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ON PROPER HAMILTONIAN-CONNECTION NUMBER OF GRAPHS

R. SAMPATHKUMAR!, S. ANANTHARAMAN", §

ABSTRACT. A graph G is Hamiltonian-connected if every two vertices of G are connected
by a Hamilton path. A bipartite graph H is Hamiltonian-laceable if any two vertices
from different partite sets of H are connected by a Hamilton path. An edge-coloring
(adjacent edges may receive the same color) of a Hamiltonian-connected (respectively,
Hamiltonian-laceable) graph G (resp. H) is a proper Hamilton path coloring if every two
vertices u and v of G (resp. H) are connected by a Hamilton path P, such that no two
adjacent edges of P,, are colored the same. The minimum number of colors in a proper
Hamilton path coloring of G (resp. H) is the proper Hamiltonian-connection number of
G (resp. H). In this paper, proper Hamiltonian-connection numbers are determined for
some classes of Hamiltonian-connected graphs and that of Hamiltonian-laceable graphs.

Keywords: Hamiltonian-connected graph, Hamiltonian-laceable graph, proper Hamilton
path coloring, proper Hamiltonian-connection number.
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1. HAMILTONIAN-CONNECTED GRAPHS

We refer the book [1] for graph theory notation and terminology not described here.
A Hamilton path in a graph G is a path containing every vertex of G. A graph G is
Hamiltonian-connected if for every pair u, v of distinct vertices of GG, there is a Hamilton
u-v path in G. Let G be an edge-colored connected graph, where adjacent edges may be
colored the same. A path P in G is properly colored or P is a proper path in G if no two
adjacent edges of P are colored the same.

For a Hamiltonian-connected graph G, an edge-coloring ¢ : E(G) — {1,2,...,k} is
a proper Hamilton path k-coloring if any two vertices of G are connected by a proper
Hamilton path in G. An edge-coloring c is a proper Hamilton path coloring if ¢ is a proper
Hamilton path k-coloring for some positive integer k. The minimum number of colors in a
proper Hamilton path coloring of G is the proper Hamiltonian-connection number of G,
denoted by hpc(G).

Since every proper edge-coloring of a Hamiltonian-connected graph G is a proper Hamil-
ton path coloring of G and there is no proper Hamilton path 1-coloring of G, we have 2 <
hpe(G) < x/(G), where G is of order at least 3 and x'(G) is the chromatic index of G.
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In [2], Bi, Byers and Zhang introduced the concept of proper Hamiltonian-connection
number for Hamiltonian-connected graphs and proved that: for every integer n > 4,
hpe(K,,) = 2, where K, is the complete graph on n vertices; for each odd integer n > 3,
hpe(C,OKs) = 3, where C), is the cycle on n vertices and [J denotes the Cartesian product.
Also, they conjectured that: if G is a Hamiltonian-connected graph, then hpc(G) < 3.

Let G be a Hamiltonian-connected graph of order n > 4. Then, G is 3-connected, and
so 0(G) > 3, where 0(G) is the minimum degree of G. This implies that the minimum
possible size of G is L?’"—QHJ . In [4], Moon proved that for each integer n > 4, there exists
a Hamiltonian-connected graph of order n and size L?’”—Q‘HJ .

For each integer k > 2, consider Py[1K5. The two disjoint paths in Py[JKs of order
k with z;y; € E(PyOKy) for i € {1,2,...,k} are P, = z122... 2 and P, = 11y2. .. Y-
Let Hjy be the cubic graph of order 2k 4+ 2 obtained by adding two adjacent vertices u
and v to PyJK5 and joining the vertex u to x1 and y1; the vertex v to x; and y;. Graph
Hj, is Hamiltonian-connected and has the minimum size 3(k + 1) among the Hamiltonian-
connected graphs of even order 2k + 2. For k > 3, the graph Fj of odd order 2k + 1
is constructed from P,[0Ks by adding a new vertex u and joining u to each vertex in
{z1, 2k, y1,yx}. Graph Fy has 2k vertices of degree 3 and one vertex of degree 4; it is a
Hamiltonian-connected graph and has the minimum size 3k + 2 among the Hamiltonian-
connected graphs of order 2k + 1. In [2], Bi et al. proved that, for each integer k > 2,
hpc(Hy) = 3 and for each integer k > 3, hpc(Fy) = 3.

A circulant graph, denoted by Circ(n : {a1,aq,...,a;}), where 0 < a1 < ag < -+ < ag,
< L%J , has vertices vp, v1,v2,...,v,—1 and edge v;v; if, and only if, | j — i | = a4 (mod n)
for some ¢, t € {1,2,...,k}. If ‘n is even and ax # 5’ or ‘n is odd’, then it is 2k-regular;
otherwise, it is (2k-1)-regular. In circulants, subscripts in v; are reduced modulo n.

2. GRAPHS WITH hpc = 2

The only known graph with hpc = 2 is K,,, where n > 4. Let G be a Hamiltonian-
connected graph of order at least 4. To show that hpc(G) = 2, we must show that G has
a proper Hamilton path 2-coloring; that is, a 2-edge-coloring of G with the property that
for every two vertices u and v of G, there is a proper Hamilton u-v path in G. In this
section, we find more graphs in the class of graphs with hpc = 2.

Lemma 2.1. For every integer n > 7, hpc(Circ(n : {1,2,3})) = 2.

Proof. We consider two cases, according to whether n is even or odd.
Case 1. n is even.

Let n =2k, k>4, G = Circ(2k : {1,2,3}) and F = {v;vi41 : 1 € {1,3,5, ...,2k — 1}},
where vor, = vg. Then, F' is a 1-factor of (G. Define an edge-coloring ¢ of G by assigning
color blue to each edge of F' and color red to the remaining edges of G. We show that
for every two vertices v; and v; of G, there is a proper Hamilton v;-v; path in G. As the
edge-colored G is vertex-transitive, we verify for ¢ = 0.

(Observe that, in the following paths, the first and the last edges are colored blue.)

vg-v1 path: vovog_1V2k—2V2k—3 ... V4V3V2V1;
vo-v2 pPath: vovor_1V2p_2V2k—3 ... V4V3VIV2;
vo-vg path: for k > 5, vgvog_1V9k_oVok_3 ... UsU01V4v3; for k = 4, vou7v6U5U2V1V4V3;
vg-vq path: for k > 5, vgvog_1V9k_oVok_3 ... U5V U3Vg; for k = 4, vou7v6U5U2V1V3V4;

Vp-V2i—1 path: vouar_1 V1VV3V4 ... V2 V2i11V2i12 V2i45V2i46 V2i4+9V2i410 - - -
V2k—13V2k—12 V2k—9V2k—8 V2k—5V2k—4 V2k—2 V2k—3 V2k—6V2k—7 V2k—10V2k—11 V2k—14V2k—15
-2 U2i412V244+11 V23+8V2i4+7 U2i4+4V2i+3 V2iV2i—1
if ‘k >10iseven andi € {3,5,7,....,k—7,k—5,k—3} or ‘k > 11 is odd and i € {4,6,8,
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k=T k—5k—3};

for k = 9, vou17v1V2V3V4V5V6V9V10V13V14V16V15V12V11V8VT,
VoV17V102V3V4V5V6V7VU8V9V10V13V14V16V15V12V11;

for k = 8, vov15V1V2V3V4V7VRV11V12V14V13V10V9 V6 Vs,
VQU15V1V2U3V4V5V6UTU8V11 V120V14V13V10V9;

for k = 7, vov13v10203V4U5V6V9V10V12V11V8VT;

for k = 6, vyv11v1V203V4V7V8V10V9VgVs; and

VoU2k—1 V1V2VU3V4 . . - U242 V2i4+1V2i+2 V2i+5V2i+6 V2i+9V2i+10 - - - V2k—15V2k—14 V2k—11V2k—10
V2k—7V2k—6 V2k—3 VU2k—2 V2k—4V2k—5 V2k—8V2k—9 V2k—12V2k—13 - - - UV2i+12V2i+11 U2i+8V2i+7
V2i+4V2i+3 V2iV2i—1

if 'k >10isevenandi € {4,6,8,...,k—6,k—4,k—2} or ‘k > 9isodd and i € {3,5,7,...,
k—6,k—4,k—2),

for k = 8, vov15v1V2V3V4V5V6VIV10V13V14V12V11V8VT,
VOV15V1V2V3V4V5V6V7V8V9V10V13V14V12V11;

for k = 7, vov13v10203V4V7V8V11V12V10V9VUE V5, VoU13V1V2V3VLV5VEVTVRV11 V12010095

for k = 6, vov11v1V203V4V5V6V9V10VRVT;

for k = 5, vovgvivov3V4v7V8VgVs; and

v0-V2; Path: vovok_1V2k_2V2k_3 ... V211 V2i—2V2i—3 V2i—6V2—7 U2i—10V2—11
V13 V10V9 VU5 V2VU1 V3V4 U7V V11V12 - . - U2{—13V2i—12 U2;—9V2i—8 V2;—5VU2i—4 U2;—1V2;
if 'k >10isevenandi € {4,6,8,...,k—6,k—4,k—2} or ‘k > 1lisodd and i € {4,6,8,...,
k—T7bk—5k—3);

for k = 9, vov17V16V15V14V13V120V11V10V9V6V5V2V1 V3VU4VT VS,
VoV17V160V15V14V13V10V9V6V5V2V1V3V4VTV8V11V12;

for k = 8, voU15V14V13V12011010V9V6V5V2V1 U3V4 VTR,
VoV15V140V13V10V9VeV5V2V1 V3V4V7V8V11V12;

for k = 7, vov13v120V11V10V9V6V5V2V1 V3V4VTVR;

for kK = 6, vyv11v10V9VgU5 V21 V3V4V7Vs; and

VoU2k—1V2k—2V2k—3 - - - V2341 VU2;—2V2i—3 V2;—6V2;—7 V2;—10V2i—11
V15 V12011 V8U7 V4V3 V1V2 U5V6 V9U10 V13V14 - - - U2j—13V2i—12 V2;—9V2;—8 V2;—5V2;—4 V2;—1V2;
if‘k >10isevenandi € {3,5,7,...,k—7,k—5,k—3} or ‘k > 9isodd and i € {3,5,7,...,
k—6,k—4,k—2};

for k = 8, vov15v14v13012011V10V9U8VTV4V3V1 V2V5 Vg,
VV15V14V13V120V11V8V7V4V3V1V2V5V6V9V10;5
for k = 7, vov13v12011V10V9V8VTV4LV3V1 V2V5 V6, VoU13V12V11V8VTV4VIVI V2VU5VU6V9V10;
for k = 6, vyv11v10V9U8VTV4V3V VU5V
for £ = b, vgvgugurv4V3V1 VU5 VE;
vo-v2k—3 path: for k > 5, vovor_101v2v3 ... Vop_5V2k_4V2k_2V2k—3;
for k = 4, vgurv1v2V3V4V6V5;
vo-v2g—2 path: for k > 5, vovor_101v2v3 ... Vop_5V2k_4V2k_3V2k—2;
for k = 4, vgvrv1v9U3V4V5V6;
(Observe that, in the following path, the first and the last edges are colored red.)
V0-U2g—1 Path: vov1vav3 ... Vor_4V2k_3V2k_2V2k—1-

Case 2. n is odd.

Let n=2k—1,k >4, G=Circ(2k—1:{1,2,3}) and C = vgv1vs ... vog_2v9. Then, C
is a Hamilton cycle of G. Define an edge-coloring ¢ of G by assigning color red to each edge
of C' and color blue to the remaining edges of G. As the edge-colored G is vertex-transitive,
we show that for every vertex v;, j # 0, of G, there is a proper Hamilton vg-v; path in G.

vo-v1 path: for & > 7, vg vog_3V2p—2 Vop_5V2k—4 Vok_7V2k—6 ... UsUp U3V4 V2V1;

for k = 6, VoUV9U10V7V8V5V6V3V4V2V
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for k = 5, vgu7U8U5VEV3VLVLVT;
for k = 4, VoUV5V6UV3V4V2V1
vo-v2 path: for k > 7, vg vor_3v2k_2 Vog_5V2k—4 Vok—TVU2k—6 -.. VsV V3V4 V1V2;
for k = 6, voUV10UTVUSV5VEU3V4V1V2;
for k = 5, vgu7v8U5VEV3VLVV;
for k = 4, vousveU3v4V1V9;
vo-v3 path: for k > 8, vg vov1 Vog_3V2k—2 Vop_5V2k—4 Vok_7V2k—6 ... VTV UsUg V4U3;
for k = 7, vovav1v11v12V9V10V7V8V5VEVAVS;
for k = 6, voU2V1V9UIVTVIVEVEVLVS;
for k = 5, vgUov1V7U8V5V6U4V3;
for k = 4, vgvov1V5v6V4V3;
vo-vg4 path: for k > 8, vo vov1 Vog_3V2k—2 Vop_5V2k—4 Vok_7V2k—6 ... VTUS UsUp U3V4;
for k = 7, vgvov1011V12V9V10V7VU8V5VEU3V4;
for k = 6, vgUav1V9U10UTVUV5VEV3V4;
for k = 5, vgUov1V7U8V5V6U3V4;
for k = 4, vgvov1U506V304;
Vo-v2i—1 path: vouag_o V2V V4V3 VU5 ... V2_6U2—7 V2i—4V2i—5 V2i—2V2i—3 V2V 41
V2i4+4V2i+5 V2i4+8V2i+9 - .. V2k—12V2k—11 V2k—-8V2k—7 V2k—-4V2k—3 V2k—-5V2k—6

V2k—9U2k—10 V2k—13V2k—14 - - - U2i+11V2i+10 V2i+7V2i+6 V2i+3V2i+2 U2i—1
if ‘k>10iseven andi € {4,6,8,...,k—6,k—4,k—2} or ‘k > 11 is odd and i € {3,5,7,
...,k—6,k—4,k—2}’;
for k = 9, vov16V201V4V3V6VTV10V11V14V15V13V12V9 VR Vs,
VV16V2V1V4V3VeVU5V8V7V10V11V14V15V13V1209,
VV16V2V1V4V3V6VU5V8VT7V10V9V12V11V14V15V13;
for k = 8, vov14v2v1V4V3V6V5V8VYV12V13V11V10VT, VoU14V2V1 V4V3VEV5VVTVI0VV12V13V11;

for k = 7, vov1202v104V3V6V7V10V11V9URVS, UoU12V2V1 V4V3VEU5VRVTVI0V11V9;
for £ = 6, vov10V2v1V4V3V6V5V8V9VT; and
VoU2k—2 V2V1 V4V3 VeUs5 ... V2i—6U2i—7 V2;—4V2;—5 V2;—2V2;—3 U2;V2i41

V2i+4V2i+5 UV2i4+8V2i+9 . . . V2k—14V2k—13 V2k—10V2k—9 V2k—6V2k—5 V2k—3V2k—4
V2k—7V2k—8 V2k—11V2k—12 - - - V2i4+11V2i+10 V2i+7V2i+6 V2i+3V2i+2 U2i—1
if ‘k>10iseven andi € {3,5,7,..., k—7,k—5,k—3} or ‘k > 11 is odd and i € {4,6,8,
k=T k—5k—3);
for k =9, vov16V2V1V4V3V6U5VRV9V12V13V15V14V11V10V7
VoV16V2V1V4V3VeV5V8VTV10V9V12V13V15V14V11;
for k = 8, vov14v201V4V3V6V7V10V11V13V12V9Vs V5, VoU14V2V1 V4V3VEV5VSVTVI0V11V13V1209;

for k = 7, vov120201V4V3V6V5V8V9 V11 V10VT;
for k = 6, vyv19U2V1V4V3V6VTV9VLV5;

vg-v2; path: vour v3ve VsV4 V7V ... V2i_7U2i—8 V2i_5V2i—6 V2i—3V2i—4 V2i—1V2i—2
V2i+1V2i42 V2i+5V2i+6 U2i+9V2i+10 --- V2k—11U2k—10 V2k—7V2k—6 V2k—3V2k—2

Vok—4V2k—5 U2k—8V2k—9 V2k—12V2k—13 - - - UV2i4+12V2i4+11 U2i4+8V2i+7 V2i44V2i+3 U2
if‘k > 10isevenandi € {4,6,8,...,k—6,k—4,k—2} or ‘k > 1lisodd and i € {3,5,7,...,
k—6,k—4,k—2}7
for b = 9, vou1v3V205V4V7V8V11V12V15V16V14V13V10V9 Vs
VOV1V3V2V5V4V7V6VU9V8V11V12V15V16V14V13V10,
VoV1V3V2V5V4V7VV9V8V11V10V13V12V15V16V14;
for k = 8, vov1v302U5V4V7V6V9V10V13V14V12V11V8, VU1 U3V2U5V4V7V6U9URV11V10V13V14V12;
for k = 7, vov1v30205V4V7V8V11V12V10V9 V6, VoU1V3V2V5V4VTVEV9VRV11V12V10}
for £ = 6, vyv1V3V2V5V4V7V6V9U1Vs; and
VU1 V302 V5V4 V76 ... V2;—5V2i—6 U2—3V2i—4 V2;—1V2i—2 V2i4+1V2i+2
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V2i4+-5V2i4+6 V2i4-9V2i4+10 - .- V2k—13V2k—12 V2k—9V2k—8 V2k—5V2k—4 V2k—2V2k—3
V2k—6V2k—7 V2k—10V2k—11 .- U2i4+12V2i+11 V2i4+8V2i+7 U2i+4V2i+3 V2;
if ‘k>10isevenand i€ {3,5,7,...,k—7,k—5,k—3} or ‘k > 11 is odd and i € {4,6,8,
k=T, k—5k—3};
for k =9, vov1V3V2V5V4V7VEVYV10V13V14V16V15V12V11 V8,
VoV1V3V2V5V4V7V6V9VU8V11V10V13V14V16V15V12;
for k = 8, vov1v302050V407V8V11 V12014013010V V6, VU1 U3V2V5V4V7V6V9VRV11V12V14V13V10;

for k = 7, vov1v3v205V4V7V6VYV10V12V11V8;
for £ = 6, vyv1v3V2V5V4V7V8V10V9Vg;
vo-v2x—3 path: for k& > 7, vg vov1 v4V3 VEU5 ... Vok_gU2k—7 V2k—4V2k—5 V2k—2V2k—3;
for k = 6, vgUaU1V4V3VEV5V8VTV10V9V12V1 1}
for k = 5, vguav1v4v3V6V5V8VT;
for k = 4, vgvav1v4v306v5;
vo-v2—2 path: for k& > 7, vg v2v1 V4V3 VU5 ... Vok_eU2k—7 V2k—4V2k—5 V2k—3V2%k—2;
for k = 6, vguav1v4V3V6U5V8VTVYVLQ;
for k = 5, vouav1v4V3V6V5V7VS;
for k = 4, vguavivavsvsvg. This completes the proof. ]

It follows from Lemma 2.1 that

Theorem 2.1. If G is a graph with n vertices, n > 7, such that Circ(n : {1,2,3}) C G,
then hpe(G) = 2.

Corollary 2.1. (Bi, Byers and Zhang [2]) For n > 7, hpe(K,) = 2.
Lemma 2.2. For any odd integer k > 5, hpc(Cire(2k : {1,2,k})) = 2.

Proof. Let G = Clirc(2k : {1,2,k}) and F = {vjviy1 : i € {1,3,5,...,2k — 1}}, where
vo, = vg. Then F' is a 1-factor of G. Define an edge-coloring ¢ of G by assigning color blue
to each edge of F' and color red to the remaining edges of G. As the edge-colored G is
vertex-transitive, we show that for every vertex v;, j # 0, of G, there is a proper Hamilton
vo-v;j path in G.
(Observe that, in the following paths, the first and the last edges are colored blue.)
vo-v1 path: vovor_1 Vog—2V2k—3 Vok—4V2k—5 ... VgUs V4U3 V2U1;
vo-v2 path: vouor_1 Vog—2V2k—3 Vok—4V2k—5 ... VgUs V4U3 V1V2;
vo-vai—1 path, i € {2,3,4,.... 53} s for k > 13,
VoU2k—1 Vk—1Vk—2 V2k—2V2k—3 Vk—3Vk—4 U2k—4V2k—5 Vk—5Vk—6 V2k—6V2k—7
- V2i4-6V2i+5 Vk+2i+5Vk+2i+4 V2i+4V2i+3 Vk+2i+3Vk+2i+2 V2i42V2i4+1 Vk42i+1Vk+2i
Vk+2i—1Vk+2i—2 Vk+2i—3Vk+2i—4 - Vk+7Vk+6 Vk+5Vk+4 Vk+3Vk+2 VkUk+1
V1V2 U3V4 UsV6 ... V2i—7V2i—6 V2i—5V2i—4 V2i—3V2i—2 V2iV2i—1;
for k = 11, vgv21v10V9V20V19V8V7V18V17VEV5V16V15V14V13V11 V1201 V2V4V3,
VoV21V10V9V20V19V8V7V18V17V16V15V14V13V11V12V1V2V3V4V6 V5,
VoV21V10V9V20V19V18V17V16V15V14V13V11V12V1V2V3V4V5V6U8VT;

for k = 9, vou17V8V7V16V15V6V5V14V13V12011V9V10V1 V2V4V3,
VoV17U8VTV16V15V14V13V12V11V9V10V1V2V3V4V6 V5,
for k = 7, vov13v6U5012011V10V9VU7V8V1 V2V4V3;

vo-vg; path, i € {2,3,4,..., %} sfor k > 13,
VOU2k—1 Vk—1Vk—2 V2k—2V2k—3 Vk—3Vk—4 V2k—4V2k—5 Vk—5Vk—6 V2k—6V2k—7
- V2i+4+6V2i+5 Vk+2i+5Vk+2i+4 U2i+4V2i+3 Vk+2i+3Vk+2i+2 U2i4+2V2i+1 Vk+2i+1Vk+2i
Vg42i—1Vk+2i—2 Vk4+2i—3VE4+2i—4 - -+ Vk4+7VE4+6 Vk+4+5Vk+4 Vk4+3Vk+2 VkUk+1
V1V2 V3V4 UsV6 ... U2;—7V2i—6 V2i—5V2i—4 V2;—3V2;—2 V2i—1V24;
for b = 11, vgu21v10V9V20V19V8V7V18V17VEV5V16V15V14V13V11 V1201 V2V3V4,
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VoV21V10V9V20V19V8V7V18V17V16V15V14V13V11V12V1V2V3V4V5V6,
VoV21V10V9V20V19V18V17V16V15V14V13V11V12V1V2V3V4V5V6VT7US;

for k = 9, vou17V8V7V16V15V6V5V14V13V12011V9V10V1 V2V3V4,
VoV17V8V7V16V15V14V13V12V11V9V10V1V2V3V4V5V6;
for k = 7, v9v1306V5012011V10V9V7U8V] V2V3V4;
vo-vg—2 path: for k > 13, vovag—1 vog—2V2k—3 Vok—aVok—5 ... Vky5Vkid Vky3Vki2
VgVk+1 U1V2 V3V4 U5V6 - .. Vkp—6Vk—5 Vk—4Vk—3 Vk—1Vk—2;
for k = 11, vgv21v20v19V18017V16V15V14V130V11V12V1 U20U3V4V5V6VTU8V10V9;
for k = 9, vov17v16V15V14V13V12V11V9V10V1 V2V3V4V5VEUSVT;
for k = 7, vov13v12011V10V9V7V8V1V2V3V4VE Vs ;
vo-vg—1 path: for k& > 13, vovog—1 vog—2V2k—3 Vok—4Vok—5 ... Vky5Vkid Vky3Vki2
VgUk41 V102 V304 UsV6 ... Vg—6Uk—5 Vk—4Vk—3 Vk—2Vk—1;
for b = 11, vgv21v20v19V180V17V16V15V14V130V11V12V1 U20U3V4V5V6VTU8V9V10;
for k = 9, vov17v16V15V14V13V12V11V9V10V1 V2V3V4V5VEUTUS;
for b = 7, vov13v12011010V9V7VU8V1 V2V3V4V5V6;
vo-vg path: for & > 13, vovor_1 Vog—2V2k—3 Vok—4V2k—5 ... Vky5Vk1d Vk43Vk42
V2V1 V3V4 U5V6 UTV8 ... Vp—4Vk—-3 Vgp—2Vk—1 Vk41Vk;
for £ = 11, vgv21v20V19V18V17V16V15V14V13V2V1 U3V4V5 U6 U7UV9V10V12V11
for k = 9, voU17V16V15V14V130V120V11V2V1V3V4V5V6VTUSV10V9;
for k = 7, vov13v12011010V9V2V1 V3V4U5V6VRVT;
vo-Uk4+1 path: for k > 13, vovog—1 Vagp—2Vok—3 Vok—4V2k—5 .-+ Vkt5Vk+4 Vk43Vk42
V2V1 V3V4 U5V6 UTV8 ... Vp—4Uk—-3 Vg—2Vk—1 VkUk+1;
for £ = 11, vgv21v20v19V18V17V16V15V14V13V2V1 U3V4V5 U6 UTUV9V10V11V12;
for k = 9, vov17V16V15V140V13V12V11 V201 V3V4V5V6VTUSV9V10;
for k = 7, vov13v12011V10V9V2V1V3V4 U5V UTVR;
V0-Vk42 Path: for k > 13, voUog—1 Vp—1Vk—2 VkVk41 V102 V304 V5V6 . . . Vp—6Uk—5 Vk—4Vk—3
V2k—3V2k—2 V2k—4V2k—5 V2k—6V2k—7 V2k—8V2k—9 - .- VUk+5VUk+4 Vk4+3Vk+2;
for k = 11, vgv21v10V9V1101201V2V3V4V5V6VTU8V19VU20V18V1TV16V15V14V13;
for k = 9, vou17v8V7V9V10V1 V2V3V4V5VEV15V16V14V13V12V11;
for k = 7, vov13v6V5VTV8V1 V2U3V4V11 V12010V
vg-v2;—1 path, i € {%, %, %, N 2}: for k > 15,

VoV2k—1 Vk—1Vk—2 V2k—2V2k—3 Vk—3Vk—4 V2k—4V2k—5 Vk—5VEk—6 V2k—6V2k—7
- V2i46V2i+5 V2i45-kV2i+4—k V2i4+4V2i+3 V2i4+3—kV2i4+2—k V2i+2V2i+1
V2i4-1-kV2i—kV2i—k—1V2i—k—2 V2i—k—3V2i—k—4 -.. VU5 V4V3 V2V1 Vk41Vk
Vg42VEk43 Vk+4VE4+5 Vk4+6Vk+7 -+ VU2i—7VU2i—6 V2i—5VU2{—4 V2;—-3V2—2 U2;V2i—1;
for k = 13, vov25012011V240230V10V9 V22021 V8UTVU20V19V6U5V4V3V2V1 V14V13V15V16V18V17,
VoV25V12V11V24V23V10V9V22V21 Vg U7V6V5V4V3V2V1V14V13V15V16V17V18V20V19,
VoV25V12V11V24V23V10V9V8V7 V6 V5V4V3V2V1V14V13V15V16V17V18V19V20V22V21 5

for k = 11, vov21v10V9V20V19V8VTVI8V17VEV5V4V3V2V1 V12V11V13V14V16V15,
VOU21V10V9V20V19VRVTVEVU5V4V3 V2V V12V11V13V14V15V16V18V17;
for k = 9, vou1708V7V16V15V6VU5V4V3V2V1 V10V9V11V12V14V13;
vp-v9; path, i € {k—;?’, %, %, ook =2} for k> 15,

VoV2k—1 Vk—1Vk—2 UV2k—2V2k—3 Vk—3Vk—4 U2k—4V2k—5 Vk—5Vk—6 U2k—6V2k—7
- V2i4+6V2i+5 V2i45—-kV2i+4—k V2i+4V2i+3 V2i4+3—-kV2i+2—k U2i+2V2i+1
V2i4+1—-kV2i—k V2i—k—1V2i—k—2 V2i—k—3V2i—k—4 -.. VU5 V4VU3 V2V1 Vk41Vk
Vk+4+2Vk+3 Vk44Vk+5 Vk+6Vk+7 - - U2i—7V2i—6 V2;—5V2i—4 V2;—3V2;—2 V2;—1V2i;
for £ = 13, vov250120110240V230V10V9 V22021 V8UTV20V19V6U5V4V3V2V1 V14V13V15V16V17V18
VoU25V12V11V24V23V10V9V22V21 VgVU7V6V5V4V3V2V1V14V13V15V16V17V18V19V20,
VoUV25V12V11V24V23V10V9V8VTV6V5V4V3V2V1V14V13V15V16V17V18V19V20V21 V225
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for k = 11, vgv21v10V9V20V19V8V7V18V17VE VU5 VAV V2V V12V11V13V14V15V16,
VV21V10V9V20V19V8 VTV V5V4V3V2V1V12V11V13V14V15V16V17V18;
for k = 9, vou17V8V7V16V15V6V5V4V3V2V1 V10V9V11V12V13V14}
Vp-V2k—3 Path: vouor_1 V1V2 V3V4 V5V6 ... Vokp_7U2k—6 V2k—5V2k—4 V2k—2U2k—3;
V0-V2k—2 Path: vovop_1 V1V2 V3V4 VsV ... V2g_7U2k—6 V2k—5V2k—4 V2k—3VU2k—2;
(Observe that, in the following path, the first and the last edges are colored red.)
V0-V2k—1 Path: vy v1V2 V3V4 V5V6 ... Vogp_7TU2k—6 V2k—5V2k—4 V2k—3VU2k—2 V2k—1-
This completes the proof. O

From Lemma 2.2, we have the following result.

Theorem 2.2. If G is a graph with n vertices, n > 10, n = 2 (mod 4), such that Cire(n :
{1,2,%}) C G, then hpc(G) = 2.

Theorem 2.2 is open for n = 0 (mod 4). We show that it is true for n = 8, i.e.,
hpe(Cire(8 : {1,2,4})) = 2.

Let G = Cire(8: {1,2,4}) and F = {vjvi11 : @ € {1,3,5,7}}, where vg = vg. Then F
is a 1-factor of G. Define an edge-coloring ¢ of G by assigning color red to each edge of F’
and color blue to the remaining edges of G. We show that, for every vertex v;, j # 0, of
G, there is a proper Hamilton vg-v; path in G.  vp-v1 path: vov7 vevs v4V3 VoV1;

vo-vg path: vouy vgus v4v3 V1Ve;  vg-v3 path: vovr v1vy VeUs V4U3;

vo-v4 path: vouy vive VgUs V3V4;  Vp-vs path: vovr v1ve V3U4 VEUS;

vo-vg path: vouy vive v3v4 VsVg;  Vp-v7 path: vguy vovs V4VE VEUT. ]
Suppose that Gy = (Vp, Ey) and G1 = (V1, Eq) are two disjoint graphs with |Vy| = |V4].
A 1 — 1 connection between Gy and G; is defined as an edge set E. = {(v,7)]|v €
Vo, 7 = ¢(v) € Vi and ¢ : Vy — V] is a bijection}. Gy @ G denotes the graph G = (VpU

Vi, Ep U E1 U E.). Thus, ¢ induces a 1-factor in Gy ® G7.

Theorem 2.3. (See Theorem 9.15 of [3]) Go @ G1 is Hamiltonian-connected if both Gy
and Gy are Hamiltonian-connected and |V (Gp)| = |V(G1)| > 3.

Theorem 2.4. Suppose that Go = (Vo, Ep) and G1 = (V1, E1) are two disjoint
Hamiltonian-connected graphs with an even number |Vo| = |Vi| > 4 of vertices. If,
for each i € {0,1}, there is a proper Hamilton path 2-coloring ¢; of G; with colors blue
and red such that for any two vertices u and v of G;, there is a proper Hamilton u-v path
in G; with the first and the last edges colored blue, then there is a proper Hamilton path
2-coloring ¢ of Go ® Gy with colors blue and red such that for any two vertices x and y of
Go ® G1, there is a proper Hamilton x-y path in Go & G1 with the first and the last edges
colored blue. So, hpc(Go ® G1) = 2.

Proof. Define ¢ so that c restricted to Ey is ¢g, ¢ restricted to E; is ¢1, and the edges of
E. are colored red. Without loss of generality, we have the following two cases: (1) both
x and y are in Go; (2) x is in G and y is in Gy.

First, assume that both z and y are in Go. By hypothesis, there exists a proper Hamilton
path P of GGy joining = and y with the first and the last edges colored blue. The path
P can be written as (x, P1,w, z, P»,y) with ¢o(wz) = red. Obviously, w # Z and, by
hypothesis, there exists a proper Hamilton path @ of G joining w and z with the first
and the last edges colored blue. Thus, (z, P, w,w, Q,Z, z, P»,y) forms a proper Hamilton
path of Gy @ G joining x and y with the first and the last edges colored blue.

Next, assume that x is in Gp and y is in G;. Since |V (Go)|= |V (G1)|> 4, there exists
a vertex z in Gg such that z # z and Z # y. Thus, there exists a proper Hamilton path
P of Gy joining x and z with the first and the last edges colored blue and there exists a
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proper Hamilton path @ of 1 joining Z and y with the first and the last edges colored
blue. Obviously, (x, P, z,%,Q,y) forms a proper Hamilton path of Gy & G; joining x and
y with the first and the last edges colored blue. This completes the proof. ([l

Next, we observe that, for any integer k > 5, Gy = Clirc(2k : {1,2,3,4}) satisfies
the hypothesis of the previous theorem. By the proof of Case 1 of Lemma 2.1, it is
enough if we define ¢ to the edges of length 4 and to find a proper Hamilton vg-v9r_1 path.
Color the edges of length 4 by blue and the required path is: vovog_4 Vo _3Vog_ov1v203 ...
Vok—7U2k—6 V2k—5V2k—1. Also, we observe that, for any odd integer k > 5, Cire(2k : {1,2,3,
k—1,k}) satisfies the hypothesis of the previous theorem. By the proof of Lemma 2.2, it is
enough if we define ¢ to the edges of lengths 3 and k£ —1 so that we have a proper Hamilton
vo-vak—1 path. Color the edges of length 3 by red and length £—1 by blue and the required

path is: VoUg41 Vk42Vk43 VkyaUk15 - - - V2k—5U2%—4 U2k —3V2k—2 V1V2 V3V4 . . - Vg2V —1 VgV2k—1-
3. GRAPHS WITH hpc = 3

I. Known graphs G with hpce(G) = 3 = x'(G) are: Co,4+10K>2 and Hy. Let G be
a Hamiltonian-connected graph with x/(G) = 3. To show that hpc(G) = 3, we must
show that G has no proper Hamilton path 2-coloring.

II. Known graph G with x'(G) > 4 and hpc(G) = 3is: Fj.

Theorem 3.1. For k > 2, hpe(Circ(4k : {1,2k})) = 3.

Proof. Let G = Clirc(4k : {1,2k}). Consider the proper 3-edge-coloring ({v;vi11 : 7 € {0,
2,4,... ,4k—2}}, {Uﬂ)i—‘rl 11 € {1,3,5,...,4]{,‘— 1}},{U¢Ui+2k NS {0,1,2,. o2k — 1}}) of
the 3-regular graph G. Thus x'(G) = 3. It remains to show that G has no proper Hamilton
path 2-coloring. Assume, to the contrary, that there is a proper Hamilton path 2-coloring
cof G.

Claim 1. The Hamilton paths from vg to vy are

Py := vu1vav3 ... Uog_2V2k—1 — V4k—1Vak—2V4k—3 - .. U2k41 U2k and

Py = 0004104k —2Vak—3 - - . V2k2V2k+1 — V1V2V3 ... Vgk—1 Vok.

Assume, by symmetry, the edge vgvy is in P, a Hamilton path from vy to vgg. Then,
vovak—1 ¢ E(P) and so0 vgi_1v4—2 € E(P) and vgg_1v9k—1 € E(P). Suppose vop_1v9 €
E(P), then P := vgv1 ... Ugp_2Usk_1V2k_109k; it follows that pPl.= Vo, V2k—1V4k—1V4k—2
Vok—2V2k—3U4k—3V4k—4U2k—4V2k—5V4k—5V4k—6 - - - ; NOW the vertex vory1 ¢ P, a contradiction.
Hence, vop_1v91 ¢ E(P) So, V2K V2k+1 € E(P) Thus P := vov1 ... — ... V2k4-1V2k -
Consequently, P := vgvive ... — ... UgkioUokt+1vV2k and therefore, P = P;.

Claim 2. The Hamilton paths from vg to ve are
Q1 1= VoU1V2k+1 — V2kVok—1 — V4k—1Vak—2 — U2k—2VU2k—3 — Vdk—3V4k—4 — V2k—4U2%k—5

—Ugk—5V4k—6 — "+ — VU5 — V2k{5U2k+4 — V4VU3 — U2k43V2k 42 — V2 and

Q2 = V0 — V2kV2k—1 — Vak—1V4k—2 — V2k—2V2k—3 — Vak—3V4k—4 — V2k—4V2k—5

—U4k—5V4k—6— " — VU5 — V2k+5V2k+4 — V4U3 — V2k+3V2k+2 — V2k+1V1V2.

Since N(v1) = {vg, v, vak+1}, any Hamilton path @ from vy to ve contains vyvyveri1
or Ugk+1V102 but not both. Assume, by symmetry, Q = vgvivo11 - .. v2. Edge vovgr_1 ¢
E(Q) implies vg_oV4k_1V2k—1 18 in @ and vgvgr ¢ E(Q) implies vog_1v9v2%+1 is in Q.
Hence, Q := voU1V2k41 — VakU2k—1 — Vak—1V4k—2 — - — V2. Now, vop_1vop—2 ¢ E(Q)
implies vop_3Uok_oUar_2 is in (). Proceeding in this way, we get @ = Q1.

We have four possibilities. If the paths required for ¢ are P, and @)1, then we have a
contradiction, since ¢(vgvy) # ¢(vok—1v4k—1) in Py and c(vov1) = c(vog_1v45—1) in Q1. If the
paths required for ¢ are P; and )2, then also we have a contradiction, since ¢(vog_3vok—2) =
c(vok—104k—1) in Pp and ¢(veg_3v9k—2) 7# c(vogp—_1v45—1) in Q2. Similarly, the reason for Py
and Q1 is c(vivog+1) # c(vak—1v2k) in Py and c(vivept1) = c(vop—1v2x) in Qq; and the
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same for P and Q2 is c(vopq2vok43) 7# c(v3vy) in Po and c(vog42v2r43) = c(v3vs) in Qo.
This completes the proof. ]

Conclusion The conjecture ‘if G is a Hamiltonian-connected graph, then hpc(G) < 3’ of

Bi, Byers and Zhang [2] is verified for some classes of graphs (see Theorems 2.1, 2.2 and

3.1). Also, Theorem 2.4 generates more graphs that serve as a support to the conjecture.
We pose the following problems.

Problem 3.1. Find a1 < a2 < as such that for every integer n > 2a3 + 1,
hpe(Cire(n : {a1,a2,a3})) = 2.
If (a1,a2,a3) = (1,2, 3), then we have Lemma 2.1.

Problem 3.2. Find a1 < as such that for every odd integer k > 2as + 1,
hpc(Cire(2k : {a1,a2,k})) = 2.
If (a1,a2) = (1,2), then we have Lemma 2.2.

In the next two sections, we consider Hamiltonian-laceable graphs and apply the hpc
-Conjecture.

4. HAMILTONIAN-LACEABLE GRAPHS

A bipartite graph with bipartition (X,Y") is Hamiltonian-laceable if there exists a Hamil-
ton path joining any two vertices from different partite sets; that is, one in X and one
in Y. For a Hamiltonian-laceable graph G, an edge-coloring ¢ : E(G) — {1,2,...,k} is a
proper Hamilton path k-coloring if every two vertices from different partite sets of G are
connected by a proper Hamilton path in G. The minimum number & of colors in a proper
Hamilton path k-coloring of G is also called the proper Hamiltonian-connection number of
G, but it is denoted by hpc,(G).

5. GRAPHS WITH HPC, = 2

Let G be a Hamiltonian-laceable graph with bipartition (X,Y"). To show that hpc,(G) =
2, we must show that G has a 2-edge-coloring with the property that for every two vertices
u € X and v € Y of G, there is a proper Hamilton u-v path in G.

Lemma 5.1. For every integer n > 5, hpe,(Circ(2n : {1,3,5})) = 2.

Proof. Let G = Cire(2n : {1,3,5}) and F = {v;v;41: © € {1,3,5,...,2n—1}}, where vy,
= vg. Then, F' is a 1-factor of G. Let X = {v;: 1 €{0,2,4,...,2n—2}} and Y = {v;:
i€{1,3,5,...,2n—1}}. Define an edge-coloring ¢ of G by assigning color blue to each edge
of F' and color red to the remaining edges of G. As the edge-colored G is vertex-transitive,
we show that for every vertex v; € Y of G, there is a proper Hamilton vp-v; path in G.
(Observe that, in the following paths, the first and the last edges are colored blue.)

vo-v1 path: vovon_1v2,—2V2n—3 ... V4V3VRVY;
Vo-V3 path: for n Z 6, VoU2n—1U2n—2V2n—3 ... UgUTUgU5U2V1V4V3;
for n = 5, VoV9UVTVGU5V2UV1V4V3;
vg-vs path: for n > 6, vgvop_1V2,_92V2p_3 ... UgVTVULV4V3VEV5;
for n = 5, VoV9ULVUTVU9U1UV4V3Vg V5,
vg-v7 path: for n > 7, vovop_1V2n_2V2p—3 ... V1QUgUgU5U2U1 V4V3VVT;

for n = 6, VoUV11V10V9V6V5V2V1 V4V3V8VT, for n = 5, VoUV9UEU5V2V1V4V3VRUT,
Assume n > 6 and j € {5,6,7,...,n—1}:
vo-v2;—1 path, if j =0 (mod 2): for n > 10,
VoU2n—1V2n—2V2n—3 - .. U2542V2541 V2;-2V25-3 V2j—6V25j—7 U2j—10V25—-11 .- V10V9
VeUs V2V V4U3 V8V7 V12V11 ... U25-8V25-9 V25-4V25—5 V2V25—1;
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for n =9, VoV17V16V15V14V13V8VTV2V1 V4 V3VEV5V10VYV12V11
VoV17V14V13V10V9V6V5V2V1V4V3V8V7V12V11V16V15;

for n = 8, VoV15V14V13V8VTV2V1 V4V3VEV5V10V9 V12011 ;

for n = 7, vov13V8VTV2V1V4V3VEVEV10VYV12V11;

Vo-V25-1 path, ifj =1 (mod 2): for n > 10, VoU2n—1V2n—-2V2n—3 ... V254+2V25+1
V25 —2V25-3 V25—-6V25—7 V25—-10V25—-11 --. V12V11 VgV7 V2V1
V4V3 VgUs V10V9V14V13 - .- U25-8V25—-9 V25-4V25—5 V2;V25—-1;

for n =9, voV17V16V15V14V13V12011V8VTV2V1 V4V3VEV5 V10V,
VV17V16V15V12V11V8V7V2V1 V4VU3VeU5V10V9V14V13;
for n = 8, voV15V14V13V12V11V8VTV2V1V4V3VEV5 V10V,
VV15V12V11V8V7V2V1 V4V3V6V5V10V9U14V13;
for n =7, vov13V12V11V8V7V2V1V4V3VEV5V10VY;
for n = 6, vVov11V8VTVLVL V4V3VEV5V10VY;
(Observe that, in the following path, the first and the last edges are colored red.)
V-Van—1 path: vg vV V3V4 V5VG . . . V2 —4V2p—3 V2—2V9,—1. This completes the proof. [

Theorem 5.1. Let G be a bipartite graph with n > 5 wvertices in each partite set. If
Cire(2n: {1,3,5}) C G, then hpc,(G) = 2.

Corollary 5.1. For n > 5, hpe,(Ky,n) = 2.

Theorem 5.2. (See Theorem 9.17 of [3]) Assume that Gy, G1, and Go ® G1 are bipartite
graphs such that |V (Go)| = |[V(G1)| > 2. Then Go @ Gy is Hamiltonian-laceable if both Gg
and G1 are Hamiltonian-laceable.

Theorem 5.3. Suppose that Gy = (VY UV, Ey) and Gy = (VP UV, Ey) are two disjoint
Hamiltonian-laceable graphs with |[VQ| = |Vi| = [V = Vi > 2, where (V?, V1)
is a bipartition of G;, i € {0,1}. If, for each i € {0,1}, there is a proper Hamilton path
2-coloring ¢; of G; with colors blue and red such that for every two vertices u € V? and
v € V! of Gy, there is a proper Hamilton u-v path in G; with the first and the last edges
colored blue, then there is a proper Hamilton path 2-coloring ¢ of Go ® G1 with colors blue
and red such that for every two vertices x and y of Go ® G1, there is a proper Hamilton
x-y path in Gy ® Gy with the first and the last edges colored blue. So, hpc,(Go ® G1) = 2.

Proof. Define ¢ so that c restricted to Ey is cg, ¢ restricted to E; is ¢1, and the edges of
E. are colored red. By the symmetric property of Gy @ G1, without loss of generality we
can assume the following two cases:

Case 1. ¢ € VOO and y € Vol. By hypothesis, there exists a proper Hamilton path P of Gg
joining x and y with the first and the last edges colored blue. The path P can be written
as (z, Pr,w, 2, Pa,y) with co(wz) = red, w € Vg and z € V. Obviously, w € V}' and
z € VL. Thus, there exists a proper Hamilton path Q of G joining w and Z with the first
and the last edges colored blue. Thus, (z, P, w,w, Q,Z, z, P2,y) forms a proper Hamilton
path of Gy @ G with the first and the last edges colored blue.

Case 2. z € VY and y € Vi!. Then, there exists a vertex z in Vi . Obviously, z € V.
Thus, there exists a proper Hamilton path P of G joining x to z with the first and the
last edges colored blue and there exists a proper Hamilton path @ of Gy joining Z to y
with the first and the last edges colored blue. Obviously, (z, P, z,Z, @, y) forms a proper
Hamilton path of Go @& G with the first and the last edges colored blue. This completes
the proof. O

Next, we observe that, for any even integer n > 10, Circe(2n : {1,3,5,7,9}) satisfies the
hypothesis of the previous theorem. By the proof of Lemma 5.1, it is enough if we define ¢
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to the edges of lengths 7 and 9 so that we have a proper Hamilton vg-vsg_1 path. Color the
edges of lengths 7 and 9 by blue, the required path is vg-vo,—1 path: vgvon—g Von—10V2n—11
V2n—12U2n—13 - - - V4V3 VU] V2n—2V2n—3U2n—4V2n—5 VU2n—6V2n—7 V2n—8V2n—1-

6. GRAPHS WITH HPC;, = 3

Let G be a Hamiltonian-laceable graph with x’(G) = 3. To show that hpc,(G) = 3, we
must show that G has no proper Hamilton path 2-coloring.

Theorem 6.1. For each integer n > 2, hpc,(Cap,OK2) = 3.

Proof. Construct G = (9,K5 from the two 2n-cycles ujugus ... Usp_1uo,u1 and
V1V2V3 ... Vou_1U2pv1 by adding the 2n edges u;v; for i € {1,2,..., 2n}. Let X =
{ula Uz, U5, ...,U2n-3, U2n71}U{U2, V4,06, ...,U2n—-2, U2n} and Y = {’UQ, Ugq, U6, - - -, U2n—2,

ugn JU{v1, 03,05, . . ., Vop—3, U2p—1}. Then (X,Y) is a bipartition of G. Note that x'(G) = 3.
Assume, to the contrary, that there is a proper Hamilton path 2-coloring ¢ of G.

First, consider a Hamilton ui-vq path P in G. P begins with ujus or ujug, and ends
with vov1 or ve,v1. Assume, by symmetry, P begins with wujus.

If P ends with vyvy, then, as ujug, ¢ E(P) and vive, ¢ E(P), we have the subpath
U2p—1U2nV2rV2n—1 in P. Again, as ugy,_1v2,-1 ¢ E(P)a we have ugp—2U2n—1,V2n—2V2n—1 €
E(P). Proceeding in this way, we get P = ujugus . . . Ugp—2U2n—1U2,U2p,V2n—1V27—2 - - - V3V2V]
= P.

If P ends with venvi, then, as vivy ¢ E(P), we have the subpath ugvovs in P. Since
ugus ¢ E(P), the subpath vzuguy in P. As vsvy ¢ E(P), the subpath uqvsvs in P. Pro-
ceeding in this way, we get P = u1uoU203U3U4LV4V5 - .. V2p—1U2n—1U2pV2,01 = Ps.

Next, consider Hamilton us-vs paths in G. By the above argument, the paths are:

Q1 = U3U4U5 ... UR—2U2p—1 U2 U URV2V V2 V2 —1V2p—2 - - - V5U4U3,

Q2 = U3ULVLVSUSUEVEVT - .. V2p—1U2p—1U2 V2, V1 U U2V2V3,

Q3 = U3UUIUZRUP—1U2p—2 - - . USULVAV5VG - .. V2p—1V2,V1V20V3, and

Q4 = U3UVRVIUIU2p V20 V2 —1 U2 —1 U2 —2V20—2V20—3 - - - UsUSULVAVS.

If the paths required in ¢ are P; and @2, then, we have a contradiction, since
c(ugnvan) = c(vap—1v2p—2) in Py and c(ugnvan) # c(v2n—1v2n—2) in Qa.

If the paths required in ¢ are P; and @4, then, we have a contradiction, since
c(ugnvan) = c(ugn—2uon—1) in P and c(uznvon) # c(Ugn—2uzn—1) in Q4.

If the paths required in ¢ are P, and @1, then, we have a contradiction, since
c(ugn—1u2y) = c(vop—2v2p—1) in Py and c(ug,—1u2pn) # c(van—2v2,—1) in Q1.

If the paths required in ¢ are P, and @3, then, we have a contradiction, since
c(ugn—1uzn) = c(van—2v2p—1) in Py and c(ug,—1u2n) # c(vopn—2v2,—1) in Q3.

If the paths required in ¢ are P; and @1, then, there is no proper Hamilton u;-vg path
in GG. To see this, consider the first edge of this path. If it is either wivq or ujus,, then
the edges vous and usuz with same color are in the path. Otherwise, it is ujus, and the
edges u9,v9, and v9,v1; with same color are in the path. A contradiction.

If the paths required in ¢ are P; and @3, then, there is no proper Hamilton u;-v3 path in
G. To see this, consider the first edge of this path. If it is ujue, then the edges us,ve, and
V9,01 With same color are in the path. If it is ujus,, then we have the subpath viveusus
in the path; now the edge wous has no color. If it is ujv;, then we have the subpath
vououg, with color 1,2 in order, in the path; now there is no second edge for this path. A
contradiction.

If the paths required in ¢ are P» and ()4, then, each of the edges in the two 2n-cycles
ULUUZ .+ .. Uop—_1UspUl and v1voU3 ... Vo,_1U2,v1 are of one color, say 1, and each of
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the 2n edges w;v;, i € {1,2,...,2n}, are of another color, say 2. Now, there is no proper
Hamilton ui-v3 path in G, a contradiction.

If the paths required in ¢ are P, and )9, then, there is no proper Hamilton u;-uy4 path
R in G. To see this, consider the first edge of R. If it is ujugy,, then we have the subpath
U2U2V1V2y; as the edges uovo and wvyvg, are of different colors, there is no color for the
edge vouy. So it is either ujug or ujvy. First, assume that it is uque. If R = wjuous. ..,
then R = wujusuguyg. So, R = wjugvy... and therefore B = wjuovs...v3uguyg. As
R # wujusvovzusug, R = wuqugvavy ...vsugug. Thus R = wujugvoviug. Next, assume
that it is uyv1. By symmetry, assume that the last edge of R is vqug. As ujus and uguy are
not in R, R = wuqv1...v2UguU3v3 . ..V4uU4. Since vovz is not in R, R = u1v102uau3v304U4.
A contradiction. This completes the proof. O

Using the following two facts, we have:

If n > 2, then, for any edge e in Cy,0K>, X' ((C2,0K3) — e) = 3, and it is known that
(see Lemma 9.3 of [3]), (C2,0K3) — e is Hamiltonian-laceable.

If H is a Hamiltonian-laceable spanning subgraph of a Hamiltonian-laceable graph G,
then hpc,(G) < hpey(H).

Corollary 6.1. For n > 2 and for any edge e in Co,0K2, hpey((C2,0K2) —€) = 3.
We pose the following problem.

Problem 6.1. Find odd integers a1 < as < asg such that for every integer n > as,
hpey(Cire(2n : {a1,a2,a3})) = 2.
If (a1,a92,a3) = (1,3,5), then we have Lemma 5.1.
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