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ON PROPER HAMILTONIAN-CONNECTION NUMBER OF GRAPHS

R. SAMPATHKUMAR1, S. ANANTHARAMAN1, §

Abstract. A graph G is Hamiltonian-connected if every two vertices of G are connected
by a Hamilton path. A bipartite graph H is Hamiltonian-laceable if any two vertices
from different partite sets of H are connected by a Hamilton path. An edge-coloring
(adjacent edges may receive the same color) of a Hamiltonian-connected (respectively,
Hamiltonian-laceable) graph G (resp. H) is a proper Hamilton path coloring if every two
vertices u and v of G (resp. H) are connected by a Hamilton path Puv such that no two
adjacent edges of Puv are colored the same. The minimum number of colors in a proper
Hamilton path coloring of G (resp. H) is the proper Hamiltonian-connection number of
G (resp. H). In this paper, proper Hamiltonian-connection numbers are determined for
some classes of Hamiltonian-connected graphs and that of Hamiltonian-laceable graphs.

Keywords: Hamiltonian-connected graph, Hamiltonian-laceable graph, proper Hamilton
path coloring, proper Hamiltonian-connection number.
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1. Hamiltonian-connected graphs

We refer the book [1] for graph theory notation and terminology not described here.
A Hamilton path in a graph G is a path containing every vertex of G. A graph G is
Hamiltonian-connected if for every pair u, v of distinct vertices of G, there is a Hamilton
u-v path in G. Let G be an edge-colored connected graph, where adjacent edges may be
colored the same. A path P in G is properly colored or P is a proper path in G if no two
adjacent edges of P are colored the same.

For a Hamiltonian-connected graph G, an edge-coloring c : E(G) → {1, 2, . . . , k} is
a proper Hamilton path k-coloring if any two vertices of G are connected by a proper
Hamilton path in G. An edge-coloring c is a proper Hamilton path coloring if c is a proper
Hamilton path k-coloring for some positive integer k. The minimum number of colors in a
proper Hamilton path coloring of G is the proper Hamiltonian-connection number of G,
denoted by hpc(G).

Since every proper edge-coloring of a Hamiltonian-connected graph G is a proper Hamil-
ton path coloring of G and there is no proper Hamilton path 1-coloring of G, we have 2 ≤
hpc(G) ≤ χ ′(G), where G is of order at least 3 and χ ′(G) is the chromatic index of G.
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In [2], Bi, Byers and Zhang introduced the concept of proper Hamiltonian-connection
number for Hamiltonian-connected graphs and proved that: for every integer n ≥ 4,
hpc(Kn) = 2, where Kn is the complete graph on n vertices; for each odd integer n ≥ 3,
hpc(Cn�K2) = 3, where Cn is the cycle on n vertices and � denotes the Cartesian product.
Also, they conjectured that: if G is a Hamiltonian-connected graph, then hpc(G) ≤ 3.

Let G be a Hamiltonian-connected graph of order n ≥ 4. Then, G is 3-connected, and
so δ(G) ≥ 3, where δ(G) is the minimum degree of G. This implies that the minimum
possible size of G is

⌊
3n+1

2

⌋
. In [4], Moon proved that for each integer n ≥ 4, there exists

a Hamiltonian-connected graph of order n and size
⌊
3n+1

2

⌋
.

For each integer k ≥ 2, consider Pk�K2. The two disjoint paths in Pk�K2 of order
k with xiyi ∈ E(Pk�K2) for i ∈ {1, 2, . . . , k} are Pk = x1x2 . . . xk and P ′k = y1y2 . . . yk.
Let Hk be the cubic graph of order 2k + 2 obtained by adding two adjacent vertices u
and v to Pk�K2 and joining the vertex u to x1 and y1; the vertex v to xk and yk. Graph
Hk is Hamiltonian-connected and has the minimum size 3(k+ 1) among the Hamiltonian-
connected graphs of even order 2k + 2. For k ≥ 3, the graph Fk of odd order 2k + 1
is constructed from Pk�K2 by adding a new vertex u and joining u to each vertex in
{x1, xk, y1, yk}. Graph Fk has 2k vertices of degree 3 and one vertex of degree 4; it is a
Hamiltonian-connected graph and has the minimum size 3k + 2 among the Hamiltonian-
connected graphs of order 2k + 1. In [2], Bi et al. proved that, for each integer k ≥ 2,
hpc(Hk) = 3 and for each integer k ≥ 3, hpc(Fk) = 3.

A circulant graph, denoted by Circ(n : {a1, a2, . . . , ak}), where 0 < a1 < a2 < · · · < ak
≤

⌊
n
2

⌋
, has vertices v0, v1, v2, . . . , vn−1 and edge vivj if, and only if, | j − i | ≡ at (mod n)

for some t, t ∈ {1, 2, . . . , k}. If ‘n is even and ak 6= n
2 ’ or ‘n is odd’, then it is 2k-regular;

otherwise, it is (2k-1)-regular. In circulants, subscripts in vi are reduced modulo n.

2. Graphs with hpc = 2

The only known graph with hpc = 2 is Kn, where n ≥ 4. Let G be a Hamiltonian-
connected graph of order at least 4. To show that hpc(G) = 2, we must show that G has
a proper Hamilton path 2-coloring; that is, a 2-edge-coloring of G with the property that
for every two vertices u and v of G, there is a proper Hamilton u-v path in G. In this
section, we find more graphs in the class of graphs with hpc = 2.

Lemma 2.1. For every integer n ≥ 7, hpc(Circ(n : {1, 2, 3})) = 2.

Proof. We consider two cases, according to whether n is even or odd.
Case 1. n is even.

Let n = 2k, k ≥ 4, G = Circ(2k : {1, 2, 3}) and F = {vivi+1 : i ∈ {1, 3, 5, . . . , 2k − 1}},
where v2k = v0. Then, F is a 1-factor of G. Define an edge-coloring c of G by assigning
color blue to each edge of F and color red to the remaining edges of G. We show that
for every two vertices vi and vj of G, there is a proper Hamilton vi-vj path in G. As the
edge-colored G is vertex-transitive, we verify for i = 0.

(Observe that, in the following paths, the first and the last edges are colored blue.)
v0-v1 path: v0v2k−1v2k−2v2k−3 . . . v4v3v2v1;
v0-v2 path: v0v2k−1v2k−2v2k−3 . . . v4v3v1v2;
v0-v3 path: for k ≥ 5, v0v2k−1v2k−2v2k−3 . . . v5v2v1v4v3; for k = 4, v0v7v6v5v2v1v4v3;
v0-v4 path: for k ≥ 5, v0v2k−1v2k−2v2k−3 . . . v5v2v1v3v4; for k = 4, v0v7v6v5v2v1v3v4;
v0-v2i−1 path: v0v2k−1 v1v2v3v4 . . . v2i−2 v2i+1v2i+2 v2i+5v2i+6 v2i+9v2i+10 . . .
v2k−13v2k−12 v2k−9v2k−8 v2k−5v2k−4 v2k−2 v2k−3 v2k−6v2k−7 v2k−10v2k−11 v2k−14v2k−15
. . . v2i+12v2i+11 v2i+8v2i+7 v2i+4v2i+3 v2iv2i−1

if ‘k ≥ 10 is even and i ∈ {3, 5, 7, . . . , k− 7, k− 5, k− 3}’ or ‘k ≥ 11 is odd and i ∈ {4, 6, 8,
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. . . , k − 7, k − 5, k − 3}’;
for k = 9, v0v17v1v2v3v4v5v6v9v10v13v14v16v15v12v11v8v7,

v0v17v1v2v3v4v5v6v7v8v9v10v13v14v16v15v12v11;
for k = 8, v0v15v1v2v3v4v7v8v11v12v14v13v10v9v6v5,

v0v15v1v2v3v4v5v6v7v8v11v12v14v13v10v9;
for k = 7, v0v13v1v2v3v4v5v6v9v10v12v11v8v7;
for k = 6, v0v11v1v2v3v4v7v8v10v9v6v5; and

v0v2k−1 v1v2v3v4 . . . v2i−2 v2i+1v2i+2 v2i+5v2i+6 v2i+9v2i+10 . . . v2k−15v2k−14 v2k−11v2k−10
v2k−7v2k−6 v2k−3 v2k−2 v2k−4v2k−5 v2k−8v2k−9 v2k−12v2k−13 . . . v2i+12v2i+11 v2i+8v2i+7

v2i+4v2i+3 v2iv2i−1
if ‘k ≥ 10 is even and i ∈ {4, 6, 8, . . . , k−6, k−4, k−2}’ or ‘k ≥ 9 is odd and i ∈ {3, 5, 7, . . . ,
k − 6, k − 4, k − 2}’;

for k = 8, v0v15v1v2v3v4v5v6v9v10v13v14v12v11v8v7,
v0v15v1v2v3v4v5v6v7v8v9v10v13v14v12v11;

for k = 7, v0v13v1v2v3v4v7v8v11v12v10v9v6v5, v0v13v1v2v3v4v5v6v7v8v11v12v10v9;
for k = 6, v0v11v1v2v3v4v5v6v9v10v8v7;
for k = 5, v0v9v1v2v3v4v7v8v6v5; and

v0-v2i path: v0v2k−1v2k−2v2k−3 . . . v2i+1 v2i−2v2i−3 v2i−6v2i−7 v2i−10v2i−11 . . .
v13 v10v9 v6v5 v2v1 v3v4 v7v8 v11v12 . . . v2i−13v2i−12 v2i−9v2i−8 v2i−5v2i−4 v2i−1v2i

if ‘k ≥ 10 is even and i ∈ {4, 6, 8, . . . , k−6, k−4, k−2}’ or ‘k ≥ 11 is odd and i ∈ {4, 6, 8, . . . ,
k − 7, k − 5, k − 3}’;

for k = 9, v0v17v16v15v14v13v12v11v10v9v6v5v2v1v3v4v7v8,
v0v17v16v15v14v13v10v9v6v5v2v1v3v4v7v8v11v12;

for k = 8, v0v15v14v13v12v11v10v9v6v5v2v1v3v4v7v8,
v0v15v14v13v10v9v6v5v2v1v3v4v7v8v11v12;

for k = 7, v0v13v12v11v10v9v6v5v2v1v3v4v7v8;
for k = 6, v0v11v10v9v6v5v2v1v3v4v7v8; and

v0v2k−1v2k−2v2k−3 . . . v2i+1 v2i−2v2i−3 v2i−6v2i−7 v2i−10v2i−11 . . .
v15 v12v11 v8v7 v4v3 v1v2 v5v6 v9v10 v13v14 . . . v2i−13v2i−12 v2i−9v2i−8 v2i−5v2i−4 v2i−1v2i

if ‘k ≥ 10 is even and i ∈ {3, 5, 7, . . . , k−7, k−5, k−3}’ or ‘k ≥ 9 is odd and i ∈ {3, 5, 7, . . . ,
k − 6, k − 4, k − 2}’;

for k = 8, v0v15v14v13v12v11v10v9v8v7v4v3v1v2v5v6,
v0v15v14v13v12v11v8v7v4v3v1v2v5v6v9v10;

for k = 7, v0v13v12v11v10v9v8v7v4v3v1v2v5v6, v0v13v12v11v8v7v4v3v1v2v5v6v9v10;
for k = 6, v0v11v10v9v8v7v4v3v1v2v5v6;
for k = 5, v0v9v8v7v4v3v1v2v5v6;

v0-v2k−3 path: for k ≥ 5, v0v2k−1v1v2v3 . . . v2k−5v2k−4v2k−2v2k−3;
for k = 4, v0v7v1v2v3v4v6v5;

v0-v2k−2 path: for k ≥ 5, v0v2k−1v1v2v3 . . . v2k−5v2k−4v2k−3v2k−2;
for k = 4, v0v7v1v2v3v4v5v6;

(Observe that, in the following path, the first and the last edges are colored red.)
v0-v2k−1 path: v0v1v2v3 . . . v2k−4v2k−3v2k−2v2k−1.

Case 2. n is odd.
Let n = 2k−1, k ≥ 4, G = Circ(2k−1 : {1, 2, 3}) and C = v0v1v2 . . . v2k−2v0. Then, C

is a Hamilton cycle of G. Define an edge-coloring c of G by assigning color red to each edge
of C and color blue to the remaining edges of G. As the edge-colored G is vertex-transitive,
we show that for every vertex vj , j 6= 0, of G, there is a proper Hamilton v0-vj path in G.
v0-v1 path: for k ≥ 7, v0 v2k−3v2k−2 v2k−5v2k−4 v2k−7v2k−6 . . . v5v6 v3v4 v2v1;

for k = 6, v0v9v10v7v8v5v6v3v4v2v1;



R. SAMPATHKUMAR, S. ANANTHARAMAN: ON PROPER HAMILTONIAN-CONNECTION ... 1023

for k = 5, v0v7v8v5v6v3v4v2v1;
for k = 4, v0v5v6v3v4v2v1;

v0-v2 path: for k ≥ 7, v0 v2k−3v2k−2 v2k−5v2k−4 v2k−7v2k−6 . . . v5v6 v3v4 v1v2;
for k = 6, v0v9v10v7v8v5v6v3v4v1v2;
for k = 5, v0v7v8v5v6v3v4v1v2;
for k = 4, v0v5v6v3v4v1v2;

v0-v3 path: for k ≥ 8, v0 v2v1 v2k−3v2k−2 v2k−5v2k−4 v2k−7v2k−6 . . . v7v8 v5v6 v4v3;
for k = 7, v0v2v1v11v12v9v10v7v8v5v6v4v3;
for k = 6, v0v2v1v9v10v7v8v5v6v4v3;
for k = 5, v0v2v1v7v8v5v6v4v3;
for k = 4, v0v2v1v5v6v4v3;

v0-v4 path: for k ≥ 8, v0 v2v1 v2k−3v2k−2 v2k−5v2k−4 v2k−7v2k−6 . . . v7v8 v5v6 v3v4;
for k = 7, v0v2v1v11v12v9v10v7v8v5v6v3v4;
for k = 6, v0v2v1v9v10v7v8v5v6v3v4;
for k = 5, v0v2v1v7v8v5v6v3v4;
for k = 4, v0v2v1v5v6v3v4;

v0-v2i−1 path: v0v2k−2 v2v1 v4v3 v6v5 . . . v2i−6v2i−7 v2i−4v2i−5 v2i−2v2i−3 v2iv2i+1

v2i+4v2i+5 v2i+8v2i+9 . . . v2k−12v2k−11 v2k−8v2k−7 v2k−4v2k−3 v2k−5v2k−6
v2k−9v2k−10 v2k−13v2k−14 . . . v2i+11v2i+10 v2i+7v2i+6 v2i+3v2i+2 v2i−1

if ‘k ≥ 10 is even and i ∈ {4, 6, 8, . . . , k− 6, k− 4, k− 2}’ or ‘k ≥ 11 is odd and i ∈ {3, 5, 7,
. . . , k − 6, k − 4, k − 2}’;

for k = 9, v0v16v2v1v4v3v6v7v10v11v14v15v13v12v9v8v5,
v0v16v2v1v4v3v6v5v8v7v10v11v14v15v13v12v9,
v0v16v2v1v4v3v6v5v8v7v10v9v12v11v14v15v13;

for k = 8, v0v14v2v1v4v3v6v5v8v9v12v13v11v10v7, v0v14v2v1v4v3v6v5v8v7v10v9v12v13v11;
for k = 7, v0v12v2v1v4v3v6v7v10v11v9v8v5, v0v12v2v1v4v3v6v5v8v7v10v11v9;
for k = 6, v0v10v2v1v4v3v6v5v8v9v7; and

v0v2k−2 v2v1 v4v3 v6v5 . . . v2i−6v2i−7 v2i−4v2i−5 v2i−2v2i−3 v2iv2i+1

v2i+4v2i+5 v2i+8v2i+9 . . . v2k−14v2k−13 v2k−10v2k−9 v2k−6v2k−5 v2k−3v2k−4
v2k−7v2k−8 v2k−11v2k−12 . . . v2i+11v2i+10 v2i+7v2i+6 v2i+3v2i+2 v2i−1

if ‘k ≥ 10 is even and i ∈ {3, 5, 7, . . . , k− 7, k− 5, k− 3}’ or ‘k ≥ 11 is odd and i ∈ {4, 6, 8,
. . . , k − 7, k − 5, k − 3}’;

for k = 9, v0v16v2v1v4v3v6v5v8v9v12v13v15v14v11v10v7,
v0v16v2v1v4v3v6v5v8v7v10v9v12v13v15v14v11;

for k = 8, v0v14v2v1v4v3v6v7v10v11v13v12v9v8v5, v0v14v2v1v4v3v6v5v8v7v10v11v13v12v9;
for k = 7, v0v12v2v1v4v3v6v5v8v9v11v10v7;
for k = 6, v0v10v2v1v4v3v6v7v9v8v5;

v0-v2i path: v0v1 v3v2 v5v4 v7v6 . . . v2i−7v2i−8 v2i−5v2i−6 v2i−3v2i−4 v2i−1v2i−2
v2i+1v2i+2 v2i+5v2i+6 v2i+9v2i+10 . . . v2k−11v2k−10 v2k−7v2k−6 v2k−3v2k−2
v2k−4v2k−5 v2k−8v2k−9 v2k−12v2k−13 . . . v2i+12v2i+11 v2i+8v2i+7 v2i+4v2i+3 v2i

if ‘k ≥ 10 is even and i ∈ {4, 6, 8, . . . , k−6, k−4, k−2}’ or ‘k ≥ 11 is odd and i ∈ {3, 5, 7, . . . ,
k − 6, k − 4, k − 2};’

for k = 9, v0v1v3v2v5v4v7v8v11v12v15v16v14v13v10v9v6,
v0v1v3v2v5v4v7v6v9v8v11v12v15v16v14v13v10,
v0v1v3v2v5v4v7v6v9v8v11v10v13v12v15v16v14;

for k = 8, v0v1v3v2v5v4v7v6v9v10v13v14v12v11v8, v0v1v3v2v5v4v7v6v9v8v11v10v13v14v12;
for k = 7, v0v1v3v2v5v4v7v8v11v12v10v9v6, v0v1v3v2v5v4v7v6v9v8v11v12v10;
for k = 6, v0v1v3v2v5v4v7v6v9v10v8; and

v0v1 v3v2 v5v4 v7v6 . . . v2i−5v2i−6 v2i−3v2i−4 v2i−1v2i−2 v2i+1v2i+2
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v2i+5v2i+6 v2i+9v2i+10 . . . v2k−13v2k−12 v2k−9v2k−8 v2k−5v2k−4 v2k−2v2k−3
v2k−6v2k−7 v2k−10v2k−11 . . . v2i+12v2i+11 v2i+8v2i+7 v2i+4v2i+3 v2i

if ‘k ≥ 10 is even and i ∈ {3, 5, 7, . . . , k− 7, k− 5, k− 3}’ or ‘k ≥ 11 is odd and i ∈ {4, 6, 8,
. . . , k − 7, k − 5, k − 3}’;

for k = 9, v0v1v3v2v5v4v7v6v9v10v13v14v16v15v12v11v8,
v0v1v3v2v5v4v7v6v9v8v11v10v13v14v16v15v12;

for k = 8, v0v1v3v2v5v4v7v8v11v12v14v13v10v9v6, v0v1v3v2v5v4v7v6v9v8v11v12v14v13v10;
for k = 7, v0v1v3v2v5v4v7v6v9v10v12v11v8;
for k = 6, v0v1v3v2v5v4v7v8v10v9v6;

v0-v2k−3 path: for k ≥ 7, v0 v2v1 v4v3 v6v5 . . . v2k−6v2k−7 v2k−4v2k−5 v2k−2v2k−3;
for k = 6, v0v2v1v4v3v6v5v8v7v10v9v12v11;
for k = 5, v0v2v1v4v3v6v5v8v7;
for k = 4, v0v2v1v4v3v6v5;

v0-v2k−2 path: for k ≥ 7, v0 v2v1 v4v3 v6v5 . . . v2k−6v2k−7 v2k−4v2k−5 v2k−3v2k−2;
for k = 6, v0v2v1v4v3v6v5v8v7v9v10;
for k = 5, v0v2v1v4v3v6v5v7v8;
for k = 4, v0v2v1v4v3v5v6. This completes the proof. �

It follows from Lemma 2.1 that

Theorem 2.1. If G is a graph with n vertices, n ≥ 7, such that Circ(n : {1, 2, 3}) ⊆ G,
then hpc(G) = 2.

Corollary 2.1. (Bi, Byers and Zhang [2]) For n ≥ 7, hpc(Kn) = 2.

Lemma 2.2. For any odd integer k ≥ 5, hpc(Circ(2k : {1, 2, k})) = 2.

Proof. Let G = Circ(2k : {1, 2, k}) and F = {vivi+1 : i ∈ {1, 3, 5, . . . , 2k − 1}}, where
v2k = v0. Then F is a 1-factor of G. Define an edge-coloring c of G by assigning color blue
to each edge of F and color red to the remaining edges of G. As the edge-colored G is
vertex-transitive, we show that for every vertex vj , j 6= 0, of G, there is a proper Hamilton
v0-vj path in G.

(Observe that, in the following paths, the first and the last edges are colored blue.)
v0-v1 path: v0v2k−1 v2k−2v2k−3 v2k−4v2k−5 . . . v6v5 v4v3 v2v1;
v0-v2 path: v0v2k−1 v2k−2v2k−3 v2k−4v2k−5 . . . v6v5 v4v3 v1v2;
v0-v2i−1 path, i ∈ {2, 3, 4, . . . , k−32 } : for k ≥ 13,
v0v2k−1 vk−1vk−2 v2k−2v2k−3 vk−3vk−4 v2k−4v2k−5 vk−5vk−6 v2k−6v2k−7
. . . v2i+6v2i+5 vk+2i+5vk+2i+4 v2i+4v2i+3 vk+2i+3vk+2i+2 v2i+2v2i+1 vk+2i+1vk+2i

vk+2i−1vk+2i−2 vk+2i−3vk+2i−4 . . . vk+7vk+6 vk+5vk+4 vk+3vk+2 vkvk+1

v1v2 v3v4 v5v6 . . . v2i−7v2i−6 v2i−5v2i−4 v2i−3v2i−2 v2iv2i−1;
for k = 11, v0v21v10v9v20v19v8v7v18v17v6v5v16v15v14v13v11v12v1v2v4v3,

v0v21v10v9v20v19v8v7v18v17v16v15v14v13v11v12v1v2v3v4v6v5,
v0v21v10v9v20v19v18v17v16v15v14v13v11v12v1v2v3v4v5v6v8v7;

for k = 9, v0v17v8v7v16v15v6v5v14v13v12v11v9v10v1v2v4v3,
v0v17v8v7v16v15v14v13v12v11v9v10v1v2v3v4v6v5;

for k = 7, v0v13v6v5v12v11v10v9v7v8v1v2v4v3;
v0-v2i path, i ∈ {2, 3, 4, . . . , k−32 } : for k ≥ 13,
v0v2k−1 vk−1vk−2 v2k−2v2k−3 vk−3vk−4 v2k−4v2k−5 vk−5vk−6 v2k−6v2k−7
. . . v2i+6v2i+5 vk+2i+5vk+2i+4 v2i+4v2i+3 vk+2i+3vk+2i+2 v2i+2v2i+1 vk+2i+1vk+2i

vk+2i−1vk+2i−2 vk+2i−3vk+2i−4 . . . vk+7vk+6 vk+5vk+4 vk+3vk+2 vkvk+1

v1v2 v3v4 v5v6 . . . v2i−7v2i−6 v2i−5v2i−4 v2i−3v2i−2 v2i−1v2i;
for k = 11, v0v21v10v9v20v19v8v7v18v17v6v5v16v15v14v13v11v12v1v2v3v4,
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v0v21v10v9v20v19v8v7v18v17v16v15v14v13v11v12v1v2v3v4v5v6,
v0v21v10v9v20v19v18v17v16v15v14v13v11v12v1v2v3v4v5v6v7v8;

for k = 9, v0v17v8v7v16v15v6v5v14v13v12v11v9v10v1v2v3v4,
v0v17v8v7v16v15v14v13v12v11v9v10v1v2v3v4v5v6;

for k = 7, v0v13v6v5v12v11v10v9v7v8v1v2v3v4;
v0-vk−2 path: for k ≥ 13, v0v2k−1 v2k−2v2k−3 v2k−4v2k−5 . . . vk+5vk+4 vk+3vk+2

vkvk+1 v1v2 v3v4 v5v6 . . . vk−6vk−5 vk−4vk−3 vk−1vk−2;
for k = 11, v0v21v20v19v18v17v16v15v14v13v11v12v1v2v3v4v5v6v7v8v10v9;
for k = 9, v0v17v16v15v14v13v12v11v9v10v1v2v3v4v5v6v8v7;
for k = 7, v0v13v12v11v10v9v7v8v1v2v3v4v6v5;

v0-vk−1 path: for k ≥ 13, v0v2k−1 v2k−2v2k−3 v2k−4v2k−5 . . . vk+5vk+4 vk+3vk+2

vkvk+1 v1v2 v3v4 v5v6 . . . vk−6vk−5 vk−4vk−3 vk−2vk−1;
for k = 11, v0v21v20v19v18v17v16v15v14v13v11v12v1v2v3v4v5v6v7v8v9v10;
for k = 9, v0v17v16v15v14v13v12v11v9v10v1v2v3v4v5v6v7v8;
for k = 7, v0v13v12v11v10v9v7v8v1v2v3v4v5v6;

v0-vk path: for k ≥ 13, v0v2k−1 v2k−2v2k−3 v2k−4v2k−5 . . . vk+5vk+4 vk+3vk+2

v2v1 v3v4 v5v6 v7v8 . . . vk−4vk−3 vk−2vk−1 vk+1vk;
for k = 11, v0v21v20v19v18v17v16v15v14v13v2v1v3v4v5v6v7v8v9v10v12v11;
for k = 9, v0v17v16v15v14v13v12v11v2v1v3v4v5v6v7v8v10v9;
for k = 7, v0v13v12v11v10v9v2v1v3v4v5v6v8v7;

v0-vk+1 path: for k ≥ 13, v0v2k−1 v2k−2v2k−3 v2k−4v2k−5 . . . vk+5vk+4 vk+3vk+2

v2v1 v3v4 v5v6 v7v8 . . . vk−4vk−3 vk−2vk−1 vkvk+1;
for k = 11, v0v21v20v19v18v17v16v15v14v13v2v1v3v4v5v6v7v8v9v10v11v12;
for k = 9, v0v17v16v15v14v13v12v11v2v1v3v4v5v6v7v8v9v10;
for k = 7, v0v13v12v11v10v9v2v1v3v4v5v6v7v8;

v0-vk+2 path: for k ≥ 13, v0v2k−1 vk−1vk−2 vkvk+1 v1v2 v3v4 v5v6 . . . vk−6vk−5 vk−4vk−3
v2k−3v2k−2 v2k−4v2k−5 v2k−6v2k−7 v2k−8v2k−9 . . . vk+5vk+4 vk+3vk+2;
for k = 11, v0v21v10v9v11v12v1v2v3v4v5v6v7v8v19v20v18v17v16v15v14v13;
for k = 9, v0v17v8v7v9v10v1v2v3v4v5v6v15v16v14v13v12v11;
for k = 7, v0v13v6v5v7v8v1v2v3v4v11v12v10v9;

v0-v2i−1 path, i ∈ {k+5
2 , k+7

2 , k+9
2 , . . . , k − 2}: for k ≥ 15,

v0v2k−1 vk−1vk−2 v2k−2v2k−3 vk−3vk−4 v2k−4v2k−5 vk−5vk−6 v2k−6v2k−7
. . . v2i+6v2i+5 v2i+5−kv2i+4−k v2i+4v2i+3 v2i+3−kv2i+2−k v2i+2v2i+1

v2i+1−kv2i−kv2i−k−1v2i−k−2 v2i−k−3v2i−k−4 . . . v6v5 v4v3 v2v1 vk+1vk
vk+2vk+3 vk+4vk+5 vk+6vk+7 . . . v2i−7v2i−6 v2i−5v2i−4 v2i−3v2i−2 v2iv2i−1;
for k = 13, v0v25v12v11v24v23v10v9v22v21v8v7v20v19v6v5v4v3v2v1v14v13v15v16v18v17,

v0v25v12v11v24v23v10v9v22v21v8v7v6v5v4v3v2v1v14v13v15v16v17v18v20v19,
v0v25v12v11v24v23v10v9v8v7v6v5v4v3v2v1v14v13v15v16v17v18v19v20v22v21;

for k = 11, v0v21v10v9v20v19v8v7v18v17v6v5v4v3v2v1v12v11v13v14v16v15,
v0v21v10v9v20v19v8v7v6v5v4v3v2v1v12v11v13v14v15v16v18v17;

for k = 9, v0v17v8v7v16v15v6v5v4v3v2v1v10v9v11v12v14v13;
v0-v2i path, i ∈ {k+3

2 , k+5
2 , k+7

2 , . . . , k − 2}: for k ≥ 15,
v0v2k−1 vk−1vk−2 v2k−2v2k−3 vk−3vk−4 v2k−4v2k−5 vk−5vk−6 v2k−6v2k−7
. . . v2i+6v2i+5 v2i+5−kv2i+4−k v2i+4v2i+3 v2i+3−kv2i+2−k v2i+2v2i+1

v2i+1−kv2i−k v2i−k−1v2i−k−2 v2i−k−3v2i−k−4 . . . v6v5 v4v3 v2v1 vk+1vk
vk+2vk+3 vk+4vk+5 vk+6vk+7 . . . v2i−7v2i−6 v2i−5v2i−4 v2i−3v2i−2 v2i−1v2i;
for k = 13, v0v25v12v11v24v23v10v9v22v21v8v7v20v19v6v5v4v3v2v1v14v13v15v16v17v18,

v0v25v12v11v24v23v10v9v22v21v8v7v6v5v4v3v2v1v14v13v15v16v17v18v19v20,
v0v25v12v11v24v23v10v9v8v7v6v5v4v3v2v1v14v13v15v16v17v18v19v20v21v22;
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for k = 11, v0v21v10v9v20v19v8v7v18v17v6v5v4v3v2v1v12v11v13v14v15v16,
v0v21v10v9v20v19v8v7v6v5v4v3v2v1v12v11v13v14v15v16v17v18;

for k = 9, v0v17v8v7v16v15v6v5v4v3v2v1v10v9v11v12v13v14;
v0-v2k−3 path: v0v2k−1 v1v2 v3v4 v5v6 . . . v2k−7v2k−6 v2k−5v2k−4 v2k−2v2k−3;
v0-v2k−2 path: v0v2k−1 v1v2 v3v4 v5v6 . . . v2k−7v2k−6 v2k−5v2k−4 v2k−3v2k−2;
(Observe that, in the following path, the first and the last edges are colored red.)
v0-v2k−1 path: v0 v1v2 v3v4 v5v6 . . . v2k−7v2k−6 v2k−5v2k−4 v2k−3v2k−2 v2k−1.

This completes the proof. �

From Lemma 2.2, we have the following result.

Theorem 2.2. If G is a graph with n vertices, n ≥ 10, n ≡ 2 (mod 4), such that Circ(n :
{1, 2, n2 }) ⊆ G, then hpc(G) = 2.

Theorem 2.2 is open for n ≡ 0 (mod 4). We show that it is true for n = 8, i.e.,
hpc(Circ(8 : {1, 2, 4})) = 2.

Let G = Circ(8 : {1, 2, 4}) and F = {vivi+1 : i ∈ {1, 3, 5, 7}}, where v8 = v0. Then F
is a 1-factor of G. Define an edge-coloring c of G by assigning color red to each edge of F
and color blue to the remaining edges of G. We show that, for every vertex vj , j 6= 0, of
G, there is a proper Hamilton v0-vj path in G. v0-v1 path: v0v7 v6v5 v4v3 v2v1;
v0-v2 path: v0v7 v6v5 v4v3 v1v2; v0-v3 path: v0v7 v1v2 v6v5 v4v3;
v0-v4 path: v0v7 v1v2 v6v5 v3v4; v0-v5 path: v0v7 v1v2 v3v4 v6v5;
v0-v6 path: v0v7 v1v2 v3v4 v5v6; v0-v7 path: v0v1 v2v3 v4v5 v6v7. �
Suppose thatG0 = (V0, E0) andG1 = (V1, E1) are two disjoint graphs with |V0| = |V1|.

A 1 − 1 connection between G0 and G1 is defined as an edge set Ec = { (v, v) | v ∈
V0, v = φ(v) ∈ V1 and φ : V0 → V1 is a bijection}. G0⊕G1 denotes the graph G = (V0∪
V1, E0 ∪ E1 ∪ Ec). Thus, φ induces a 1-factor in G0 ⊕G1.

Theorem 2.3. (See Theorem 9.15 of [3]) G0 ⊕ G1 is Hamiltonian-connected if both G0

and G1 are Hamiltonian-connected and |V (G0)| = |V (G1)| ≥ 3.

Theorem 2.4. Suppose that G0 = (V0, E0) and G1 = (V1, E1) are two disjoint
Hamiltonian-connected graphs with an even number |V0| = |V1| ≥ 4 of vertices. If,
for each i ∈ {0, 1}, there is a proper Hamilton path 2-coloring ci of Gi with colors blue
and red such that for any two vertices u and v of Gi, there is a proper Hamilton u-v path
in Gi with the first and the last edges colored blue, then there is a proper Hamilton path
2-coloring c of G0 ⊕G1 with colors blue and red such that for any two vertices x and y of
G0 ⊕G1, there is a proper Hamilton x-y path in G0 ⊕G1 with the first and the last edges
colored blue. So, hpc(G0 ⊕G1) = 2.

Proof. Define c so that c restricted to E0 is c0, c restricted to E1 is c1, and the edges of
Ec are colored red. Without loss of generality, we have the following two cases: (1) both
x and y are in G0; (2) x is in G0 and y is in G1.

First, assume that both x and y are in G0. By hypothesis, there exists a proper Hamilton
path P of G0 joining x and y with the first and the last edges colored blue. The path
P can be written as (x, P1, w, z, P2, y) with c0(wz) = red. Obviously, w 6= z and, by
hypothesis, there exists a proper Hamilton path Q of G1 joining w and z with the first
and the last edges colored blue. Thus, (x, P1, w, w,Q, z, z, P2, y) forms a proper Hamilton
path of G0 ⊕G1 joining x and y with the first and the last edges colored blue.

Next, assume that x is in G0 and y is in G1. Since |V (G0)|= |V (G1)|≥ 4, there exists
a vertex z in G0 such that x 6= z and z 6= y. Thus, there exists a proper Hamilton path
P of G0 joining x and z with the first and the last edges colored blue and there exists a
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proper Hamilton path Q of G1 joining z and y with the first and the last edges colored
blue. Obviously, (x, P, z, z,Q, y) forms a proper Hamilton path of G0 ⊕G1 joining x and
y with the first and the last edges colored blue. This completes the proof. �

Next, we observe that, for any integer k ≥ 5, G0 = Circ(2k : {1, 2, 3, 4}) satisfies
the hypothesis of the previous theorem. By the proof of Case 1 of Lemma 2.1, it is
enough if we define c to the edges of length 4 and to find a proper Hamilton v0-v2k−1 path.
Color the edges of length 4 by blue and the required path is: v0v2k−4 v2k−3v2k−2v1v2v3 . . .
v2k−7v2k−6 v2k−5v2k−1. Also, we observe that, for any odd integer k ≥ 5, Circ(2k : {1, 2, 3,
k−1, k}) satisfies the hypothesis of the previous theorem. By the proof of Lemma 2.2, it is
enough if we define c to the edges of lengths 3 and k−1 so that we have a proper Hamilton
v0-v2k−1 path. Color the edges of length 3 by red and length k−1 by blue and the required
path is: v0vk+1 vk+2vk+3 vk+4vk+5 . . . v2k−5v2k−4 v2k−3v2k−2 v1v2 v3v4 . . . vk−2vk−1 vkv2k−1.

3. Graphs with hpc = 3

I. Known graphs G with hpc(G) = 3 = χ ′(G) are: C2n+1�K2 and Hk. Let G be
a Hamiltonian-connected graph with χ ′(G) = 3. To show that hpc(G) = 3, we must
show that G has no proper Hamilton path 2-coloring.

II. Known graph G with χ ′(G) ≥ 4 and hpc(G) = 3 is: Fk.

Theorem 3.1. For k ≥ 2, hpc(Circ(4k : {1, 2k})) = 3.

Proof. Let G = Circ(4k : {1, 2k}). Consider the proper 3-edge-coloring ({vivi+1 : i ∈ {0,
2, 4, . . . , 4k− 2}}, {vivi+1 : i ∈ {1, 3, 5, . . . , 4k− 1}}, {vivi+2k : i ∈ {0, 1, 2, . . . , 2k− 1}}) of
the 3-regular graph G. Thus χ ′(G) = 3. It remains to show that G has no proper Hamilton
path 2-coloring. Assume, to the contrary, that there is a proper Hamilton path 2-coloring
c of G.
Claim 1. The Hamilton paths from v0 to v2k are
P1 := v0v1v2v3 . . . v2k−2v2k−1 − v4k−1v4k−2v4k−3 . . . v2k+1 v2k and
P2 := v0v4k−1v4k−2v4k−3 . . . v2k+2v2k+1 − v1v2v3 . . . v2k−1 v2k.
Assume, by symmetry, the edge v0v1 is in P, a Hamilton path from v0 to v2k. Then,

v0v4k−1 /∈ E(P ) and so v4k−1v4k−2 ∈ E(P ) and v4k−1v2k−1 ∈ E(P ). Suppose v2k−1v2k ∈
E(P ), then P := v0v1 . . . v4k−2v4k−1v2k−1v2k; it follows that P−1 := v2kv2k−1v4k−1v4k−2
v2k−2v2k−3v4k−3v4k−4v2k−4v2k−5v4k−5v4k−6 . . . ; now the vertex v2k+1 /∈ P, a contradiction.
Hence, v2k−1v2k /∈ E(P ). So, v2kv2k+1 ∈ E(P ). Thus P := v0v1 . . . − . . . v2k+1v2k.
Consequently, P := v0v1v2 . . . − . . . v2k+2v2k+1v2k and therefore, P = P1.
Claim 2. The Hamilton paths from v0 to v2 are
Q1 := v0v1v2k+1 − v2kv2k−1 − v4k−1v4k−2 − v2k−2v2k−3 − v4k−3v4k−4 − v2k−4v2k−5
−v4k−5v4k−6 − · · · − v6v5 − v2k+5v2k+4 − v4v3 − v2k+3v2k+2 − v2 and

Q2 := v0 − v2kv2k−1 − v4k−1v4k−2 − v2k−2v2k−3 − v4k−3v4k−4 − v2k−4v2k−5
−v4k−5v4k−6− · · · − v6v5 − v2k+5v2k+4 − v4v3 − v2k+3v2k+2 − v2k+1v1v2.

Since N(v1) = {v0, v2, v2k+1}, any Hamilton path Q from v0 to v2 contains v0v1v2k+1

or v2k+1v1v2 but not both. Assume, by symmetry, Q := v0v1v2k+1 . . . v2. Edge v0v4k−1 /∈
E(Q) implies v4k−2v4k−1v2k−1 is in Q and v0v2k /∈ E(Q) implies v2k−1v2kv2k+1 is in Q.
Hence, Q := v0v1v2k+1 − v2kv2k−1 − v4k−1v4k−2 − · · · − v2. Now, v2k−1v2k−2 /∈ E(Q)
implies v2k−3v2k−2v4k−2 is in Q. Proceeding in this way, we get Q = Q1.

We have four possibilities. If the paths required for c are P1 and Q1, then we have a
contradiction, since c(v0v1) 6= c(v2k−1v4k−1) in P1 and c(v0v1) = c(v2k−1v4k−1) in Q1. If the
paths required for c are P1 and Q2, then also we have a contradiction, since c(v2k−3v2k−2) =
c(v2k−1v4k−1) in P1 and c(v2k−3v2k−2) 6= c(v2k−1v4k−1) in Q2. Similarly, the reason for P2

and Q1 is c(v1v2k+1) 6= c(v2k−1v2k) in P2 and c(v1v2k+1) = c(v2k−1v2k) in Q1; and the
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same for P2 and Q2 is c(v2k+2v2k+3) 6= c(v3v4) in P2 and c(v2k+2v2k+3) = c(v3v4) in Q2.
This completes the proof. �

Conclusion The conjecture ‘if G is a Hamiltonian-connected graph, then hpc(G) ≤ 3’ of
Bi, Byers and Zhang [2] is verified for some classes of graphs (see Theorems 2.1, 2.2 and
3.1). Also, Theorem 2.4 generates more graphs that serve as a support to the conjecture.

We pose the following problems.

Problem 3.1. Find a1 < a2 < a3 such that for every integer n ≥ 2a3 + 1,
hpc(Circ(n : {a1, a2, a3})) = 2.

If (a1, a2, a3) = (1, 2, 3), then we have Lemma 2.1.

Problem 3.2. Find a1 < a2 such that for every odd integer k ≥ 2a2 + 1,
hpc(Circ(2k : {a1, a2, k})) = 2.

If (a1, a2) = (1, 2), then we have Lemma 2.2.

In the next two sections, we consider Hamiltonian-laceable graphs and apply the hpc
-Conjecture.

4. Hamiltonian-laceable graphs

A bipartite graph with bipartition (X,Y ) is Hamiltonian-laceable if there exists a Hamil-
ton path joining any two vertices from different partite sets; that is, one in X and one
in Y. For a Hamiltonian-laceable graph G, an edge-coloring c : E(G) → {1, 2, . . . , k} is a
proper Hamilton path k-coloring if every two vertices from different partite sets of G are
connected by a proper Hamilton path in G. The minimum number k of colors in a proper
Hamilton path k-coloring of G is also called the proper Hamiltonian-connection number of
G, but it is denoted by hpcb(G).

5. Graphs with hpcb = 2

Let G be a Hamiltonian-laceable graph with bipartition (X,Y ). To show that hpcb(G) =
2, we must show that G has a 2-edge-coloring with the property that for every two vertices
u ∈ X and v ∈ Y of G, there is a proper Hamilton u-v path in G.

Lemma 5.1. For every integer n ≥ 5, hpcb(Circ(2n : {1, 3, 5})) = 2.

Proof. Let G = Circ(2n : {1, 3, 5}) and F = {vivi+1 : i ∈ {1, 3, 5, . . . , 2n− 1}}, where v2n
= v0. Then, F is a 1-factor of G. Let X = {vi : i ∈ {0, 2, 4, . . . , 2n− 2}} and Y = {vi :
i ∈ {1, 3, 5, . . . , 2n−1}}. Define an edge-coloring c of G by assigning color blue to each edge
of F and color red to the remaining edges of G. As the edge-colored G is vertex-transitive,
we show that for every vertex vj ∈ Y of G, there is a proper Hamilton v0-vj path in G.

(Observe that, in the following paths, the first and the last edges are colored blue.)
v0-v1 path: v0v2n−1v2n−2v2n−3 . . . v4v3v2v1;
v0-v3 path: for n ≥ 6, v0v2n−1v2n−2v2n−3 . . . v8v7v6v5v2v1v4v3;

for n = 5, v0v9v8v7v6v5v2v1v4v3;
v0-v5 path: for n ≥ 6, v0v2n−1v2n−2v2n−3 . . . v8v7v2v1v4v3v6v5;

for n = 5, v0v9v8v7v2v1v4v3v6v5;
v0-v7 path: for n ≥ 7, v0v2n−1v2n−2v2n−3 . . . v10v9v6v5v2v1v4v3v8v7;

for n = 6, v0v11v10v9v6v5v2v1v4v3v8v7; for n = 5, v0v9v6v5v2v1v4v3v8v7;
Assume n ≥ 6 and j ∈ {5, 6, 7, . . . , n− 1} :
v0-v2j−1 path, if j ≡ 0 ( mod 2 ): for n ≥ 10,
v0v2n−1v2n−2v2n−3 . . . v2j+2v2j+1 v2j−2v2j−3 v2j−6v2j−7 v2j−10v2j−11 . . . v10v9
v6v5 v2v1 v4v3 v8v7 v12v11 . . . v2j−8v2j−9 v2j−4v2j−5 v2jv2j−1;
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for n = 9, v0v17v16v15v14v13v8v7v2v1v4v3v6v5v10v9v12v11,
v0v17v14v13v10v9v6v5v2v1v4v3v8v7v12v11v16v15;

for n = 8, v0v15v14v13v8v7v2v1v4v3v6v5v10v9v12v11;
for n = 7, v0v13v8v7v2v1v4v3v6v5v10v9v12v11;

v0-v2j−1 path, if j ≡ 1 ( mod 2 ): for n ≥ 10, v0v2n−1v2n−2v2n−3 . . . v2j+2v2j+1

v2j−2v2j−3 v2j−6v2j−7 v2j−10v2j−11 . . . v12v11 v8v7 v2v1
v4v3 v6v5 v10v9v14v13 . . . v2j−8v2j−9 v2j−4v2j−5 v2jv2j−1;
for n = 9, v0v17v16v15v14v13v12v11v8v7v2v1v4v3v6v5v10v9,

v0v17v16v15v12v11v8v7v2v1v4v3v6v5v10v9v14v13;
for n = 8, v0v15v14v13v12v11v8v7v2v1v4v3v6v5v10v9,

v0v15v12v11v8v7v2v1v4v3v6v5v10v9v14v13;
for n = 7, v0v13v12v11v8v7v2v1v4v3v6v5v10v9;
for n = 6, v0v11v8v7v2v1v4v3v6v5v10v9;

(Observe that, in the following path, the first and the last edges are colored red.)
v0-v2n−1 path: v0 v1v2 v3v4 v5v6 . . . v2n−4v2n−3 v2n−2v2n−1. This completes the proof. �

Theorem 5.1. Let G be a bipartite graph with n ≥ 5 vertices in each partite set. If
Circ(2n : {1, 3, 5}) ⊆ G, then hpcb(G) = 2.

Corollary 5.1. For n ≥ 5, hpcb(Kn,n) = 2.

Theorem 5.2. (See Theorem 9.17 of [3]) Assume that G0, G1, and G0⊕G1 are bipartite
graphs such that |V (G0)| = |V (G1)| ≥ 2. Then G0⊕G1 is Hamiltonian-laceable if both G0

and G1 are Hamiltonian-laceable.

Theorem 5.3. Suppose that G0 = (V 0
0 ∪V 1

0 , E0) and G1 = (V 0
1 ∪V 1

1 , E1) are two disjoint
Hamiltonian-laceable graphs with |V 0

0 | = |V 1
0 | = |V 0

1 | = |V 1
1 | ≥ 2, where (V 0

i , V
1
i )

is a bipartition of Gi, i ∈ {0, 1}. If, for each i ∈ {0, 1}, there is a proper Hamilton path
2-coloring ci of Gi with colors blue and red such that for every two vertices u ∈ V 0

i and
v ∈ V 1

i of Gi, there is a proper Hamilton u-v path in Gi with the first and the last edges
colored blue, then there is a proper Hamilton path 2-coloring c of G0⊕G1 with colors blue
and red such that for every two vertices x and y of G0 ⊕ G1, there is a proper Hamilton
x-y path in G0 ⊕G1 with the first and the last edges colored blue. So, hpcb(G0 ⊕G1) = 2.

Proof. Define c so that c restricted to E0 is c0, c restricted to E1 is c1, and the edges of
Ec are colored red. By the symmetric property of G0 ⊕G1, without loss of generality we
can assume the following two cases:
Case 1. x ∈ V 0

0 and y ∈ V 1
0 . By hypothesis, there exists a proper Hamilton path P of G0

joining x and y with the first and the last edges colored blue. The path P can be written
as (x, P1, w, z, P2, y) with c0(wz) = red, w ∈ V 1

0 and z ∈ V 0
0 . Obviously, w ∈ V 1

1 and
z ∈ V 0

1 . Thus, there exists a proper Hamilton path Q of G1 joining w and z with the first
and the last edges colored blue. Thus, (x, P1, w, w,Q, z, z, P2, y) forms a proper Hamilton
path of G0 ⊕G1 with the first and the last edges colored blue.
Case 2. x ∈ V 0

0 and y ∈ V 1
1 . Then, there exists a vertex z in V 1

0 . Obviously, z ∈ V 0
1 .

Thus, there exists a proper Hamilton path P of G0 joining x to z with the first and the
last edges colored blue and there exists a proper Hamilton path Q of G1 joining z to y
with the first and the last edges colored blue. Obviously, (x, P, z, z,Q, y) forms a proper
Hamilton path of G0 ⊕G1 with the first and the last edges colored blue. This completes
the proof. �

Next, we observe that, for any even integer n ≥ 10, Circ(2n : {1, 3, 5, 7, 9}) satisfies the
hypothesis of the previous theorem. By the proof of Lemma 5.1, it is enough if we define c
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to the edges of lengths 7 and 9 so that we have a proper Hamilton v0-v2k−1 path. Color the
edges of lengths 7 and 9 by blue, the required path is v0-v2n−1 path: v0v2n−9 v2n−10v2n−11
v2n−12v2n−13 . . . v4v3 v2v1 v2n−2v2n−3v2n−4v2n−5 v2n−6v2n−7 v2n−8v2n−1.

6. Graphs with hpcb = 3

Let G be a Hamiltonian-laceable graph with χ ′(G) = 3. To show that hpcb(G) = 3, we
must show that G has no proper Hamilton path 2-coloring.

Theorem 6.1. For each integer n ≥ 2, hpcb(C2n�K2) = 3.

Proof. Construct G = C2n�K2 from the two 2n-cycles u1u2u3 . . . u2n−1u2nu1 and
v1v2v3 . . . v2n−1v2nv1 by adding the 2n edges uivi for i ∈ {1, 2, . . . , 2n}. Let X =
{u1, u3, u5, . . . , u2n−3, u2n−1}∪{v2, v4, v6, . . . , v2n−2, v2n} and Y = {u2, u4, u6, . . . , u2n−2,
u2n}∪{v1, v3, v5, . . . , v2n−3, v2n−1}. Then (X,Y ) is a bipartition of G. Note that χ ′(G) = 3.
Assume, to the contrary, that there is a proper Hamilton path 2-coloring c of G.

First, consider a Hamilton u1-v1 path P in G. P begins with u1u2 or u1u2n and ends
with v2v1 or v2nv1. Assume, by symmetry, P begins with u1u2.

If P ends with v2v1, then, as u1u2n /∈ E(P ) and v1v2n /∈ E(P ), we have the subpath
u2n−1u2nv2nv2n−1 in P. Again, as u2n−1v2n−1 /∈ E(P ), we have u2n−2u2n−1, v2n−2v2n−1 ∈
E(P ). Proceeding in this way, we get P = u1u2u3 . . . u2n−2u2n−1u2nv2nv2n−1v2n−2 . . . v3v2v1
= P1.

If P ends with v2nv1, then, as v1v2 /∈ E(P ), we have the subpath u2v2v3 in P. Since
u2u3 /∈ E(P ), the subpath v3u3u4 in P. As v3v4 /∈ E(P ), the subpath u4v4v5 in P. Pro-
ceeding in this way, we get P = u1u2v2v3u3u4v4v5 . . . v2n−1u2n−1u2nv2nv1 = P2.
Next, consider Hamilton u3-v3 paths in G. By the above argument, the paths are:
Q1 = u3u4u5 . . . u2n−2u2n−1u2nu1u2v2v1v2nv2n−1v2n−2 . . . v5v4v3,
Q2 = u3u4v4v5u5u6v6v7 . . . v2n−1u2n−1u2nv2nv1u1u2v2v3,
Q3 = u3u2u1u2nu2n−1u2n−2 . . . u5u4v4v5v6 . . . v2n−1v2nv1v2v3, and
Q4 = u3u2v2v1u1u2nv2nv2n−1u2n−1u2n−2v2n−2v2n−3 . . . v5u5u4v4v3.
If the paths required in c are P1 and Q2, then, we have a contradiction, since

c(u2nv2n) = c(v2n−1v2n−2) in P1 and c(u2nv2n) 6= c(v2n−1v2n−2) in Q2.
If the paths required in c are P1 and Q4, then, we have a contradiction, since

c(u2nv2n) = c(u2n−2u2n−1) in P1 and c(u2nv2n) 6= c(u2n−2u2n−1) in Q4.
If the paths required in c are P2 and Q1, then, we have a contradiction, since

c(u2n−1u2n) = c(v2n−2v2n−1) in P2 and c(u2n−1u2n) 6= c(v2n−2v2n−1) in Q1.
If the paths required in c are P2 and Q3, then, we have a contradiction, since

c(u2n−1u2n) = c(v2n−2v2n−1) in P2 and c(u2n−1u2n) 6= c(v2n−2v2n−1) in Q3.
If the paths required in c are P1 and Q1, then, there is no proper Hamilton u1-v3 path

in G. To see this, consider the first edge of this path. If it is either u1v1 or u1u2n, then
the edges v2u2 and u2u3 with same color are in the path. Otherwise, it is u1u2, and the
edges u2nv2n and v2nv1 with same color are in the path. A contradiction.

If the paths required in c are P1 and Q3, then, there is no proper Hamilton u1-v3 path in
G. To see this, consider the first edge of this path. If it is u1u2, then the edges u2nv2n and
v2nv1 with same color are in the path. If it is u1u2n, then we have the subpath v1v2u2u3
in the path; now the edge v2u2 has no color. If it is u1v1, then we have the subpath
v2u2u3, with color 1, 2 in order, in the path; now there is no second edge for this path. A
contradiction.

If the paths required in c are P2 and Q4, then, each of the edges in the two 2n-cycles
u1u2u3 . . . u2n−1u2nu1 and v1v2v3 . . . v2n−1v2nv1 are of one color, say 1, and each of
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the 2n edges uivi, i ∈ {1, 2, . . . , 2n}, are of another color, say 2. Now, there is no proper
Hamilton u1-v3 path in G, a contradiction.

If the paths required in c are P2 and Q2, then, there is no proper Hamilton u1-u4 path
R in G. To see this, consider the first edge of R. If it is u1u2n, then we have the subpath
u2v2v1v2n; as the edges u2v2 and v1v2n are of different colors, there is no color for the
edge v2v1. So it is either u1u2 or u1v1. First, assume that it is u1u2. If R = u1u2u3 . . . ,
then R = u1u2u3u4. So, R = u1u2v2 . . . and therefore R = u1u2v2 . . . v3u3u4. As
R 6= u1u2v2v3u3u4, R = u1u2v2v1 . . . v3u3u4. Thus R = u1u2v2v1u1. Next, assume
that it is u1v1. By symmetry, assume that the last edge of R is v4u4. As u1u2 and u3u4 are
not in R, R = u1v1 . . . v2u2u3v3 . . . v4u4. Since v2v3 is not in R, R = u1v1v2u2u3v3v4u4.
A contradiction. This completes the proof. �

Using the following two facts, we have:
If n ≥ 2, then, for any edge e in C2n�K2, χ

′((C2n�K2)− e) = 3, and it is known that
(see Lemma 9.3 of [3]), (C2n�K2)− e is Hamiltonian-laceable.

If H is a Hamiltonian-laceable spanning subgraph of a Hamiltonian-laceable graph G,
then hpcb(G) ≤ hpcb(H).

Corollary 6.1. For n ≥ 2 and for any edge e in C2n�K2, hpcb((C2n�K2)− e) = 3.

We pose the following problem.

Problem 6.1. Find odd integers a1 < a2 < a3 such that for every integer n ≥ a3,
hpcb(Circ(2n : {a1, a2, a3})) = 2.

If (a1, a2, a3) = (1, 3, 5), then we have Lemma 5.1.
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