ T (6c)

w(1, t) = 0, 0 ≤ t ≤ T, (6d)

and the overspecified data

w(x∗, t) = g∗s(t), 0 < x∗ < 1, 0 ≤ t ≤ T, (6e)

Let V = H1
0 (Ω). The variational formulation of problem (6) can be obtained as [48],

(wt, v) + (wx, vx) = (F1(w), v), ∀v ∈ V,
w(x, 0) = f∗, (7)

where

(wx, vx) =

∫ 1

0

∂w

∂x

∂v

∂x
dx, (wt, v) =

∫ 1

0

∂w

∂t
vdx. (8)

Since V is a infinite dimensional space, we choose a subspace of V with finite dimension
and call it Vh. So the problem is converted to find wh ∈ Vh such that

(wh,t, v) + (wh,x, vx) = (F1(wh), v), ∀v ∈ Vh,
wh(0) = f∗h , (9)

where f∗h ∈ Vh is some approximation of f∗. We consider a set of basis continuous piecewise

polynomials functions such as {φi}Mi=1, where Vh = span{φ1, φ2, . . . , φM}. We choose M
nodes in interval Ω = [0, 1] and denote these nodes by {x1, x2, . . . , xM}. Corresponding to
each node, we construct a basis function, such that satisfies the following properties

i)φi(xj) = δij , i, j = 1, 2, . . . ,M,

ii)φi|Ωe = ψ
(e)
i , ψ

(e)
i (xj) = δij , i, j = 1, 2, . . . ,M,

where ψ
(e)
i are called local functions.

Representing the solution by wh =
∑M

j=1 αj(t)φj(x). For i = 1, . . . ,M , we take v =

φi(x), hence by substituting wh and v in variational formulation (9)

M∑
j=1

α̇j(t)(φj , φi) +

M∑
j=1

αj(t)(
∂φj
∂x

,
∂φi
∂x

) = (F1(x, t,

M∑
l=1

αl(t)φl), φi), (10)

where the notation ” ˙ ” means differentiation with respect to t. This yields the following
system for the weight α(t)

Bα̇+Aα = F1(α), for t > 0, with α(0) = γ, (11)
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where γ is the vector of nodal values of f∗h ,

B = (bji), bji = (φj , φi),

A = (aji), aji = (
∂φj
∂x

,
∂φi
∂x

),

F1(α) = (F1,i(α)), F1,i(α) = (F1(x, t,
M∑
l=1

αl(t)φl), φi), (12)

and α(t) = (α1(t), α2(t), . . . , αM (t))T , where ”T” means transpose, is the vector of un-
known functions αj(t), j = 1, . . . ,M .

By solving the system (11), the coefficients αj are obtained, and with these coefficients,
the approximate solution can be obtained.

Now, let us divide the interval [0, T ] into N equal parts of length ∆t = τ = T
N and

denote tn = n∆t, n = 0, 1, 2, . . . , N , and Wn be the approximation of exact solution w(t)
at t = tn. The nonlinear system (11) can be linearized by allowing the nonlinearities to
lag one time step behind. Thus the backward Euler method takes the form

(
∂Wn

∂t
, v) + (

∂Ŵn

∂x
,
∂v

∂x
) = (F1(Wn−1), v), ∀v ∈ Vh, (13)

where W 0 = φh, ∂W
n

∂t = (Wn−Wn−1)
k and Ŵn = Wn+Wn−1

2 . Expressing Wn in terms of the

basis functions as Wn(x) =
∑M

j=1 α
n
j φj(x), with B and A as before, furthermore we use a

polynomial approximation for function F1 as (5), this equation may be written

(B +
k

2
A)αn = (B − k

2
A)αn−1 + kF̂ (αn−1), for tn ∈ J. (14)

It is must be mentioned that, in each time step αn are achieved based on unknown coef-
ficients ai. To obtain the unknown coefficients ai, i = 1, 2, . . . , q and so on αn, we use the
least square method when the squares of the deviations between the exact and numeric
value of w, at x = x∗ must be minimized, i.e. the error function E which defined as
follows:

E(a1, a2, . . . , aq) = (w(x∗, tn)− wh(x∗, tn))2 = (g∗s(tn)− wh(x∗, tn))2 . (15)

must be minimized. To determine the unknown set of expansion coefficients , we minimize
(15) with respect to each unknown coefficient, i.e.,

∂E

∂ak
= 0, k = 1, 2, . . . , q. (16)

Now the linear system corresponding to coefficients ai of Eq. (16) can be expressed as

CΘ = β. (17)

The matrix C is ill-conditioned, the estimate of Θ by (17) will be unstable so that the
Tikhonov regularization method must be used to control this measurement errors. The
Tikhonov regularized solution Θ to the system of linear algebraic equation CΘ = β is
defined as the solution of following minimization problem [?,?,?]

min
Θ
{‖ CΘ− β ‖2 +α2 ‖ R(s)Θ ‖2}, (18)

where ‖ · ‖ denotes the usual Euclidean norm and α is called the regularization parameter.
Choosing a suitable value of the regularization parameter α is crucial for the accuracy of
the numerical solution and is still under intensive research [?]. In our computation, we
use the GCV scheme to determine an appropriate value of α [?,?,?].
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On the case of the zeroth-, first-, and second-order Tikhonov regularization method the
matrix R(s), for s = 0, 1, 2, is given by, see e.g. [54]

R(0) = IM×M ∈ RM×M ,

R(1) =


−1 1 . . . 0 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

...
0 0 . . . −1 1 0
0 0 . . . 0 −1 1

 ∈ R(M−1)×M ,

R(2) =


1 −2 1 0 . . . 0 0
0 1 −2 1 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 1 −2 1 0
0 0 . . . 0 1 −2 1

 ∈ R(M−2)×M .

Therefore, we obtain the Tikhonov regularized solution of the regularized equation as

Θ =

[
CTC + α

(
R(s)

)T
R(s)

]−1

CTβ. (19)

4. Radial Basis Functions Method

In this section, RBFs methods have been introduced for interpolation of scattered data.
Some well-known RBFs are listed in Table 1. RBF spaces are generated by the shifts
of a radial function φj(·) = φ (‖ · − xj ‖), where φ : R+ → R is a given, continuous
univariate function, and {xj} are some nodes in the domain of the problem. Let the set
X = {xj}Mj=1, where M is the number of data points. Given data {xj , u(xj)}Mj=1, the
interpolant is schemed as follows

s(x) =

M∑
j=1

λjφ (‖ x− xj ‖) , x ∈ Rd,

where the λj are real coefficients that satisfy the interpolation conditions s|X = u|X , i.e.
s(xi) = u(xi) for i = 1, . . . ,M , which result in the following linear system of equations:

ΦΛ = u,

where Λ = [λ1, . . . , λM ]T ,u = [u1, . . . , uM ]T and Φ = (φ (‖ xk − xj ‖)) is the coefficient
matrix.

Table 1. Some well-known functions that generate RBFs.

Name of function Definition

Gaussian (GA) φ(r) = e
−r2

2c2

Hardy multiquadrics(MQ) φ(r) =
√
r2 + c2

Inverse multiquadrics(IMQ) φ(r) = 1√
r2+c2

Inverse quadric(IQ) φ(r) = 1
r2+c2
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The matrix Φ has been shown to be positive definite (and therefore, nonsingular) for
distinct interpolation points for GA, IMQ and IQ by Schoenberg’s Theorem [?]. Addition-
ally, by using the Micchelli Theorem [?] we can show that Φ is invertible for distinct sets
of the scattered points in the case of MQ. For the existence, uniqueness and convergence
proofs the interested readers are referred to [57–61].

Although the matrix Φ is nonsingular in the above cases, usually it is very ill-conditioned,
i.e. the condition number of

κs(Φ) =‖ Φ ‖s‖ Φ−1 ‖s, s = 1, 2, . . .

is a very large number. Therefore, a small perturbation in initial data may produce a large
amount of perturbation in the solution. Thus we have to use more precision arithmetic
than the standard floating-point arithmetic in our computation. For a fixed number of
interpolation points the condition number of Φ depends on the shape parameter c, support
of the RBFs and minimum separation distance of interpolation points. Furthermore, the
condition number grows with M for definite values of shape parameter c. In practice, the
shape parameter c must be adjusted to the number of interpolating points in order to
produce an interpolation matrix which is well conditioned enough to be inverted in finite
precision arithmetic [?].

4.1. RBFs Method for nonlinear inverse problem. In this section, we apply RBFs
method for solving the problem 2. At the first way we use of finite-difference and radial
basis functions for discretizing of time and space variables, respectively. For discretization
of time variable, we need some preliminary. We define

tn = nτ, n = 0, . . . , N, (20)

where τ = T
N is the step size of time variable. In this section, we discretize the time

variable by applying a simple one-step forward difference formula to the time domain t,
for the first-order derivative on time variable. Moreover, assume that M is the number of
collocation nodes in the space domain. We discretizing the Eq. (2a) in point (x, tn) and
obtain

un+1 − un

τ
= ∆un+1 + F (un), n = 0, . . . , N − 1, (21)

by simplification we have

un+1 − τ∆un+1 = un + τF (un), n = 0, . . . , N − 1. (22)

Furthermore, the unknown function F (u) is approximated by Eq. 5 and {a1, a2, . . . , aq}
are constants which remain to be determined.

A radial basis approximation in the space domain for every time t, has the form

ũ(x, t) =
M∑
j=1

λj(t)φ(x− xj), (23)

where (x, t) ∈ [0, 1] × [0, T ], and φ(x) is a positive definite radial function [43]. Then, by

putting the ũ(x, t) and F̃ into Eq. 22, we obtain the following equation

M∑
j=1

λj(tn+1)φ(x− xj)− τ
M∑
j=1

λj(tn+1)φ′′(x− xj) =
M∑
j=1

λj(tn)φ(x− xj)+

τF̃

 M∑
j=1

λj(tn)φ(x− xj)

 . (24)
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By simplification of the above equation and substituting each xk for x, we have the
following iterative system of equations

M∑
j=1

λj(tn+1)
(
φ(xk − xj)− τφ′′(xk − xj)

)
=

M∑
j=1

λj(tn)φ(xk − xj)+

τF̃

 M∑
j=1

λj(tn)φ(xk − xj)

 . (25)

For convenience, we denote the vector
(
ũ(x1, tn), . . . , ũ(xM , tn)

)T
by Ũ(tn) and(

λ1(tn), . . . , λM (tn)
)T

by Λ(tn). So in matrix form we have

(Φ− τΦ′′)Λ(tn+1) = Ũ(tn) + τF̃ (Ũ(tn)), (26)

in which

Φ =


φ(0) φ(x1 − x2) · · · φ(x1 − xM )

φ(x2 − x1) φ(0) · · · φ(x2 − xM )
...

...
. . .

...
φ(xM−1 − x1) φ(xM−1 − x2) · · · φ(xM−1 − xM )
φ(xM − x1) φ(xM − x2) · · · φ(0)

 ,

and similarly, (Φ′)ij = φ′(xi − xj) and (Φ′′)ij = φ′′(xi − xj), for i, j = 1, . . . ,M .
Obviously, in each time step, Λ(tn+1) are achieved based on unknown coefficients ai. To

obtain the unknown coefficients ai, i = 1, 2, . . . , q, we use the least square method when
the squares of the deviations between the exact and numeric value of u, at x = x∗ must
be minimized, i.e. the error function E which defined as follows:

E(a1, a2, . . . , aq) = (u(x∗, tn+1)− ũ(x∗, tn+1))2 = (gs(tn+1)− ũ(x∗, tn+1))2 . (27)

must be minimized. The linear system corresponding to coefficients ai of Eq. (27) can be
expressed as

CΘ = β. (28)

The condition number of the resulting linear system depends directly on the shape pa-
rameter c. Generally, the obtained linear system is ill-conditioned. To overcome such
difficulties, we use Tikhonov regularization method that is investigated in detail in the
previous section.

5. Stability Analysis

In this section, stability of the time discrete numerical scheme defined by Eq. (13) will
be investigated in details. We begin by considering function F (u) satisfy the Lipschitz
condition with respect to u

|F1(u)− F1(ũ)| ≤ L1|u− ũ|, ∀u, ũ, (29)

where L1 is Lipschitz constant. Also, we assume that

2

1 + 2L1
≤ τ ≤ 1

L1
.



776 TWMS J. APP. AND ENG. MATH. V.12, N.3, 2022

Now, we introducing the functional spaces endowed with standard norms and inner prod-
ucts [?],

H1(Ω) =

{
v ∈ L2(Ω),

dv

dx
∈ L2(Ω)

}
,

H1
0 (Ω) =

{
v ∈ H1(Ω), v|∂Ω = 0

}
,

where L2(Ω) is the space of measurable functions whose square is Lebesgue integrable in
Ω. The standard inner products of L2(Ω) and H1(Ω) are defined, respectively by

(u, v) =

∫
Ω
uvdΩ, (u, v)1 = (u, v) + (∇ · u,∇ · v),

and the corresponding norms are defined as

‖v‖ = (v, v)
1
2 , ‖v‖1 = (v, v)

1
2
1 , |v|1 = (∇ · v,∇ · v)

1
2 .

Also, in this paper we use the following weighted H1-norm

‖v‖∗,1 =
[
‖v‖2 + |v|21

] 1
2 .

Furthermore, for any functions f(x) and g(x) we have

(∇ · |f |, g) ≤ |f |1‖g‖. (30)

Theorem 5.1. For 2
1+2L1

≤ τ ≤ 1
L1

, the time discrete numerical scheme defined by

Eq.(13) is stable in H1-norm.

Proof. We assume that Wn+1 and W̃n+1 are exact and approximation solutions of Eq.(13),
respectively. The roundoff error has the following form

(
∂en+1

∂t
, v) + (

∂ên+1

∂x
,
∂v

∂x
) = (F1(Wn)− F1(W̃n), v), ∀v ∈ Vh, (31)

in which

en+1 = Wn+1 − W̃n+1, n = 0, . . . , N − 1.

By using v = en+1 we obtain

(
en+1 − en

τ
, en+1) + (

∂

∂x
(
en+1 + en

2
),
∂en+1

∂x
) = (F1(Wn)− F1(W̃n), en+1), (32)

Now, using the Schwarz inequality and relations (29) and (30), we can write

‖en+1‖2 +
τ

2
|en+1|21 ≤

1

2
‖en‖2 +

1

2
‖en+1‖2 +

τ

4
(|en|21 + |en+1|21) +

τL1

2
‖en‖2 +

τL1

2
‖en+1‖2,

(33)

and by simplification of the above relation we obtain

(2− 2τL1)‖en+1‖2 + τ |en+1|21 ≤ (2 + 2τL1)‖en‖2 + τ |en|21. (34)

Thus, regarding to 2
1+2L1

≤ τ ≤ 1
L1

, we can write

(2− 2τL1)(‖en+1‖2 + |en+1|21) ≤ (2 + τ(2L1 + 1))(‖en‖2 + |en|21) (35)

i.e. {
‖en+1‖2 + |en+1|21

}
≤
(

2 + τ(2L1 + 1)

2− 2τL1

){
‖en‖2 + |en|21

}
,
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also, using the weighted H1-norm, yields

‖en+1‖2∗,1 ≤
(

2 + τ(2L1 + 1)

2− 2τL1

)
‖en‖2∗,1

≤
(

2 + τ(2L1 + 1)

2− 2τL1

)2

‖en−1‖2∗,1

...

≤
(

2 + τ(2L1 + 1)

2− 2τL1

)n+1

‖e0‖2∗,1, n = 0, . . . , N − 1.

Furthermore, we can write

lim
n→∞

(
2 + τ(2L1 + 1)

2− 2τL1

)n+1

= lim
n→∞

1 + T (2L1+1)
2(n+1)

1− TL1
n+1

n+1

=
eT (L1+ 1

2
)

e−TL1
= eT (2L1+ 1

2
), (36)

therefore we obtain

‖en+1‖∗,1 ≤
√
eT (2L1+ 1

2
)‖e0‖∗,1, n = 0, . . . , N − 1,

which completes the proof. � �

6. Numerical examples

In this section, to illustrate the description above and demonstrating the accuracy
and efficiency of the presented method to solve nonlinear inverse problems with un-
known source function, we include two numerical examples. As expected the inverse
problems are ill-posed and therefore, it is necessary to investigate the stability of the pro-
posed scheme. Thus we consider following examples with noisy data (noisy data=input
data+(0.001)rand(1)) [64].

Remark 6.1. In an inverse problem, there are two sources of error in the estimation. The
first source is the unavoidable bias deviation or deterministic error, and the second source
of error is the variance due to the amplification of measurement errors or stochastic error.
The global effect of deterministic and stochastic errors is considered in the root mean square
or total error [?]. Therefore, we compare exact and approximate solutions by considering
total error RMS defined by

RMS =

[
1

N − 1

N∑
i=1

(
Ψ̂i −Ψi

)2
] 1

2

(37)

where N , Ψ̂ and Ψ are the number of estimated values, the estimated values and the
exact values, respectively.

Note that, we suppose u(x, t) and F (u(x, t)) be exact solutions of (2) and u∗(x, t),
F ∗(u(x, t)) be solutions obtained by applying the given methods. Also, we consider T = 1,
∆x = 1

20 , ∆t = 1
100 and q = 6 with noisy data (noisy data=input data+(0.001) rand(1)).

In RBF method case, we compute the numerical solutions using Gaussian RBF.



778 TWMS J. APP. AND ENG. MATH. V.12, N.3, 2022

Example 6.1. In this example, let us consider the following nonlinear inverse reaction-
diffusion problem

ut = uxx + F (u), 0 < x < 1, 0 < t < T,

and overspecified data

u(0.5, t) =
exp( 1

2
√

2
+ (1

2 − µ)t) + µ exp( µ

2
√

2
− (µ− µ2

2 )t)

1 + exp( 1
2
√

2
+ (1

2 − µ)t) + µ exp( µ

2
√

2
− (µ− µ2

2 )t)
, 0 ≤ t ≤ T,

where µ = 0.6.

The exact solutions are

u(x, t) =
exp( x√

2
+ (1

2 − µ)t) + µ exp( µx√
2
− (µ− µ2

2 )t)

1 + exp( x√
2

+ (1
2 − µ)t) + exp( µx√

2
− (µ− µ2

2 )t)

and

F (u) = u(1− u)(u− µ).

The comparison between exact and approximate values for u(x, t) and F (u(x, t)) at points
x = 0.3 and x = 0.8 obtained by methods presented in this paper, are given in Tables
2− 5, where execution time (s) and regularization parameter (R.p) and condition number
(Cn) are also given in the tables.

time Exact solution FE method RBF method

t u(0.3, t) F (u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t))

0.1 0.566678 −0.008182 0.566678 −0.009224 0.566900 −0.008440

0.2 0.564598 −0.008702 0.564599 −0.009748 0.564837 −0.009004

0.3 0.562483 −0.009232 0.562484 −0.010281 0.562728 −0.009594

0.4 0.560333 −0.009772 0.560334 −0.010824 0.560582 −0.010212

0.5 0.558149 −0.010320 0.558150 −0.011376 0.558403 −0.010860

0.6 0.555933 −0.010878 0.555933 −0.011937 0.556189 −0.011540

0.7 0.553684 −0.011445 0.553685 −0.012507 0.553945 −0.012257

0.8 0.551404 −0.012020 0.551405 −0.013084 0.551671 −0.013011

0.9 0.549095 −0.012603 0.549096 −0.013670 0.549366 −0.013807

1 0.546756 −0.013194 0.546757 −0.014262 0.547030 −0.014646

RMS 7.159× 10−7 1.060× 10−3 2.888× 10−4 4.126× 10−3

s 24.8 37.7

R.p 5.210× 10−15 3.900× 10−17

Cn Inf 9.071× 1024

Table 2. The comparison between exact and numerical solutions of Ex-
ample 6.1 at (0.3, t) with noisy data.
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time Exact solution FE method RBF method

t u(0.8, t) F (u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t))

0.1 0.623781 0.005580 0.623780 0.004627 0.623558 0.008843

0.2 0.622484 0.005283 0.622483 0.004330 0.622255 0.008224

0.3 0.621144 0.004975 0.621143 0.004021 0.620911 0.007606

0.4 0.619761 0.004656 0.619760 0.003702 0.619523 0.006989

0.5 0.618336 0.004327 0.618335 0.003372 0.618093 0.006375

0.6 0.616868 0.003986 0.616868 0.003031 0.616621 0.005765

0.7 0.615360 0.003635 0.615359 0.002679 0.615108 0.005160

0.8 0.613810 0.003273 0.613810 0.002316 0.613553 0.004562

0.9 0.612221 0.002901 0.612220 0.001942 0.611960 0.003971

1 0.610593 0.002518 0.610592 0.001557 0.610326 0.003387

RMS 6.935× 10−7 9.605× 10−4 1.595× 10−4 4.126× 10−3

Table 3. The comparison between exact and numerical solutions of Ex-
ample 6.1 at (0.8, t) with noisy data.

time Exact solution FE method RBF method

t u(0.3, t) F (u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t))

0.1 0.566678 −0.008182 0.566678 −0.008224 0.566793 −0.008334

0.2 0.564598 −0.008702 0.564599 −0.008748 0.564721 −0.008865

0.3 0.562483 −0.009232 0.562484 −0.009281 0.562609 −0.009416

0.4 0.560333 −0.009772 0.560333 −0.009824 0.560462 −0.009988

0.5 0.558149 −0.010320 0.558150 −0.010376 0.558280 −0.010582

0.6 0.555933 −0.010878 0.555933 −0.010937 0.556065 −0.011201

0.7 0.553684 −0.011445 0.553685 −0.011507 0.553817 −0.011845

0.8 0.551404 −0.012020 0.551405 −0.012084 0.551538 −0.012519

0.9 0.549095 −0.012603 0.549096 −0.012670 0.549228 −0.013222

1 0.546756 −0.013194 0.546757 −0.013262 0.546888 −0.013958

RMS 7.027× 10−7 5.617× 10−5 1.263× 10−4 3.770× 10−4

Table 4. The comparison between exact and numerical solutions of Ex-
ample 6.1 at (0.3, t) without noisy data.

Example 6.2. Consider the following nonlinear inverse problem

ut = uxx + F (u), 0 < x < 1, 0 < t < T,

u(x, 0) = (−1

2
tanh(

3

4
x− 1

2
) +

1

2
)
1
3 , 0 ≤ x ≤ 1,

u(0, t) = (
1

2
tanh(

1

2
+

15

8
t) +

1

2
)
1
3 , 0 ≤ t ≤ T,

u(1, t) = (
1

2
tanh(−1

4
+

15

8
t) +

1

2
)
1
3 , 0 ≤ t ≤ T,

and overspecified data

u(0.5, t) = (
1

2
tanh(

1

8
+

15

8
t) +

1

2
)
1
3 , 0 ≤ t ≤ T.
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time Exact solution FE method RBF method

t u(0.8, t) F (u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t))

0.1 0.623781 0.005580 0.623781 0.005627 0.623648 0.008666

0.2 0.622484 0.005283 0.622484 0.005330 0.622343 0.008075

0.3 0.621144 0.004975 0.621144 0.005021 0.620998 0.007484

0.4 0.619761 0.004656 0.619761 0.004702 0.619610 0.006892

0.5 0.618336 0.004327 0.618335 0.004372 0.618179 0.006300

0.6 0.616868 0.003986 0.616868 0.004031 0.616704 0.005710

0.7 0.615360 0.003635 0.615359 0.003679 0.615188 0.005121

0.8 0.613810 0.003273 0.613810 0.003316 0.613630 0.004536

0.9 0.612221 0.002901 0.612221 0.002942 0.612032 0.003955

1 0.610593 0.002518 0.610593 0.002557 0.610393 0.003378

RMS 6.800× 10−7 4.461× 10−5 1.604× 10−4 2.154× 10−3

Table 5. The comparison between exact and numerical solutions of Ex-
ample 6.1 at (0.8, t) without noisy data.

time Exact solution FE method RBF method

t u(0.3, t) F (u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t))

0.1 0.894642 0.435922 0.894475 0.434551 0.898466 0.431865

0.2 0.922806 0.352939 0.922526 0.351008 0.926421 0.353808

0.3 0.944377 0.274463 0.944052 0.272479 0.947539 0.278050

0.4 0.960438 0.206587 0.960111 0.204844 0.963046 0.211162

0.5 0.972135 0.151618 0.971841 0.150156 0.974178 0.156265

0.6 0.980514 0.109192 0.980271 0.107936 0.982065 0.113545

0.7 0.986444 0.077559 0.986254 0.076428 0.987597 0.081536

0.8 0.990604 0.054548 0.990461 0.053482 0.991448 0.058180

0.9 0.993504 0.038095 0.993399 0.037063 0.994117 0.041452

1 0.995517 0.026475 0.995441 0.025458 0.995962 0.029622

RMS 2.320× 10−4 1.440× 10−3 1.425× 10−3 6.813× 10−3

(s) 26.3 36.1

R.p 4.225× 10−14 4.155× 10−16

Cn Inf 4.6883× 1016

Table 6. The comparison between exact and numerical solutions of Ex-
ample 6.2 at (0.3, t) with noisy data.

The exact solutions in a closed form are given by

u(x, t) = (
1

2
tanh(−3

4
x+

15

8
t+

1

2
) +

1

2
)
1
3

and
F (u) = u(1− u6).

The results obtained by presented methods for u(x, t) and F (u(x, t)) with noisy data are
presented in Tables 6 − 9, where execution time and regularization parameter are also
given in the tables.
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time Exact solution FE method RBF method

t u(0.8, t) F (u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t))

0.1 0.816150 0.574942 0.816202 0.575218 0.811981 0.568416

0.2 0.859133 0.513651 0.859321 0.512951 0.855090 0.504346

0.3 0.894642 0.435922 0.894897 0.433438 0.891021 0.431865

0.4 0.922806 0.352939 0.923075 0.349168 0.919759 0.353808

0.5 0.944377 0.274463 0.944628 0.270191 0.941960 0.278050

0.6 0.960438 0.206587 0.960652 0.202421 0.958593 0.211162

0.7 0.972135 0.151618 0.972307 0.147886 0.970777 0.156265

0.8 0.980514 0.109192 0.980646 0.106000 0.979539 0.113545

0.9 0.986444 0.077559 0.986541 0.074882 0.985758 0.081536

1 0.990604 0.054548 0.990674 0.052305 0.990124 0.058180

RMS 1.870× 10−4 3.037× 10−3 1.425× 10−3 6.813× 10−3

Table 7. The comparison between exact and numerical solutions of Ex-
ample 6.2 at (0.8, t) with noisy data.

time Exact solution FE method RBF method

t u(0.3, t) F (u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t)) u∗(0.3, t) F ∗(u(0.3, t))

0.1 0.894642 0.435922 0.894475 0.435555 0.897258 0.425286

0.2 0.922806 0.352939 0.922527 0.352010 0.925315 0.345059

0.3 0.944377 0.274463 0.944052 0.273482 0.946581 0.268468

0.4 0.960438 0.206587 0.960111 0.205846 0.962262 0.201891

0.5 0.972135 0.151618 0.971841 0.151157 0.973583 0.147983

0.6 0.980514 0.109192 0.980271 0.108937 0.981620 0.106550

0.7 0.986444 0.077559 0.986254 0.077429 0.987257 0.075869

0.8 0.990604 0.054548 0.990461 0.054483 0.991194 0.053620

0.9 0.993504 0.038095 0.993399 0.038064 0.993953 0.037623

1 0.995517 0.026475 0.995441 0.026458 0.995861 0.026364

RMS 2.322× 10−4 5.368× 10−4 1.641× 10−3 5.565× 10−3

Table 8. The comparison between exact and numerical solutions of Ex-
ample 6.2 at (0.3, t) without noisy data.

7. Conclusion

In this paper, the inverse problem of determining an unknown reaction term in a ho-
mogeneous parabolic equation was considered. The following results are obtained.

• The present study, successfully applies the numerical methods to inverse problems.
• Numerical examples also verified the efficiency and accuracy of the method that

can be obtained within a couple of minutes CPU time at Core(i5)–2.67 GHz PC.
• The present methods has been found stable with respect to small perturbation in

the input data.
• The comparison between methods presented in this work, shows that the finite

element method have better accuracy than the RBFs method.
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time Exact solution FE method RBF method

t u(0.8, t) F (u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t)) u∗(0.8, t) F ∗(u(0.8, t))

0.1 0.816150 0.574942 0.816203 0.576219 0.813586 0.571615

0.2 0.859133 0.513651 0.859322 0.513953 0.856617 0.509097

0.3 0.894642 0.435922 0.894898 0.434440 0.892456 0.436967

0.4 0.922806 0.352939 0.923076 0.350169 0.921041 0.358710

0.5 0.944377 0.274463 0.944629 0.271192 0.943019 0.282351

0.6 0.960438 0.206587 0.960653 0.203421 0.959438 0.214558

0.7 0.972135 0.151618 0.972308 0.148887 0.971431 0.158626

0.8 0.980514 0.109192 0.980647 0.107000 0.980031 0.114954

0.9 0.986444 0.077559 0.986542 0.075882 0.986105 0.082248

1 0.990604 0.054548 0.990674 0.053305 0.990403 0.058144

RMS 1.871× 10−4 2.207× 10−3 1.593× 10−3 6.011× 10−3

Table 9. The comparison between exact and numerical solutions of Ex-
ample 6.2 at (0.8, t) without noisy data.
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