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INTRODUCTION TO TOTAL DOMINATOR EDGE CHROMATIC

NUMBER

SAEID ALIKHANI1, NIMA GHANBARI2, §

Abstract. We introduce the total dominator edge chromatic number of a graph G. A
total dominator edge coloring (briefly TDE-coloring) of G is a proper edge coloring of G
in which each edge of the graph is adjacent to every edge of some color class. The total
dominator edge chromatic number (briefly TDEC-number) χ′t

d (G) of G is the minimum
number of color classes in a TDE-coloring of G. We obtain some properties of χ′t

d (G) and
compute this parameter for specific graphs. We examine the effects on χ′t

d (G) when G is
modified by operations on vertices and edges of G. Finally, we consider the k-subdivison
of G and study TDEC-number of this kind of graphs.
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1. Introduction

Let G = (V,E) be a simple graph and k ∈ N. A mapping f : V (G) −→ {1, 2, ..., k} is
called a k-proper coloring of G, if f(u) 6= f(v) whenever the vertices u and v are adjacent
in G. A color class of this coloring, is a set consisting of all those vertices assigned the
same color. If f is a proper coloring of G with the coloring classes V1, V2, ..., Vk such
that every vertex in Vi has color i, then sometimes write simply f = (V1, V2, ..., Vk). The
chromatic number χ(G) of G is the minimum number of colors needed in a proper coloring
of a graph. The total dominating set is a subset D of V such that every vertex of V is
adjacent to some vertices of D. The total domination number of G is equal to minimum
cardinality of total dominating set in G and it is denoted by γt(G).

The total dominator coloring, abbreviated TD-coloring, was previously studied in [5, 6].
Let G be a graph with no isolated vertices, the total dominator coloring is a proper coloring
of G in which each vertex of the graph is adjacent to every vertex of some (other) color
class. The total dominator chromatic number, abbreviated TDC-number, χt

d(G) of G is
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the minimum number of color classes in a TD-coloring of G. Computation of the TDC-
number is NP-complete. The TDC-number of some graphs has been computed [2]. Also
Henning in [4] established the lower and the upper bounds on the TDC-number of a graph
in terms of its total domination number γt(G). He has shown that, every graph G with no
isolated vertices satisfies γt(G) ≤ χt

d(G) ≤ γt(G)+χ(G). The properties of TD-colorings in
trees have been studied in [4]. Trees T with γt(T ) = χt

d(T ) have been characterized in [4].
We have examined the effects on χt

d(G) when G is modified by operations on the vertices
and the edges of G, and the TDC-number of some operations on two graphs studied in
[3].

Motivated by TDC-number of a graph, we consider the proper edge coloring of G
and introduce the total dominator edge chromatic number (TDEC-number) of G, χ′td (G),
obtain some properties of χ′td (G) and compute this parameter for specific graphs, in the
next section. In Section 3, we examine the effects on χ′td (G) when G is modified by
operations on vertics and edges of G. Finally in Section 4, we study the TDEC-number
of k-subdivision of graphs.

2. Introduction to total dominator edge chromatic number

In this section, we state the definition of total dominator edge chromatic number and
obtain this parameter for some specific graphs.

Definition 2.1. A total dominator edge coloring, briefly TDE-coloring, of a graph G is
a proper edge coloring of G in which each edge of the graph is adjacent to every edge of
some color class. The total dominator edge chromatic number (TDEC-number) χ′td (G) of
G is the minimum number of color classes in a TDE-coloring of G. A χ′td (G)-coloring of
G is any total dominator edge coloring of G with χ′td (G) colors.

Remark 2.1. For every graph G with maximum degree ∆(G), χ′td (G) ≥ ∆(G). This
inequality is sharp. As an example, for the star graph K1,n, χ′td (K1,n) = n.

The following theorem gives the total dominator edge chromatic number of a path.

Theorem 2.1. If Pn is the path graph of order n ≥ 9, then

χ′td (Pn) =


2k + 2 if n = 4k + 1,

2k + 3 if n = 4k + 2,

2k + 4 if n = 4k + 3, 4k + 4.

Also χ′td (P3) = χ′td (P4) = 2, χ′td (P5) = 3, χ′td (P6) = χ′td (P7) = 4 and χ′td (P8) = 5.

Proof. It is easy to show that χ′td (P3) = χ′td (P4) = 2, χ′td (P5) = 3, χ′td (P6) = χ′td (P7) = 4
and χ′td (P8) = 5. Suppose that n ≥ 9. First we show that in a TDE-coloring, for each four
consecutive edges we shall use at least two new colors. We consider two cases. If a used
color assign to edge ei+1, then we need to assign a new color to the edge ei+2 and ei+3 to
have a TDE-coloring (see Figure 1). If a new color is assigned to the edge ei+1, then we
have to assign a new color to ei+2 or ei to have a TDE-coloring. So we need at least two
new colors in every four consecutive vertices.

If n = 4k + 1, for some k ∈ N, then we give a TDE-coloring for P4k+1 which use only
two new colors in every four consecutive edges. Define a function f0 on E(P4k) such that
for any edge ei,
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Figure 1. Four consecutive edges.
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Figure 2. TDE-coloring of P4, P5 and P6.

f0(ei) =


1 if i = 1 + 4s,

2 if i = 4s.

2 if i = 4s.

where s is a natural number and for any ei, i 6= 4s and i 6= 4s+ 1, f0(ei) is a new number.
Then this coloring is a TDE-coloring of P4k+1 with the minimum number 2k + 2 colors.

If n = 4k + 2, for some k ∈ N, then we first color the 4k − 4 edges using f0. Now for
the rest of edges we define f1 as f1(e4k−3) = 1, f1(e4k−2) = 2k + 1, f1(e4k−1) = 2k + 2,
f1(e4k) = 2k + 3 and f1(e4k+1) = 2. Since for every five consecutive edges we have to
use at least three new colors, so this edge coloring is a TDE-coloring of P4k+1 with the
minimum number 2k + 3 colors.

If n = 4k+3, for some k ∈ N, then using f0 we color the 4k−4 edges. Now for the rest of
edges, define f2 as f2(e4k−3) = 1, f2(e4k−2) = 2k+ 1, f2(e4k−1) = 2k+ 2, f2(e4k) = 2k+ 3,
f2(e4k+1) = 2k + 4 and f2(e4k+2) = 2. Since for every six consecutive edges we have to
use at least four new colors, so this edge coloring is a TDE-coloring of P4k+2 with the
minimum number 2k + 4 colors.

If n = 4k + 4, for some k ∈ N, then using f0 we color the 4k − 4 edges and for the rest
of edges define f3 as f3(e4k−3) = 1, f3(e4k−2) = 2k + 1, f3(e4k−1) = 2k + 2, f3(e4k) = 2,
f3(e4k+1) = 2k+ 3, f3(e4k+2) = 2k+ 4 and f3(e4k+2) = 2. This coloring is a TDE-coloring
of P4k+2 with the minimum number 2k + 4 colors. So we have the result. �

Theorem 2.2. If Cn is the cycle graph of order n ≥ 8, then

χ′td (Cn) =


2k + 2, if n = 4k,

2k + 3, if n = 4k + 1,

2k + 4, if n = 4k + 2, 4k + 3.

Also χ′td (C3) = 3, χ′td (C4) = 2, χ′td (C5) = χ′td (C6) = 4 and χ′td (C7) = 5.

Proof. It is similar to the Proof of Theorem 2.1. �

The following corollary is an immediate consequence of Theorems 2.1 and 2.2.
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Figure 3. Cycle graph of order n, Cn.
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Figure 4. Graph G with χ′td (G) = ∆(G) + 2.

Corollary 2.1. For every n ≥ 6, χ′td (Pn) = χ′td (Cn−1).

The following theorem present a lower bound for TDEC-number of graphs G which
have the graph P6 as induced subgraph.

Theorem 2.3. If G is a connected graph containing P6 as an induced subgraph, then
χ′td (G) ≥ ∆(G) + 2. More generally, if the path graph Pn is an induced subgraph of G,
then χ′td (G) ≥ ∆(G) + χ′td (Pn−2).

Proof. We assign ∆(G) colors to the edges which are incident to the vertex with maximum
degree ∆(G). Now we consider P6 as induced subgraph of G. As we have seen in the Proof
of Theorem 2.1, we need at least two new colors for each four consecutive edges. So we
have χ′td (G) ≥ ∆(G)+2. The proof of inequality χ′td (G) ≥ ∆(G)+χ′td (Pn−2) is similar. �

Remark 2.2. The graph G in Figure 4 and its coloring shows that the lower bound in
Theorem 2.3 is sharp.

Theorem 2.4. For every n ∈ N, 2n−1 ≤ χ′td (K2n) ≤ 4n−2 and 2n ≤ χ′td (K2n+1) ≤ 4n−1.

Proof. The lower bounds follow from Remark 2.1. To obtain the upper bound, suppose
that V (K2n+1) = {u1, . . . , u2n+1}. By removing the vertex u2n+1, we have the complete
graphK2n. We know that χ′(K2n) = 2n−1. So we color the edges ofK2n with 2n−1 colors.
Now we add the vertex u2n+1 and makeK2n+1 and assign the new colors 2n, 2n+1, . . . , 4n−
1 to new edges. This is a TDE-coloring for K2n+1. Therefore χ′td (K2n+1) ≤ 4n − 1. By
the similar method we have χ′td (K2n) ≤ 4n− 2. �

Theorem 2.5. (i) For every n 6= m, max{n,m} ≤ χ′td (Kn,m) ≤ m+ n− 1.
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(ii) For every n ∈ N, n ≤ χ′td (Kn,n) ≤ 2n.

Proof. (i) The lower bounds follow from Remark 2.1. To obtain the upper bound, sup-
pose that V (Kn,m) = X ∪Y , where X = {u1, . . . , um} and Y = {um+1, . . . , um+n}
and m ≥ n. We have the following cases:
Case 1) m = n + 1. By removing the vertex u1, we have the complete bipartite
graph Kn,n. We know that χ′(Kn,n) = n. So we color the edges of Kn,n with n
colors. Now we add the vertex u1 and make Kn+1,n and assign the new colors
n + 1, n + 2, . . . , 2n to new edges. This is a TDE-coloring for Kn,m and we have
χ′td (Kn,m) ≤ 2n = m+ n− 1.
Case 2) m > n + 1. By removing the vertex u1, we have the complete bipartite
graph Km−1,n. We know that χ′(Km−1,n) = m − 1. So we color the edges of
Km−1,n with m− 1 colors. Now we add the vertex u1 and make Km,n and assign
the new colors m,m+ 1, . . . ,m+ n− 1 to new edges. This is a TDE-coloring for
Km,n and we have χ′td (Km,n) ≤ m+ n− 1.

(ii) In this part we have m = n. By removing the vertex u1, we have the complete
bipartite graph Kn−1,n. We know that χ′(Kn−1,n) = n. So we color the edges of
Kn−1,n with n colors. Now we add the vertex u1 and make Kn,n and assign the
new colors n+ 1, n+ 2, . . . , 2n to new edges. This is a TDE-coloring for Kn,n and
we have χ′td (Kn,n) ≤ 2n.

�

Remark 2.3. The lower bounds in parts (i) and (ii) of Theorem 2.5 are sharp. It suffices
to consider K3,2 and K2,2 = C4, respectively. Note that χ′td (K3,2) = 3 and χ′td (C4) = 2.
Also the upper bound of part (i) is sharp. It suffices to consider the star graph K1,6. Note
that χ′td (K1,6) = 1 + 6− 1 = 6.

Let n be any positive integer and Fn be the friendship graph with 2n+ 1 vertices and
3n edges, formed by the join of K1 with nK2. By Remark 2.1, and TDE-coloring which
has shown in Figure 5, we have the following result for the wheel of order n, Wn and the
friendship graph Fn.

Theorem 2.6. (i) For any n ≥ 3, χ′td (Wn) = n− 1.
(ii) For n ≥ 2, χ′td (Fn) = 2n.
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Figure 5. TDE-coloring of wheel and friendship graph.
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Figure 6. Cases which has been considered in the proof of Theorem 3.1.

3. TDEC-number of some operations on a graph

The graph G− v is a graph that is made by deleting the vertex v and all edges incident
to v from the graph G and the graph G − e is a graph that obtained from G by simply
removing the edge e. In this section we present bounds for TDEC-number of G − v and
G− e. We begin with G− e.

Theorem 3.1. If G is a connected graph, and e ∈ E(G) is not a bridge of G, then

χ′td (G)− 2 ≤ χ′td (G− e) ≤ χ′td (G) + 2.

Proof. First we prove the right inequality. Suppose that the edge e in a TDE-coloring
of G has color i. If no edges of G use the color class i, then TDE-coloring of G is a
TDE-coloring of G− e, too. So χ′td (G− e) ≤ χ′td (G). If some edges of G use the color class
i in TDE-coloring, then we have at most two edges with color i. If two edges of G have
color i, then removing e does not effect on TDE-coloring and any edge uses the old color
class in TDE-coloring of G. So χ′td (G − e) ≤ χ′td (G). If only one edge e has the color i,
then we change the color of some edges in G− e to have a TDE-coloring for G− e. In this
case the edge e uses some color class, say k, and is adjacent to all color class k. We can
not have more than two k in this case. Suppose that we have two k. Then we have only
three cases for the graph G as we see in Figure 6. In Figure 6, the colors l and m are new
colors and we only change the color of some edges in G − e and assign the other edges
their old color in G. This coloring is a TDE-coloring for G − e. In any case we do not
use more than two new colors. Therefore we have χ′td (G− e) ≤ χ′td (G) + 2. Now suppose
that we have only one color k. Then we have only six cases for the graph G as we see in
Figure 7. In Figure 7, the colors l and m are new colors and we only change the color of
some edges in G− e and assig the other edges their old color in G. This kind of coloring
is a TDE-coloring for G− e. In any case we do not use more than two new colors. So we
have χ′td (G− e) ≤ χ′td (G) + 2.

Now we prove that χ′td (G) − 2 ≤ χ′td (G − e). To do this, first we color G − e and then
we add edge e. We assign new color i to e and new color j to one edge which is adjacent
to e. So we have a TDE-coloring for G and χ′td (G) ≤ χ′td (G − e) + 2. Therefore we have
the result. �

Theorem 3.2. If G is a connected graph, and v ∈ V (G) is not a cut vertex of G, then

χ′td (G)− deg(v) ≤ χ′td (G− v) ≤ χ′td (G) + deg(v).
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Figure 7. Another cases which has been considered in the proof of The-
orem 3.1.

Proof. First we prove the left inequality. We give a TDE-coloring to G−v, add v and all the
corresponding edges. Then we assign deg(v) new colors to these edges and do not change
the color of other edges. So this is a TDE-coloring of G and χ′td (G) ≤ χ′td (G− v) + deg(v).

For the right inequality, first we give a TDE-coloring to G. In this case, since v is
not a cut vertex, each edge which is adjacent to an edge with endpoint v has an other
adjacent edge too. we change the color of this edge to a new color and do this deg(v)
times and do not change the color of the other edges. So this is a TDE-coloring of G− v
and χ′td (G− v) ≤ χ′td (G) + deg(v). Therefore we have the result. �

The following theorem is an immediate consequence of Theorems 2.2 and 2.6.

Theorem 3.3. There is a connected graph G, and a vertex v ∈ V (G) which is not a cut
vertex of G such that |χ′td (G)− χ′td (G− v)| can be arbitrarily large.

In a graph G, contraction of an edge e with endpoints u, v is the replacement of u and
v with a single vertex such that edges incident to the new vertex are the edges other than
e that were incident with u or v. The resulting graph G/e has one less edge than G. We
denote this graph by G/e. We end this section with the following theorem which gives
bounds for χ′td (G/e).

Theorem 3.4. If G is a connected graph and e = uv ∈ E(G), then

χ′td (G)− 2 ≤ χ′td (G/e) ≤ χ′td (G) +min{deg(u), deg(v)} − 1.

Proof. First we prove the left inequality. We give a TDE-coloring to G/e, add e and assign
it a new color, say i and change the color of one of its adjacent edges to new color j and do
not change other colors. This is a TDE-coloring of G. So we have χ′td (G) ≤ χ′td (G/e) + 2.
For the right inequality, we give a TDE-coloring toG. Suppose thatmin{deg(u), deg(v)} =
deg(u). Now we make G/e and change the color of adjacent edges of e with the endpoint
u to new colors. So we have the result. �
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Remark 3.1. The lower bound in Theorem 3.4 is sharp. It suffices to consider the cycle
graph C5 as G. Note that χ′td (C5) = 4 and χ′td (C4) = 2.

4. TDEC-number of k-subdivision of a graph

The k-subdivision of G, denoted by G
1
k , is constructed by replacing each edge vivj of G

with a path of length k., say P{vi,vj}. These k-paths are called superedges, any new vertex

is an internal vertex, and is denoted by x
{vi,vj}
l if it belongs to the superedge P{vi,vj},

i < j with distance l from the vertex vi, where l ∈ {1, 2, . . . , k − 1}. Note that for k = 1,

we have G1/1 = G1 = G, and if the graph G has v vertices and e edges, then the graph

G
1
k has v + (k − 1)e vertices and ke edges. The total dominator chromatic number of a

graph has been studied in [1]. In this section we study TDEC-number of k-subdivision of

a graph. In particular, we obtain some bounds for χ′td (G
1
k ) and prove that for any k ≥ 2,

χ′td (G
1
k ) ≤ χ′td (G

1
k+1 ).

Theorem 4.1. If G is a graph with m edges, then χ′td (G
1
k ) ≥ m, for k ≥ 3.

Proof. For k = 3, in any superedge P {v,w} such as {v, x{v,w}1 , x
{v,w}
2 , w} ,The edge x

{v,w}
1 x

{v,w}
2

need to use a new color in at least one of its adjacent edges, and we cannot use this color
in any other superedges. So we have the result. �

Theorem 4.2. If G is a connected graph with m edges and k ≥ 2, then

χ′td (Pk+1) ≤ χ′td (G
1
k ) ≤ mχ′td (Pk+1).

Proof. First we prove the the right inequality. Suppose that e = uu1 be an arbitrary

edge of G. This edge is replaced with the super edge P {u,u1} in G
1
k , with vertices

{u, x{u,u1}
1 , . . . , x

{u,u1}
k−1 , u1}. We color this superedge with χ′td (Pk+1) colors as a total dom-

inator edge coloring of Pk+1. We do this for all superedges. Thus we need at most

mχ′td (Pk+1) new colors for a total dominator edge coloring of G
1
k .

For the left inequality, if G is a path then the result is true. So we suppose that G

is a connected graph which is not a path. Let P {v,w} be an arbitrary superedge of G
1
k

with vertex set {v, x{v,w}1 , . . . , x
{v,w}
k−1 , w}. Since G is not a path, so at least one of v and

w is adjacent to some vertices of G
1
k except x

{v,w}
1 and x

{v,w}
k−1 , respectively. Let c′ be a

total dominator edge coloring of G
1
k . The two following cases can be occured: either the

restriction of c′ to edges of P {v,w} is a total dominator edge coloring and so we have the
result, or not. If the restriction of c′ to edges of P {v,w} is not a total dominator coloring

then since c′ is a total dominator edge coloring of G
1
k we conclude that at least one of

edges vx
{v,w}
1 and wx

{v,w}
k−1 , as the edges of the induced subgraph P {v,w}, are not adjacent

to every edge of some color class. Without loss of generality we assume that the edge

vx
{v,w}
1 , as the edge of the induced subgraph P {v,w}, is not adjacent to every vertex of

some color class. But c′ is a total dominator coloring of G
1
k so the edge vx

{v,w}
1 is adjacent

to every edge of some color class, as the edge of G
1
k . Hence there is a new color for an

adjacent edge of vx
{v,w}
1 , except the edge x

{v,w}
1 x

{v,w}
2 . Thus if we use this new color for

the edge x
{v,w}
1 x

{v,w}
2 and consider the restriction of c′ for the remaining edges of superedge

P {v,w}, then P {v,w} has a total dominator edge coloring. Therefore the total edge coloring
c′ has at least χ′td (Pk+1) colors. �
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The lower bound of Theorem 4.2 is sharp for P2 and by the following Proposition we
show that the upper bound of this Theorem is sharp for G = K1,n and k = 3.

Proposition 4.1. For every n ≥ 3, χ′td (K
1
3
1,n) = 2n.

Proof. Let e1, . . . , en be the pendant edges of K
1
3
1,n. The adjacent edges to ei is denoted

by fi, and the adjacent edge to fi is denoted by gi for any 1 ≤ i ≤ n. Since edge fi is the
only edge adjacent to ei, so the color of fi should not be used for any other edges of graph,
where 1 ≤ i ≤ n. Thus we color the edges f1, . . . , fn with colors 1, . . . , n, respectively, and
do not use these colors any more. For every 1 ≤ i ≤ n, the edge fi is adjacent to ei and gi,
thus we need a new color for at least one of ei and gi. So we need at least 2n color to have

a TDE-coloring of K
1
3
1,n. Now for every ei and gi we use the new color i + n. Obviously

this is a TDE-coloring of K
1
3
1,n and we have the result. �

Here we improve the lower bound of Theorem 4.2 for k ≥ 10 .

Theorem 4.3. If G is a connected graph with m edges and maximum degree ∆(G) and
k ≥ 10, then

m(χ′td (Pk−1)− 2) + 2 ≤ χ′td (G
1
k ).

Proof. Let e = vw be an edge of G. We consider the superedge P {v,w} with vertex set

{v, x{v,w}1 , . . . , x
{v,w}
k−1 , w}. It is clear that P {v,w} \ {v, w} is the path graph Pk−1. Since

we use repetitious colors for the edges x
{v,w}
1 x

{v,w}
2 and x

{v,w}
k−2 x

{v,w}
k−1 in the TDE-coloring

of paths, so we need at least χ′td (Pk−1) − 2 colors for each superedges and we cannot use

these colors anymore. Also we need two colors for edgesx
{v,w}
1 x

{v,w}
2 and x

{v,w}
k−2 x

{v,w}
k−1 and

some other edges hence the result follows. �

Theorem 4.4. If G is a connected graph with m edges and maximum degree ∆(G) and
k ≥ 10, then

χ′td (G
1
k ) ≥


m(k2 ) + 2 k ≡ 0 (mod 4)

m(k−12 ) + 2 k ≡ 1 (mod 4)

m(k−22 ) + 2 k ≡ 2 (mod 4)

m(k−12 ) + 2 k ≡ 3 (mod 4).

Proof. It follows by Theorems 2.1 and 4.3. �

Theorem 4.5. If G is a connected graph with m edges with maximum degree ∆(G) and
k ≥ 10 , then

χ′td (G
1
k ) ≤ m(χ′td (Pk+1)− 2) + ∆(G).

Proof. As we see in the TDE-coloring of paths, we can use the same color for the pendant
edges. So we assign the colors 1, 2, . . . ,∆(G) to all the edges incident to the vertices
belong to G and we color other edges of any superedges with χ′td (Pk+1)− 2 colors. This is

a TDE-coloring for G
1
k and hence the result follows. �

Theorem 4.6. If G is a connected graph with m edges and k ≥ 10, then

χ′td (G
1
k ) ≤


mk
2 + ∆(G), k ≡ 0 (mod 4)

m(k+1
2 ) + ∆(G), k ≡ 1 (mod 4)

m(k+2
2 ) + ∆(G), k ≡ 2 (mod 4)

m(k+1
2 ) + ∆(G), k ≡ 3 (mod 4).
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Proof. It follows by Theorems 2.1 and 4.5. �

Theorem 4.7. For any k ≥ 4, χ′td (G
1
k ) ≤ χ′td (G

1
k+1 ).

Proof. First we give a TDE-coloring to the edges of G
1

k+1 . Let P {v,w} be an arbitrary

superedge of G
1

k+1 with vertex set {v, x{v,w}1 , . . . , x
{v,w}
k , w}. We have the following cases:

Case 1) There exists an edge u ∈ {x{v,w}1 x
{v,w}
2 , . . . , x

{v,w}
k−1 x

{v,w}
k } such that other edges of

graph are not adjacent to all edges with color class of the edge u. Consider the
graph in Figure 8. Suppose that the edge u has the color i and the edge n has the
color α. The edge m is adjacent to all edges with color class j and j 6= i and the
edge n is adjacent to all edges with color class k and k 6= i. Since k ≥ 4, without

loss of generality, suppose that m 6= vx
{v,w}
1 . We have two subcases:

Subcase i) The color of the edge m is not α. In this case, we make G/u and do not change
the color of any edges. So without adding a new color we have a TDE-coloring
for this new graph.

Subcase ii) The color of the edge m is α. Since the edge u is adjacent to color class α,
so any other edges does not have color α. In this case, by making G/m and
keeping the color of any edges as before, we have a TDE-coloring for this new
graph. Because the edge t is adjacent to color class which is not α, the color
of the edge t is not i (because if the color of the edge t is i it has contradiction
with our assumptions), the edge n is adjacent to all edges with color class k
and the edge u is adjacent to all edges with color class α.

Case 2) For every edge u ∈ {x{v,w}1 x
{v,w}
2 , . . . , x

{v,w}
k−1 x

{v,w}
k }, there exists an edge such that

is adjacent to all edges with color of edge u. Consider the graph in Figure 8.
Suppose that the edge u has the color i and the edge p has the color j and the
edge p is adjacent to all edges with color i. We have two subcases:

Subcase i) The color of the edge q is not i. We make G/r and do not change the color
of any edges. So without adding a new color we have a TDEC for this new
graph since there is no other edges with color i.

Subcase ii) The color of the edge q is i. In this case the edge r is adjacent to color class of
edge s and the color of the edge s does not use for other edges. Now we make
G/u and do not change the color of any edges. Now we consider the color of
edge r. If the color of r is j, then we change it to i and since obviously the
edge s was adjacent to a color class except j, so we have a TDE-coloring. If
the color of the edge r is not j we do not change the color of that and we have
a TDE-coloring again.

Now we do the same algorithm for all superedges. So we have χ′td (G
1
k ) ≤ χ′td (G

1
k+1 ). �

mun t purs q

Figure 8. A part of a superedge in the proof of Theorem 4.7.

Theorem 4.8. For any graph G, χ′td (G
1
3 ) ≤ χ′td (G

1
4 ).

Proof. First we give a TDE-coloring to the edges of G
1
4 . Let P {i,j} be an arbitrary su-

peredge of G
1
4 with edge set {s, v, u, w} (see Figure 9) and suppose that the edge v has

the color α. We have the following cases:
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s v u w

Figure 9. A superedge in G
1
4 .

Case 1) The edges u and s are adjacent with an edge with a color class which is not α. we
have two subcases:

Subcase i) The color of edges u and s are different. In this case, we make G/v and don’t
change the color of any edges. So we have a TDE-coloring for this new graph.
Because two edges u and s are adjacent with an edge with color class which
is not α.

Subcase ii) The color of edges u and s are the same. Suppose that u and s have color β.
In this case β does not use for any other edges. So w is adjacent with an edge
with color class except β. Now we make G/u. So we have a TDE-coloring for
this new graph.

Case 2) The edge u is adjacent to all edges with color class α. we have two subcases:
Subcase i) The color of the edge w is not α. Suppose that the edge u has color γ. If the

edge v is adjacent with all edges with color γ, and if the color of s is γ, we
make G/u. But if the color of edge s is not γ, then we make G/u and assign
the color γ to the edge w. So we have a TDE-coloring for this new graph. If
the edge v is adjacent to all edges with color except γ (edge s), then we make
G/u. So we have a TDE-coloring for this new graph.

Subcase ii) The color of the edge w is α. We have two new cases. First, the edge v
is adjacent to an edge with color class γ. Any adjacent edge with w is not
adjacent to edge with color class α (except u). So we make G/u and assign
the color γ to w. This is a TDE-coloring for this new graph. Second, v is not
adjacent with color class γ. So the color of the edge s does not use any more.
Also the edge s is not adjacent to edge with color class α. So we make G/v.
This is a TDE-coloring for this new graph.

Case 3) The edge s is adjacent to all edges with color class α. We have two subcases:
Subcase i) If v is the only edge which has color α, then we make G/u when v is adjacent

with color class of edge s and make G/s when v is adjacent with color class
of edge u. So this is a TDE-coloring for this new graph.

Subcase ii) If there exist some edges with color α, then the edge u is adjacent with color
class except α. So we make G/v. This is a TDE-coloring for this new graph.

We apply this TDE-coloring for all superedges. So we obtain a TDE-coloring for G
1
3 .

Therefore we have χ′td (G
1
3 ) ≤ χ′td (G

1
4 ). �

Theorem 4.9. For any graph G, χ′td (G
1
2 ) ≤ χ′td (G

1
3 ).

Proof. First we give a TDE-coloring to the edges of G
1
3 . Let P {i,j} be an arbitrary su-

peredge of G
1
3 with edge set {s, v, u} (see Figure 10) and suppose that the edge v has the

color α. We have the following cases:

Case 1) The edges u and s are adjacent with an edge with a color class which is not α. we
have two subcases:

Subcase i) The color of edges u and s are different. In this case, we make G/v and don’t
change the color of any edges. So we have a TDE-coloring for this new graph.
Because two edges u and s are adjacent with an edge with color class which
is not α.
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s v u

Figure 10. A superedge in G
1
3 .

Subcase ii) The color of edges u and s are the same. Suppose that u and s have color β.
In this case any other edges is not adjacent with color class β, because i and

j are not adjacent vertices (Because of the definition of G
1
3 ). Now we make

G/u. So we have a TDE-coloring for this new graph.
Case 2) The edge s is adjacent to all edges with color class α. We have two subcases:

Subcase i) If v is the only edge which has color α, then we make G/u when v is adjacent
with color class of edge s and make G/s when v is adjacent with color class
of edge u. So this is a TDE-coloring for this new graph.

Subcase ii) If there exist some edges with color α, then the edge u is adjacent with color
class except α. If the edges u and s have the same color then we make G/u
and if u and s have different colors, then we make G/v. This is a TDE-coloring
for this new graph.

Case 3) The edges u and s are adjacent to all edges with color class α. So there is no other
edge with color α. We have two subcases:

Subcase i) The edges u and s have the same color then we make G/u.
Subcase ii) The edges u and s have different colors, then we make G/u when v is adjacent

with color class of edge s and make G/s when v is adjacent with color class
of edge u.

We apply this TDE-coloring for all superedges. So we obtain a TDE-coloring for G
1
2 .

Therefore we have χ′td (G
1
2 ) ≤ χ′td (G

1
3 ). �

5. Conclusions

A total dominator edge coloring (briefly TDE-coloring) of a graph G is a proper edge
coloring of G in which each edge of the graph is adjacent to every edge of some color class.
The total dominator edge chromatic number (briefly TDEC-number) χ′td (G) of G is the
minimum number of color classes in a TDE-coloring of G. We obtained some properties
of χ′td (G) and computed this parameter for specific graphs. We also examined the effects
on χ′td (G) when G is modified by operations on vertices and edges of G. Finally, we
investigated TDEC-number of the k-subdivison of G.
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