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LOCATION OF BURST AND REPEATED BURST ERROR IN SINGLE

AND ADJACENT SUB-BLOCKS

PANKAJ KUMAR DAS1, SUBODH KUMAR2, §

Abstract. The paper gives necessary and sufficient conditions for the existence of lin-
ear codes capable of identifying burst/repeated burst errors whether it is confined to
one sub-block or spread over two adjacent sub-blocks. Examples of such codes are also
provided. We also provide two methods one using tensor product and other using cyclic
code to construct such codes. Finally, comparisons on the number of check digits of such
codes with the corresponding error detecting and correcting codes are also provided.
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1. Introduction

To improve the efficiency of the communication channel, it is very important to know
the nature of the channel. Once it is known that a particular type of error occurs in
a channel, codes are constructed accordingly. In view of this, the codes that deal with
only burst error and repeated burst are studied in [1, 5, 6]. It is observed by Berardi,
Dass and Verma that in busy communication channels, burst errors repeat themselves
and they called the errors as “2-repeated burst error” in [1]. Further, they observed in [5]
that burst error repeat more than two times in more busy communication channels and
they considered “m-repeated burst error”. Such type of errors are found in channels like
lutamate-injured networks, glutamate-injured networks [12].

Definition 1.1. [6] A burst of length b is an n-tuple whose only nonzero components are
confined to some b successive positions, the first and the last of which is nonzero.

Definition 1.2. [5] An m-repeated burst of length b is an n-tuple whose only nonzero com-
ponents are confined to m distinct b successive positions, the first and the last component
of each being nonzero.

1 Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam-784028, India.
e-mail: pankaj4thapril@yahoo.co.in, pankaj4@tezu.ernet.in;
ORCID: https://orcid.org/0000-0003-2197-2389.

2 Department of Mathematics, Shyam Lal College, University of Delhi, Delhi-110032, India.
e-mail: subodh05031981@gmail.com; ORCID: https://orcid.org/0000-0002-3242-9333.

§ Manuscript received: May 05, 2020; accepted: August 04, 2020.
TWMS Journal of Applied and Engineering Mathematics, Vol.12, No.3 © Işık University, Department
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In [3, 4], the authors obtain necessary and sufficient conditions for the existence of burst
and repeated burst error locating codes. This concept of error locating (EL) codes was
introduced by Wolf and Elspas [13]. In [3, 4], the authors consider the situation when error
is confined to one sub-block only. This work was done keeping in view of channels where the
error or fault occurring in one sub-block (like error in data of RAM chips) does not affect
its adjacent sub-block [7]. But in case of data recorded on a continuous surface (medium),
the error may not confined to one sub-block, it may affect two adjacent sub-blocks (written
as 2-adjacent sub-blocks) also. This motivates us to work on burst/repeated burst error
which may spread over to adjacent sub-blocks. This type of errors falls in the category
of B1 type errors [8] with the restriction that the burst/repeated error occurs within 2
consecutive sub-blocks.

Consider an (n = ft, k) linear code over GF (q), subdivided into f sub-blocks, each of
length t and H its parity check matrix. Let Eb (Em,b) be the set of all burst (m-repeated
burst) errors of length at most b which may spread over to its adjacent sub-block (b ≤ t).
In order to locate such errors, the following three conditions need to be satisfied.

(i) eHT 6= 0 ∀ e ∈ Eb (Em,b).

(ii) eiH
T 6= ejH

T ∀ ei, ej ∈ Eb (Em,b) such that ei and ej represent the errors occurring
in two distinct single sub-blocks.

(iii) e′iH
T 6= e′jH

T ∀ e′i, e′j ∈ Eb (Em,b) such that e′i represents the error spearding over

any 2-adjacent sub-blocks and e′j repesents the error spreading over in any other
2-adjacent sub-blocks or confined to any one single sub-block.

We denote such an (n = ft, k) linear code over GF (q) that detects and locates any
error from the set Eb by a q-ary (n = ft, k) EbL-code and from the set Em,b by a q-ary
(n = ft, k) Em,bL-code.

Rest of the paper is organized as follows. In Section 2, we obtain necessary and sufficient
conditions for a q-ary (n = ft, k) EbL-code followed by an example. Two methods, one
using tensor product and the other using cyclic code, to construct such codes are also given.
In Section 3, we obtain similar conditions for a q-ary (n = ft, k) Em,bL-code, followed by
an example and the analogous two methods. Section 4 gives some comparisons of check
digits of these codes with the corresponding error detecting and correcting codes.

2. Location of burst error in adjacent sub-blocks

In this section, we derive necessary and sufficient conditions needed to exist a q-ary
(n = ft, k) EbL-code. The following is the necessary condition.

Theorem 2.1. A q-ary (n = ft, k) EbL-code satisfies

qn−k ≥ 1 + f
(
qb − 1

)
+ (f − 1)bb/2c(q − 1). (1)

Proof. According to the conditions (i) and (ii), there are 1+f(qb−1) distinct syndromes,
including the zero syndrome (refer Theorem 1, [3]).

In order to satisfy the condition (iii), let X be the set of n-tuples such that in one
2-adjacent sub-blocks, the (t − i + 1)th position of the first sub-block and ith position
of the second sub-block, where i = 1, 2, . . . , bb/2c, are both occuppied by same non-zero
component out of the q − 1 nonzero components. The elements of X will be in different
cosets due to condition (iii). The number of elements of X is bb/2c(q − 1) and so, the
total number of distinct syndromes satisfying conditions (i)− (iii) is 1 + f

(
qb− 1

)
+ (f −

1)bb/2c(q−1). The result follows as the maximum number distinct syndromes is qn−k. �

Now, we give the sufficient condition for existence of a q-ary (n = ft, k) EbL-code.
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Theorem 2.2. The existence of a q-ary (n = ft, k) EbL-code can be ensured provided

qn−k > qb−1

[
1 + (f − 1)qb−1(q − 1)t

]
. (2)

Proof. For the existence of the required code, we follow the same technique used in the
proof of Theorem 4.7 of [10] (also refer Sacks [11], Theorem 2, Dass [3]) by constructing
suitably the parity check matrix H(n−k)×n of the required code.

Let the first f−1 sub-blocks of H(n−k)×n and the first ρ−1 columns of the f th sub-block

are suitably added satisfying the conditions (i)− (iii). Then, to add the ρth column hρ of

the f th sub-block to H satisfying the conditions (i)− (iii), we proceed as follows.
The total number of linear combinations satisfying conditions (i)− (ii) that hρ should

not be equal to, and this number is (by Theroem 2, [3])

qb−1 + (f − 1)qb−1

[
qb−1

(
(q − 1)(t− b+ 1) + 1

)
− 1

]
.

Now according to condition (iii), we can add the column hρ of f th sub-block provided

hρ 6= (α1hρ−1 + α2hρ−2 + · · ·+ αb−1hρ−(b−1)) + (β1hi + β2hi+1 + · · ·+ βbhi+(p−1)), (3)

where αi, βi ∈ GF (q), 2 ≤ p ≤ b and βi’s are such that the first and the last of the p
consecutive columns hi’s lie in both sub-blocks in any 2-adjacent sub-blocks.

In the expression (3), αi’s can be chosen by qb−1 ways and βi’s can be chosen by∑b
p=2(p − 1)qp−2(q − 1)2 = bqb−1(q − 1) − qb + 1. Therefore the total number of linear

combinations, according to the condition (iii), is given by qb−1(f − 1)
[
bqb−1(q− 1)− qb + 1

]
.

Therefore, by conditions (i)− (iii), addition of the column hρ is possible provided

qn−k > qb−1 + qb−1(f − 1)

[
qb−1

(
(q − 1)(t− b+ 1) + 1

)
− 1

]
+ qb−1(f − 1)

[
bqb−1(q − 1)− qb + 1

]
.

On simplification, we get the sufficient condition (2). �

Example 2.1. The following is a parity check matrix of a 2-ary (20, 12) E3L-code, where
t = 5, b = 3, f = 4, q = 2.

H =



1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0

0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1
0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1

0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0


Now, we give two methods, one using tensor product (⊗) and another using cyclic code,

to construct our EbL-code. The first one, being similar as in [14], is without proof.

Theorem 2.3. Let H be a parity check matrix of an (n1 = mt, k) linear code that detects
burst errors of length at most b within a sub-block of length t and P be a parity check
matrix of an (n2 = ms, ρ) linear code that corrects any burst of length at most 2. Then,
the (n1n2, kρ) code obtained from the parity check matrix P ⊗H is an EbL-code.

Theorem 2.4. If C(n, k) is a cyclic code with the irreducible polynomial g(x) as the
generator polynomial, the order of roots of g(x) is p and if the code C corrects all bursts
of length at most b, then there exists an EbL-code of length n = p(p+ 4).
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Proof. Let α be a root of g(x). Then, the cyclic code C, generated by g(x), is the null space
of the check matrix A =

[
1 α α2 . . . αp−1

]
, where each entry αi is to be regarded as

a binary (n− k)-tuple. Then, the matrix A is of size n− k by p. Consider the matrix H

H =

 A 0 0 0 A A 0 A 0 A . . . X
0 A 0 0 A αA 0 α3A 0 α5A . . . Y
0 0 A 0 A 0 A 0 A 0 . . . Z
0 0 0 A A 0 α2A 0 α4A 0 . . . W

 ,

where

XYZ
W

 =


A

αp−1A
0
0

, when p is even and

XYZ
W

 =


0
0
A

αp−1A

, when p is odd. We can verify

that the columns of H satisfy the conditions (i)− (iii). Therefore, the code obtained from
the parity check matrix H is an EbL-code and its length is p(p+ 4). �

3. Location of repeated burst error in adjacent sub-blocks

In this section, we derive necessary and sufficient conditions required for existence of
such a q-ary (n = ft, k) Em,bL-code.

Theorem 3.1. A q-ary (n = ft, k) Em,bL-code satisfies

qn−k ≥1 + f
(
qmb − 1

)
+ (f − 1)b(mb)/2c(q − 1). (4)

Proof. By Theorem 2.1 [4], the number of distinct syndromes (including the zero syn-
drome) satisfying the condtions (iv)− (v) is 1 + f(qmb − 1). For the condition (vi) to be
satisfied, let X be a set of the collection of all n-tuples in which the (t − i + 1)th posi-
tion of the first sub-block and ith position of the second sub-block of any one 2-adjacent
sub-blocks are same nonzero component, where i = 1, 2, . . . , b(mb)/2c. The syndomes of
elements of X have to be distinct among themselves and from syndromes computed follow-
ing conditions (iv)− (v). So, the total number of distinct syndromes satisfying conditions
(iv)− (vi) is 1 + f

(
qmb − 1

)
+ (f − 1)b(mb)/2c(q − 1). The proof is complete. �

Corollary 3.1. A q-ary (n = ft, k) E2,bL-code satisfies

qn−k ≥ 1 + f
(
q2b − 1

)
+ (f − 1)b(q − 1).

Remark 3.1. For m = 1, Theorem 3.1 coincides with Theorem 2.1.

Theorem 3.2. The existence of a q-ary (n = ft, k) Em,bL-code (t > mb) is ensured if

qn−k >qm(b−1)

[(
t−mb+ (m− 1)

m− 1

)
(q − 1)m−1 +

m−2∑
i=0

(
t−mb+ i

i

)
(q − 1)iqm−2−i

]
×[

1 +

{
(f − 2)

(
2t−mb+m

m

)
− (f − 2)

(
t−mb+m

m

)
+

(
2t− 1−mb+m

m

)

−
(
t− 1−mb+m

m

)}
(q − 1)mqm(b−1) +

m−1∑
i=0

{
(f − 2)

(
2t−mb+ i

i

)

− (f − 2)

(
t−mb+ i

i

)
+

(
2t− 1−mb+ i

i

)
−
(
t− 1−mb+ i

i

)}
(q − 1)iqmb−1−i

]
. (5)

Proof. For proof, we follow the same procedure as of Theorem 2.2. Suppose the first f −1
sub-blocks of H(n−k)×n and the first ρ−1 columns of the f th sub-block have been suitably

added. The ρth column hρ of the f th sub-block can be added to H provided the conditions
(iv)− (vi) are satisfied.
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The number of the linear combinations satisfying the conditions (iv)−(v) that hρ should
not be equal to, is (refer Theorem 2.3, [4])

[(
ρ−mb+ (m− 1)

m− 1

)
(q − 1)m−1qm(b−1) +

m−2∑
i=0

(
ρ−mb+ i

i

)
(q − 1)iqmb−2−i

][
1 + (f − 1)×

[(t−mb+m

m

)
(q − 1)mqm(b−1) +

m−1∑
i=0

(
t−mb+ i

i

)
(q − 1)iqmb−1−i − 1

]]
. (6)

For condition (vi), the column hρ of f th sub-block can be added provided it is not be a
linear combination of

(A) immediately preceding at most b−1 columns, together with linear combinations of
at most b consecutive columns out of the first ρ− b columns of the f th sub-block,
and together with

(B) linear combinations of any m sets of at most b consecutive columns which are
spread over any 2-adjacent sub-blocks previously chosen.

The number of linear combinations in (A) and (B) is

[(
ρ−mb+ (m− 1)

m− 1

)
(q − 1)m−1qm(b−1) +

m−2∑
i=0

(
ρ−mb+ i

i

)
(q − 1)iqmb−2−i

]
×[

1 +
{(t+ ρ− 1−mb+m

m

)
−
(
t−mb+m

m

)
−
(
ρ− 1−mb+m

m

)}
(q − 1)mqm(b−1)

+

m−1∑
i=0

{(t+ ρ− 1−mb+ i

i

)
−
(
t−mb+ i

i

)
−
(
ρ− 1−mb+ i

i

)}
(q − 1)iqmb−1−i

+ (f − 2) + (f − 2)

[{(2t−mb+m

m

)
− 2

(
t−mb+m

m

)}
(q − 1)mqm(b−1)

+

m−1∑
i=0

{(
2t−mb+ i

i

)
− 2

(
t−mb+ i

i

)}
(q − 1)iqmb−1−i

]]
. (7)

Therefore, the column hρ can be added to H provided

qn−k > Expr.(6) + Expr.(7). (8)

On replacing ρ by t, (8) reduces to the required result. �

Corollary 3.2. The existence of a q-ary (n = ft, k) E2,bL-code(t > 2b) is ensured provided

qn−k >q2(b−1)
[
(t− 2b+ 1)(q − 1) + 1

][
1 +

{
(f − 2)

( (t− 2b+ 2)(3t− 2b+ 1)

2

)
+

(t− 2b+ 1)(3t− 2b)

2

}
(q − 1)2q2(b−1) + (f − 1)t(q − 1)q2(b−1)

]
.

Remark 3.2. For m = 1, Theorem 3.2 coincides with Theorem 2.2.

Now, we give an example of an Em,bL-code and the extension of Theorem 2.3 and
Theorem 2.4 for m-repeated burst errors.
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Example 3.1. The following matrix is a parity check matrix of a 2-ary (n = 20, 7) E2,bL-
code, where t = 5, b = 2, f = 4, q = 2.

H =



1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1


Theorem 3.3. Let H be a parity check matrix of an (n1 = mt, k) linear code that detects
m-repeated burst errors of length at most b within a sub-block of length t and P be a parity
check matrix of an (n2 = ms, ρ) linear code that corrects any burst of length at most 2.
Then, the (n1n2, kρ) code obtained from parity check matrix P ⊗H is an Em,bL-code.

Theorem 3.4. If C(n, k) is a cyclic code with the irreducible polynomial g(x) as the
generator polynomial, the order of roots of g(x) is p and if the code C corrects all m-
repeated bursts of length at most b, then there exists an Em,bL-code of length n = p(p+ 4).

4. Comparison of necessary and sufficient number of check digits

In this section, we compare the necessary and sufficient number of check digits needed
for the codes of this paper with the burst error detecting and correcting code ([10, 1, 5]).

First, we give comparision among the neccessary sufficient number of check digits needed
for a EbL-code (Theorem 2.1−2.2) with burst error detecting and correcting codes (Theo-
rem 4.13 and Theorem 4.16; and Theorem 4.14 and Theorem 4.17 of [10]). The following
Table 1-2 and Figure 1-2 show that number of check digits of a EbL-code lies in between
burst error detecting and correcting code.

Comparison on necessary check digits for codes detecting, correcting burst errors with our EbL-codes for q = 2

n− k n− k n− k
f t b n Codes in Our codes in Codes in

Theorem 4.13 [10] Theorem 2.1 Theorem 4.16 [10]
5 9 2 45 2 5 7
6 9 2 54 2 5 7
7 9 2 63 2 5 7
8 9 2 72 2 5 8
9 9 2 81 2 6 8
10 9 2 90 2 6 8
11 9 2 99 2 6 8
12 9 2 108 2 6 8
13 9 2 117 2 6 8
14 9 2 126 2 6 8
15 9 2 135 2 6 9

Table 1

40 60 80 100 120 140

2

4

6

8

n

n
−
k

Theorem 4.13 [10]
Theorem 2.1

Theorem 4.16 [10]

Figure 1

Comparison on sufficient check digits for codes detecting, correcting burst errors with our EbL-codes for q = 2
n− k n− k n− k

f t b n Codes in Our codes in Codes in
Theorem 4.14 [10] Theorem 2.2 Theorem 4.17 [10]

5 9 2 45 2 8 8
6 9 2 54 2 8 8
7 9 2 63 2 8 8
8 9 2 72 2 8 9
9 9 2 81 2 9 9
10 9 2 90 2 9 9
11 9 2 99 2 9 9
12 9 2 108 2 9 9
13 9 2 117 2 9 9
14 9 2 126 2 9 9
15 9 2 135 2 9 10

Table 2

40 60 80 100 120 140

2

4

6

8

10

n

n
−
k

Theorem 4.14 [10]
Theorem 2.2

Theorem 4.17 [10]

Figure 2
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Now, we give the comparisons among the necessary and sufficient number of check
digits required for a q-ary E2,bL-code (Theorem 3.1 − 3.2) with that of 2-repeated burst
error detecting and correcting codes (Theorem 2.1–2.2 of [1]; Theorem 2.1–2.2 of [5]). The
following tables and figures show that the number of check digits for our codes lies between
repeated burst error detecting and correcting codes.

Comparison on neccessary check digits for our E2,bL-code with the 2-repeated detecting and correcting codes for q = 2
n− k n− k n− k

f t b n Codes in Our codes in Codes in
Theorem 2.1 [1] Theorem 3.1 Theorem 2.1 [5]

5 9 2 45 4 7 12
6 9 2 54 4 7 13
7 9 2 63 4 7 13
8 9 2 72 4 8 14
9 9 2 81 4 8 14
10 9 2 90 4 8 14
11 9 2 99 4 8 15
12 9 2 108 4 8 15
13 9 2 117 4 8 15
14 9 2 126 4 8 15
15 9 2 135 4 8 16

Table 3

40 60 80 100 120 140

5

10

15

n

n
−
k

Theorem 2.1 [1]
Theorem 3.1

Theorem 2.1 [5]

Figure 3

Comparison on sufficient check digits for our E2,bL-code with the 2-repeated detecting and correcting codes for q = 2
n− k n− k n− k

f t b n Codes in Our codes in Codes in
Theorem 2.2 [1] Theorem 3.2 Theorem 2.2 [5]

5 9 2 45 8 16 18
6 9 2 54 8 16 19
7 9 2 63 8 17 19
8 9 2 72 9 17 20
9 9 2 81 9 17 21
10 9 2 90 9 17 21
11 9 2 99 9 17 22
12 9 2 108 9 18 22
13 9 2 117 9 18 22
14 9 2 126 9 18 23
16 9 2 135 10 18 23

Table 4

40 60 80 100 120 140

10

15

20

n

n
−
k

Theorem 2.2 [1]
Theorem 3.2

Theorem 2.2 [5]

Figure 4

5. Conclusions

In this paper, we present linear codes that are capable of locating burst/repeated burst
errors occurring beyond single sub-block. These codes have the capability of locating
burst/repeated burst errors which are spread over two adjacent sub-blocks. We can also
extend this work for other types of errors like CT-burst error [2], cyclic burst error [9],
low density burst error [15] etc.

Acknowledgement. The authors would like to extend their gratitude to the anonymous
reviewer(s) for their valuable comments.
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